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Abstract

Background: The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects
these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have
been developed to aid the physician in interpreting clinical data and thus to improve the quality of the whole
process. Fuzzy logic, a well established attempt at the formalization and mechanization of human capabilities in
reasoning and deciding with noisy information, can be profitably used. Recently, we informally proposed a general
methodology to automatically build DDSSs on the top of fuzzy knowledge extracted from data.

Methods: We carefully refine and formalize our methodology that includes six stages, where the first three stages
work with crisp rules, whereas the last three ones are employed on fuzzy models. Its strength relies on its
generality and modularity since it supports the integration of alternative techniques in each of its stages.

Results: The methodology is designed and implemented in the form of a modular and portable software
architecture according to a component-based approach. The architecture is deeply described and a summary
inspection of the main components in terms of UML diagrams is outlined as well. A first implementation of the
architecture has been then realized in Java following the object-oriented paradigm and used to instantiate a DDSS
example aimed at accurately diagnosing breast masses as a proof of concept.

Conclusions: The results prove the feasibility of the whole methodology implemented in terms of the architecture
proposed.

Background
Making an effective and efficient medical diagnosis is pivo-
tal in clinical daily practice, clearly because of the impact
of this singular decision making process in the eventual ill-
ness trajectory and disease management. For such a rea-
son, the optimization of the diagnostic process in terms of
number and duration of patient examinations, with corre-
sponding accuracy, sensitivity, and specificity, is known to
reduce morbidity and mortality rates, control costs and

improve both doctor-patient and community-facility rela-
tionships [1].
The task of medical diagnosis, like almost any other

diagnostic process, is made more complex to obtain even
for a medical expert because of a web of relevant uncer-
tainties, in the form of information incompleteness, impre-
ciseness, fragmentariness, not fully reliability, vagueness
and contradictoriness [2]. Specifically, patients may not be
able to describe exactly the natural history of their disease
in terms of what has happened to them or how they feel;
doctors and health care practitioners may not understand
or interpret exactly what they hear or observe; the accu-
racy of available laboratory reports, which may come with
some degree of error; and the effects of treatment in an
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individual patient or in a group or population as a whole
in terms of how diseases alter the normal functioning of
the body [3]. The need to identify the most accurate medi-
cal diagnosis in a very timely manner increases dramati-
cally in the case of mortal diseases, as both the rapid and
accurate diagnosis and prompt initiation of treatment are
recognized as necessary conditions to limit further compli-
cations, cut costs and reduce human suffering.
In order to improve the possibility of early and accurate

diagnosis of illness, there is thus the need for the applica-
tion of Diagnostic Decision Support Systems (in the fol-
lowing, DDSSs) in the process, because these are known
to improve practitioner’s performance, reduce costs and
improve patient outcomes [4].
The first DDSSs proposed in literature relied on crisp

models based on thresholding for solving medical classifi-
cation problems. Nevertheless, they neither take into
account the fuzziness of input data nor reproduce the
expert decision-making process applied in a vague-laden
domain such as medicine. As a matter of fact, the deci-
sion-making model every trustworthy physician has in
mind to perform heuristic diagnosis is often pervaded by
uncertainty and vagueness.
Recently, DDSSs based on a multi-valued logic and, in

particular, on Fuzzy Logic, have been applied to medical
classification problems (see, for example, [5], [6] and [7])
demonstrating their capability both to overcome the pro-
blem of managing imprecise and uncertain knowledge
and offer a support for the medical decision making pro-
cess. Moreover, Fuzzy Logic is quite close to natural lan-
guage and allows presenting the results to clinicians in a
more natural form. This makes fuzzy based DDSSs more
acceptable to human users than black box systems,
because both the semantic expressiveness and reasoning
(by using linguistic variables and rules) are comprehensi-
ble and may be validated by human inspection.

Crisp and fuzzy modeling
The first DDSSs were mainly based on Crisp Logic,
which provides an inference morphology for drawing
conclusions from existing neat and clear-cut information:
specifically, new truths can be inferred from old ones.
In more detail, it relies on rules, defined as conditional
statements written in the following form: if crispAntece-
dent then crispConsequent where crispAntecedent is a
crisp-logic expression made of one or more simple predi-
cates linked by logical operators and depending on input
crisp variables, and crispConsequent is an expression of
output variables which are assigned crisp values. A crisp
variable C (also named feature) is characterized by a set
of crisp values c it can assume, whereas a predicate P
classifies the values belonging to a variable into two
groups or categories, i.e. values that make it either true

or false, respectively. In other words, the set defined by P
(c) is written as: {c|P(c)}, and is just a collection of all the
values for which P is true. For instance, {c|c is a positive
integer less than 3} is the set {1,2}.
Crisp modeling is the task of determining the para-

meters characterizing a rule base, classified into the fol-
lowings:

• Structural parameters. Related mainly with the size
of the rule base, they include the number of variables
involved in the rules and the number of rules.
• Connective parameters. Related with the topology of
the rule base, these parameters include antecedents,
consequents, and weights of the rules.

Unlike Crisp Logic, Fuzzy Logic resembles human rea-
soning in its use of vague information to generate deci-
sions [8], where vague predicates are used and values
belonging to a variable cannot be classified into two
groups (either true or false). In this sense, Fuzzy Logic
incorporates an alternative way of reasoning, which allows
modeling complex systems using a higher level of abstrac-
tion originating from knowledge and experience [9].
In more detail, in Fuzzy Logic, a fuzzy variable F (also

named linguistic variable) represents a concept that is
measurable in some way either objectively or subjectively
and is defined by a set of fuzzy terms T (also named fuzzy
sets), and by the membership functions μT associated to
these terms; fuzzy terms set a membership value from 0 to
1 to elements u within a predetermined range U (named
the universe of discourse) as follows:

T = {(u,µT)|u ∈ U and µT : U → [0, 1]} (1)

The central notion, thus, is that truth values or member-
ship values are indicated by a value on the range [0, 1],
with 0 representing absolute false and 1 representing abso-
lute truth. For instance, Figure 1 shows the linguistic vari-
able Heart Rate made of three terms (low, medium and
high), and defined in U = [0, 150] bpm (beats per minute).
The fuzzy inference morphology relies on a Fuzzy Infer-

ence System (in the following, FIS) based on if fuzzyAnte-
cedent then fuzzyConsequent rules, where fuzzyAntecedent
is a fuzzy-logic expression made of one or more simple
fuzzy expressions linked by fuzzy operators and depending
on input fuzzy variables, and fuzzyConsequent is an
expression of the output variables which are assigned
fuzzy terms.
Essentially, fuzzy reasoning is made of four steps, namely

fuzzification of input variables, rule evaluation, aggregation
of rule outputs and, finally, defuzzification. Fuzzification of
input variables converts crisp (realvalued) inputs into
fuzzy terms. For each fuzzy rule, Rule evaluation applies
such fuzzified inputs to its antecedents, making use of a
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fuzzy operator in case of multiple antecedents, with the
final aim of generating a single value indicating its degree
of activation. Such a value is, then, used in the implication
to infer the conclusion of the rule. Aggregation combines
the membership functions of all rule consequents pre-
viously evaluated in order to generate a single fuzzy set as
output. Finally, defuzzification determines the best repre-
sentative crisp value of this aggregated output fuzzy set.
Fuzzy modeling is the task of determining the para-

meters of a FIS, classified into the followings [10]:

• Logical parameters. They include the shape of the
membership functions, the fuzzy logic operators
applied for AND, OR, implication, and aggregation
operations, and the defuzzification method.
• Structural parameters. Related mainly with the size of
the fuzzy system, they include the number of variables
involved in the rules, the number of membership func-
tions defined for each linguistic variable, and the num-
ber of rules.
• Connective parameters. Related with the topology of
the system, these parameters include antecedents, con-
sequents, and weights of the rules.
• Operational parameters. These parameters define the
mapping between linguistic and numeric representa-
tions of the variables, so characterizing the member-
ship functions of the linguistic variables.

The most usual, and cheapest, way for modeling medical
knowledge in fuzzy-based DDSSs is asking an expert to
write if-then rules. Moreover, after formalizing the expert’s
knowledge under the form of rules, the designer and the
expert have to choose the shape and location of member-
ship functions for all the linguistic values related to all the
variables involved. This step, sure enough, requires both
medical expertise and technical intervention along with
great effort to identify which among the design choices are
suited to the given problem. Alternatively, an emerging
solution is represented by data driven fuzzy modeling, that
is being widely adopted in different application domains to
automatically generate a rule base from data, even if the

interpretability is not guaranteed in many situations and
redundancy can occur in the rules produced.
According to [11] a fuzzy model is interpretable when:

(i) the fuzzy terms associated to a variable (usually indi-
cated as fuzzy partition) are interpretable as linguistic
labels, (ii) the rule base is as small as possible, and (iii) the
if-part of each rule does not includes all the independent
variables but only a subset of them.

State of the art
A number of fuzzy-based DDSSs has faced up these chal-
lenges, and has attempted to address the subjects of
knowledge acquisition, representation, and utilization in
medical diagnosis.
In [12], a rule-base self-extraction and simplification

method is proposed, devised to establish interpretable
fuzzy models from numerical data. A fuzzy clustering
technique associated with a fuzzy partition validity index is
used to extract the initial fuzzy rule-base and find out the
optimal number of fuzzy rules. To reduce the complexity
of fuzzy models while keeping good model accuracy, some
approximate similarity measures are presented and a para-
meter fine-tuning mechanism is introduced to improve
the accuracy of the simplified model. Experimental results
are reported with respect to different case studies, such as
function approximation, dynamical system identification
and mechanical property prediction for hot rolled steels.
These test-cases are characterized by a relatively small
number of input-space variables. No experimental test has
been reported for problems characterized by a high num-
ber of input-space variables.
In [13], an evolving hierarchical fuzzy system based on

probabilistic incremental program evolution is presented.
The use of hierarchical fuzzy systems allows to limit both
the number of rules and the number of fuzzy operations
with respect to single level systems. Worthy results are
described for case studies concerning non linear system
identification, such as Makey-Glass chaotic time series
prediction, and the Iris and Wine classification.
In [14] a data-driven innovative approach is presented

for generating a fuzzy rule based decision support system

Figure 1 An example of linguistic variable.
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for the diagnosis of coronary artery disease. The imple-
mented methodology relies on four stages.
In the first stage, a decision tree is induced from the

dataset, while in the second stage, a set of rules is
extracted from it. This set of rules is in Disjunctive Normal
Form (DNF) and involves crisp variables modeling neat
and clear-cut quantities. It can be used as a whole to clas-
sify new incoming data coherently with the knowledge
embedded into the initial dataset. In the third stage, the
crisp model is fuzzified, i.e., the crisp rules are transformed
into fuzzy ones, using a fuzzy membership function
instead of the crisp one and definitions of S and T norms.
Finally, in the fourth stage, the parameters entering the
fuzzy model are adapted using a global optimization
technique.
In [15] a generic methodology is presented for the

automated generation of fuzzy models. The methodology
is realized in three stages. Initially, a crisp model is cre-
ated whereas, in the second stage it is transformed into a
fuzzy one. In the third stage, all parameters entering the
fuzzy model are optimized. A specific realization of this
methodology is implemented, using decision trees for the
creation of the crisp model, the sigmoid function, the
min-max operators and the maximum defuzzifier for the
transformation of the crisp model into a fuzzy one, and
four different optimization strategies, including global
and local optimization techniques, as well as hybrid
approaches.
In [16] a generic approach to the design of interpretable

data-driven fuzzy models, which can be used in the con-
struction of DDSSs, is proposed. The approach addresses
several design steps, including fuzzy partitioning, rule learn-
ing, variable selection and rule base simplification. The
fuzzy partitioning step consists in generating a collection of
fuzzy partitions of various sizes from two to a user-defined
maximum value, based upon indices or an objective func-
tion. The rule learning step includes two categories of
methods, namely region based methods and prototype
based ones. The rule base simplification merges some rules
into a more generic incomplete rule, where some variables
(one or more) appear in some rules. The variable selection
determines the number of terms for a given variable neces-
sary to get a good rule base, in terms of trade-off between
its complexity and accuracy, measured by performance
indexes.

The contribution of the work
Recently, we informally introduced [17,18] a methodol-
ogy to design and develop a fuzzy-based DDSS for medi-
cal classification problems by extracting fuzzy knowledge
from data. In this work, we first propose a formalization
of a refined and assessed version of such a methodology,
which essentially specifies a flow of stages needed to
develop a fuzzy-based DDSS as well as the characteristics

of the input and output produced and consumed in the
different stages. As a result, it formalizes the role
assumed by each stage in terms of its interface, but it
does not provide any indication about how the single
activities have to be done in the form of strategies to be
adopted or algorithms to be applied, especially because
this choice is strictly linked to the specific application
domain. This issue is further motivated by the fact that
the methodology, whose strength relies on its generality
and modularity, has been thought as a basis for the devel-
opment process of fuzzy-based DDSSs by supporting the
integration of alternative techniques in each of its stages.
Both the generality and flexibility make it applicable to
almost any medical classification domain and, also,
enable the possibility to test the efficiency of different
methods in order to detect their best integration with
respect to specific classes of problems.
In more detail, the assessed version of the methodology

(Figure 2) includes six stages: (i) extraction of crisp rules,
(ii) selection of a significant partition from the extracted
rule set, (iii) reduction of the selected rule set, (iv) crea-
tion of fuzzy rules, (v) generation of the whole fuzzy
inference system and (vi) its optimization. In the first
three stages a set of crisp rules is initially created and,
then, appropriately elaborated in order to be compliant
with some characteristics, which are strongly necessary
for this methodology to make the fuzzification feasible.
In this work, such characteristics are formulated with the
definition of fuzzifiability. Successively, the last three
stages are in charge of (i) transforming the (fuzzifiable)
crisp rules into the corresponding fuzzy versions, i.e. in
terms of connective and structural parameters, (ii) defin-
ing the most appropriate logical parameters to be used in
the fuzzy inference system and (iii) optimizing all the
operational parameters composing the fuzzy rules and, if
required, also the relative relevance of each of them, spe-
cified in the form of a weight.
The methodology has been realized in the form of

a modular and portable architecture according to a
Component-Based Software Development (in the follow-
ing, CBSD), with the aim of defining a collection of com-
ponents customizable or extensible by existing available
solutions that are compatible to the original placeholders.
The architecture has been developed in Java according

to the object-oriented paradigm in order to create a truly
portable DDSS, solving the problem of having parts of it
implemented for different platforms. The resulting archi-
tecture can be considered as well-suited for almost any
medical domain where the real world is simulated in
a broad sense and a diagnosis in terms of classification
is required.
As a proof of concept, such an architecture has been

used to instantiate a DDSS example aimed at accurately
diagnosing breast masses starting from the widely used
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Wisconsin Breast Cancer Dataset (in the following,
WBCD) to evaluate the feasibility of the methodology.
The manuscript is structured as follows: in Methods,

the proposed methodology is formally described and the

choices and techniques which are identified for the speci-
fic realization are analyzed. Furthermore, the design
approach used for the development of the proposed
architecture is introduced. In Results, the architecture

Figure 2 Our six-step methodology in terms of activity diagram.
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designed is diffusely described and a summary inspection
of the main components is reported as well. Moreover,
the proof of concept DDSS for validating the methodol-
ogy is introduced and its results are discussed. Finally,
conclusions and on-going activities are outlined in the
last section as closure to the paper.

Methods
Our methodology includes six stages, where the first
three stages work with crisp models, whereas the last
three ones are employed on fuzzy models (Figure 2).

Rule extraction
The Rule Extraction stage is essentially devised to the
extraction, from a specific input dataset, of a collection of
if-then rules constituting the crisp rule base (in the fol-
lowing, CRB), specifically represented in a weighted Dis-
junctive Normal Form (wDNF). We work with this
representation because of its high degree of compactness
and knowledge synthesis. The CRB, thus, is a disjunctive
system of crisp rules, where at most one rule must be
satisfied by an item of the initial dataset, i.e. the rules are
linked by mutually exclusive or connectives. More for-
mally, each crisp rule rcij (note that the superscript c is
used to label a rule as crisp) in the CRB denotes the ith

rule which predicts the jth class, with j = 1... M and i =
1... Nj, where M is the total number of classes and Nj is
the total number of rules that predict the jth class, respec-
tively. As a result, in general, there could be one or more
than one rule for each class predicted, while each class is
likely to be covered by at least one rule in the CRB.
The structure of each rule rcij is composed of a conjunc-

tion of antecedent predicates (which can be evaluated to
be either true or false), based on the set of features
Xc = {xcl }, with l = 1... L (where L is the number of fea-
tures of the initial dataset), and one consequent term
indicating the specific class predicted. More in detail, for
the ith rule which predicts the jth class, given the sets of
crisp predicates Pc

ij = {pcijk}, with k = 1... Kij (where Kij is
the total number of predicates for ith rule which predicts
the jth class), and let ycj be the consequent crisp term
representing the predicted jth class, its formulation is
defined as:

rcij : pcij1(X
c) ∧ . . . . ∧ pcijKij

(Xc) → ycj (2)

with each crisp predicate expressed as:

pcijk(X
c) ≡ (xcijkop

cvcijk) (3)

where xcijk is the specific feature selected from the set Xc,
opcijk is a comparison operator selected from the sets {=, ≠}
and {<, >, ≤, ≥} in the cases of categorical and numerical
features, respectively, and vcijk represents a categorical value
or a crisp numerical threshold.

This DNF is labeled as weighted since each rule is asso-
ciated with a degree of relevance, such as its coverage or
accuracy, with respect to its predicted class depending on
the domain of application and the specific dataset con-
cerning this domain.
Different solutions can be adopted to extract rules, ran-

ging from purely logical approaches to statistically-based
ones or relying on artificial neural networks, genetic algo-
rithms and on non-connectionist machine learning (e.g.
decision trees) [19]. Independently from the specific
method used, it is relevant to point out that it is possible
to extract rules able to correctly classify an item in the
dataset from its known features, i.e. every item in the
input dataset is covered by exactly one rule in the CRB,
but without avoiding the possibility of overfitting the
input dataset which can be characterized by a degree of
uncertainty. This uncertainty may arise from two differ-
ent sources. The first is mis-measurement, i.e., for a vari-
ety of reasons, the value of a feature or class may be
incorrectly measured. The second source of uncertainty
is the occurrence of extraneous factors not recorded, but
affecting the results so that the class of an item in the
dataset cannot be determined wholly from its recorded
features. The resulting CRB extracted in these situations
tends to be very large and many rules reflect particular
items in the training dataset which are very unlikely to
occur in further examples, i.e. they cover a very small
part of the input space, are matched only by a few exam-
ples, lack generality and can become counter-productive.
This issue represents the motivation for the second stage,
i.e. Selection.

Selection
The Selection stage is in charge of determining the suffi-
cient number of rules, as are necessary to get a good CRB
with respect to the specific dataset concerning the
domain under observation, where a good CRB represents
a reasonable trade-off between complexity, determined
by the number of rules, and accuracy, measured by
appropriate performance indexes. The selection is done
with the idea of granting two main factors emerged as
primary determinants of interpretability. First, the num-
ber of rules should be small so involving that a full set of
complete rules should be avoided since it can quickly
lead to a combinatorial explosion when the number of
features rises [16]. The second condition is strictly linked
to the first one and is specific to complex systems with a
large number of features: rules must not systematically
include all the features, but only the important ones in
the context of the rule, so generating the often called
incomplete rules [16].
Different methods can be applied to perform the rule

selection and, thus, implicitly also the variable selection,
each of them exploiting ad-hoc heuristics guided by
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user-defined indicators (such as the final number of rules
to be chosen, from a minimum of one for each predicted
class to a maximum which can be properly indicated by
the user) and suitable with respect to the different applica-
tions and their specific requirements. For example, the
choice of the good CRB can be piloted by a longest-match
criterion, i.e. depending on the longest left-hand-side
(LHS) of the rules that match an item of the dataset. Its
rationale is based on the conclusion that longer antecedent
part will contain more accurate and richer information for
the final classification than the shorter ones. Differently, a
most confident selection could be adopted, by identifying
the rules with the highest confidence as the best one,
where the longer rule is chosen in case of a tie. The ratio-
nale of this criterion is based on the assumption that the
testing dataset will share the same characteristics as the
training dataset used in the Rule Extraction. So if a rule
has a high confidence in the training data, then this rule
will also show a high confidence in the testing data, which
means the class predicted by that rule will be most likely
to occur next.
Summarizing, this stage has a double relevance in terms

of the functionalities offered: first, it performs the rule
selection to achieve a smaller number of more general
rules with the idea that it may have greater predictive
accuracy on unseen data, at the expense of no longer cor-
rectly classifying some of the items in the original training
dataset; then, it implicitly carries out also a feature selec-
tion leading to an incomplete rule base which takes into
consideration only those features that are really required
since included into the significant rules previously
selected.
It is worth noting that the elimination of features in

order to obtain incomplete rules could be undertaken at
the extraction level since the Rule Extraction step can
remove features from the whole rule, for example using
statistical indexes. Differently, this stage is intended to
select only a subset of the features instead of the whole set
of candidate ones for other reasons: i) it can be cheaper to
measure only a reduced set of features; ii) prediction accu-
racy may be improved through exclusion of poorly signifi-
cant features; iii) the final DDSS to be built might be
simpler and potentially faster when fewer input variables
are used; iv) knowing which features are more relevant
can give insight into the nature of the classification pro-
blem and allow a better understanding of the final DDSS.
At this point, in the context of the same rule rij given as
output after the Selection, with respect to numerical fea-
tures, different predicates can contain the same feature
selected from the set Xc, i.e. xcijl = xcijk with l, k Î [1, ..., Kij]
and l ≠ k. This consideration represents the motivation for
the third stage, Reduction,

Reduction
The Reduction stage is in charge of simplifying the struc-
ture of each crisp rule in order to make it compliant with
some characteristics, which are strongly necessary for
this methodology to make the fuzzification feasible. In
this work, such characteristics are formulated with the
definition of fuzzifiability. A crisp rule is defined as fuzzi-
fiable, if and only if each of its numerical features appears
in one or at most two predicates in its antecedent part,
according to one of the following forms:

pcI(x
c) ≡ (xc < vc) (4)

pcII(x
c) ≡ (xc > vc) (5)

pcIII(x
c) ≡ (xc < vc1 ∧ xc > vc2 with vc1 > vc2) (6)

This stage thus puts into effect a simplification proce-
dure, that iteratively searches, in the context of each rule,
each couple of predicates involving the same feature,
using comparable operators and needed of being made
compatible with the fuzzifiability. It is important to point
out the meaning of comparable operators. Two compari-
son operators are intended as comparable in this proce-
dure if and only if they appear in one of the situations
reported in 7, independently of their order:

comp ≡ (opc1 =′≥′ ∧opc2 =′>′) ∨ (opc1 =′≤′ ∧opc2 =′<′)(7)

When a couple of candidate predicates is detected,
since in the rule under evaluation they are connected by
conjunctions (remember that this is due to the fact that
the CRB is in DNF), they can be reduced as follows:

(xcopc1v
c
1) ∧ (xcopc2v

c
2) → xc > max(vc1, v

c
2) if (op

c
1 ∈ {≥,>} ∧ opc2 ∈ {≥,>}) (8)

(xcopc1v
c
1) ∧ (xcopc2v

c
2) → xc < min(vc1, v

c
2) if (op

c
1 ∈ {≤,<} ∧ opc2 ∈ {≤,<}) (9)

After applying this simplification procedure to every
couple of candidate predicates, each resulting predicate
will be formulated according to one of the forms defined
in equations 4-6. A clarifying note has to be reported
about the categorical features. As they assume mutual
exclusive values and, in each rule, the antecedent predi-
cates are admitted to be connected only by means of con-
junction operators, it is not possible (since meaningless) at
all that two different predicates might contain the same
feature assuming different values in the context of the
same rule. Thus, the Reduction does not involve the cate-
gorical features in its simplification procedure.

Fuzzification
After the first three stages, a crisp model made of rules
based on clear-cut boundaries has been generated in
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accordance with the fuzzifiability property. Successively,
starting from the crisp model produced, the generation
of the fuzzy model begins with the fourth stage, named
Fuzzification.
In more detail, in order to create fuzzy variables and

terms, in this stage, crisp rules are translated into a corre-
sponding fuzzy version, where every feature contained in
the crisp rules is associated to a linguistic variable. It is
relevant to mention that only features determined rele-
vant to the classification by means of the previous stages
are fuzzified. Of course, also the predicted class is asso-
ciated to a linguistic variable. Successively, each linguistic
variable is further characterized by a set of terms subjec-
tively describing it. With respect to this issue, the degree
of detail to be used in partitioning the universe of dis-
course of each variable, i.e. number of linguistic terms to
be referred to it, has been chosen in accordance with the
crisp model. Summarizing, the fuzzy rule base (in the fol-
lowing, FRB) achieved in this stage continues to be a dis-
junctive system of rules. Nevertheless, differently from
the crisp case, where exactly one rule must be satisfied,
the fuzzy rules are linked by simple OR connectives,
where at least one rule must be satisfied, i.e. one or more
rules may be weakly or strongly activated simultaneously.
Each fuzzy rule rfij (note that the superscript f is used to

denote a rule as fuzzy) in the FRB denotes the ith rule
which predicts the jth class, with j = 1... M and i = 1... Nj,
where M is the total number of classes and Nj is the total
number of fuzzy rules that predict the jth class, respec-

tively. The structure of each fuzzy rule rfij is composed of

a conjunction of antecedent fuzzy predicates, based on
the set of linguistic variables Xf = {xfu}, with u = 1, ..., Uc,
(where Uc is the number of features effectively used in
the crisp model), and one consequent fuzzy variable indi-
cating the specific class predicted. More formally, for ith

rule which predicts the jth class, given the sets of fuzzy

predicates pfij = {pfijk}, with k = 1... Kij (where Kij is the

total number of predicates for ith rule which predicts the

jth class), and let yfj be the consequent linguistic variable

representing the predicted jth class, its formulation is
defined as follows:

rfij : pfij1(X
f ) ∧ . . . ∧ pfijK(X

f ) → yfj (10)

with each fuzzy predicate expressed as:

pfijk(X
f ) ≡ (xfijk is v

f
ijk) (11)

where vfijk represents a (fuzzified) numerical interval in

the case xfijk is a fuzzy variable associated to a numerical

feature or a (fuzzified) categorical value in the case xfijk is

fuzzy variable associated to a categorical feature. Finally,

also the FRB is weighted since each fuzzy rule is associated
with the same degree of relevance pertaining the crisp rule
it has been generated from.
Different methods can be applied to fuzzify crisp rules

[14], [15], [20], [21], ranging from solutions which, on
the one hand, exploit the symbolic structure of the crisp
rules to generate fuzzy variables and terms to be
inserted into the predicates of the corresponding fuzzy
rules and, on the other hand, soften the sharp crisp
thresholds to minimise continuous terms close to the
decision boundaries from misclassification, to
approaches where the crisp rule structure is only used
to define fuzzy variables and terms and the sharp
thresholds are not taken into account at all into the fuz-
zification process.

FIS configuration
At this point, after generating the fuzzy model in terms
of rules, linguistic variables and terms, the overall Fuzzy
Inference System underpinning the DDSS has to be gen-
erated in the fifth stage, named FIS Configuration,
depending on the domain of application and its specific
requirements. As depicted in Figure 3, a FIS is a system
aimed at solving a typically complex and nonlinear pro-
blem by utilizing fuzzy logic methodologies. Its basic
structure includes four main components, namely a Fuz-
zifier (which translates real-valued inputs into fuzzy
values), an Inference Engine (that applies a fuzzy reason-
ing mechanism to obtain a fuzzy output), a Defuzzifier
(to translate this latter output into a crisp value), and a
Fuzzy model (containing fuzzy rules, linguistic variables
and membership functions).
Connective and structural parameters of the FIS (to be

generated) have been thus defined in the previous stage.
Differently, in this stage, the most appropriate logical para-
meters to be used in the FIS have to be determined by the
designer based on experience and depending on the
domain characteristics. Typical choices for the reasoning
mechanism are Mamdani-type, Takagi-Sugeno-Kang
(TKS)-type, and Singleton-type. Common fuzzy operators
are min, max, product, probabilistic sum, and bounded
sum. The most common membership functions are trian-
gular, trapezoidal, gaussian and bell-shaped. For defuzzifi-
cation several methods have been proposed with the
center of area (COA) and the mean of maxima (MOM)
methods being the most popular. Moreover, depending on
the typology of reasoning mechanism desired, different
Inference Engines can be used, for instance, for supporting
the rule chaining [22] or operating in accordance with an
If-Then-Else rule structure [23].

FIS adaptation
After determining the most appropriate logical para-
meters, in order to complete the generation of the FIS
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underpinning the DDSS, the operational parameters
have to be identified in the last stage, named FIS Adap-
tation, in terms of parameters characterizing shape and
location of membership functions for all the terms
related to all the linguistic variables involved in the FRB.
For what concerns linguistic variables linked to cate-

gorical features, the determination of shape and location
of their membership functions is very simple. Since a
categorical feature is one that has two or more cate-
gories, but there is no intrinsic ordering to them, they
can be modeled as independent singular singletons.
Referring to linguistic variables linked to numeric fea-
tures, a tuning process considering the whole FRB
obtained has to be used a posteriori to adjust the mem-
bership function parameters. The classic way to refine
the membership functions is to adjust through slight
modifications their parameters in order to find the local
or global minimum of a mono/multi objective function
F(x) opportunely defined, which takes into account spe-
cific indexes modeling at least three characteristics [24]
a DDSS should possess.
First, the performance of a DDSS in performing a diag-

nosis can be evaluated with reference to the correct classi-
fication rate (CR), even if the system should jointly provide
also a numerical value (the confidence c) indicating its
confident in the outcome produced. Furthermore, a DDSS
should provide the physicians with the possibility of deeply
understanding how this outcome has been generated
(interpretability), in order to increase its trustworthiness
and not to appear as a black box that produces unintelligi-
ble outputs. It is worth noting that these characteristics
can often result conflicting.
This tuning process can be implemented using para-

meter adjustment algorithms, such as Neural Networks
algorithms, and in most cases, the gradient of a cost func-
tion with respect to each adjustable parameter can be cal-
culated and the parameters can be updated accordingly.
There are also some derivative-free optimization such as
Genetic Algorithms and Random Search Methods. As a

concluding remark, it is worth noting that in this stage not
only the operational parameters can be adapted, but also
the weights of each rule in the FRB, which have been pre-
viously extracted in the first stage and associated to the
fuzzy rules in the fourth stage, can be refined. Such a way,
it is possible to induce a better cooperation among rules
and to more accurately modulate the firing strength of a
rule in the process of determining the output class.

Implementing the methodology
The proposed methodology has been realized in the form
of a modular and portable architecture according to a
CBSD approach, with the aim of defining a collection of
replaceable (and reusable) components characterized by
a functional cohesion (i.e. the single component performs
a well-defined set of functions) and a low degree of cou-
pling in terms of composition and interaction between
them.
The choice of a CBSD approach is based on the idea that

each single component can be not only implemented from
scratch but, in particular, also customized or extended by
existing available solutions that are compatible to the ori-
ginal placeholders. Such a way, the CBSD can significantly
reduce development effort and time-to-market, and
improve maintainability, reliability and overall quality of
final architecture designed. The architecture is developed
in Java according to the object-oriented paradigm in order
to create a truly portable DDSS, solving the problem of
having parts of it implemented for different platforms.
In the following section, the architecture designed will

be diffusely described and a summary inspection of the
main components in terms of UML class diagrams will be
reported as well.

Results
The proposed architecture
The CBSD approach has generated an extensible and
layered architecture. An extensible architecture has been
necessary because the proposed methodology is intended

Figure 3 A Fuzzy Inference System.
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to support the realization of DDSSs according to both
general-purpose and special-purpose application needs.
Special-purpose requirements need to be incorporated
depending on specific medical scenarios, whereas, gen-
eral-purpose mechanisms will be common across all
applications. Moreover, it has been conceived as layered
since, such a way, it can support design based on increas-
ing levels of abstraction, thereby partitioning the overall
design problem into several sub-problems. Plus, it sup-
ports enhancement and reuse since, assuming that the
interfaces between the layers do not change, it allows for
changes to occur within the layer in relative isolation
without impacting the other layers. This improves the
scalability of the architecture as well as quality and testa-
bility. Thus, such an architecture can lead to standard
interfaces for each layer and its components, so that layer
implementations can be re-used across different DDSSs.
The system architecture adopted is shown in Figure 4.
The architecture provides for three different layers: a

Process Layer, which coordinates the activity flow foreseen
by the methodology in terms of two loosely coupled sub-
processes, a Method Layer which handles highly cohesive
and well-defined operations (from a functional perspec-
tive) to be done in each sub-process, and a Model&Data
Layer which manages the data structures used to read
and store crisp and fuzzy knowledge bases as well as data
repositories. Moreover, in accordance with the CBSD
approach, the architecture highlights a transversal layer,
shared between the Method Layer and the Model&Data
Layer, which reflects the idea that each single component
at these two layers can be implemented not only from
scratch but also by re-using or customizing existing avail-
able solutions, such as data mining software packages
(e. g. WEKA [25]) or fuzzy logic libraries (e. g. jFuzzyLogic
[26] or XFuzzy [27]).
The definition of the components for the process layer

has been guided by a top-down approach, where the
methodology, which can be seen as a high level business

process, has been divided into two smaller, more manage-
able and loosely coupled sub-processes. The need for a
process modularization has been pushed by different moti-
vations. First, the proposed methodology is large and com-
plex, and it becomes very difficult to navigate, understand,
debug issues and track changes in its implementation.
Moreover, referring to the stages of the methodology, the
clear and well-defined separation between the crisp and
fuzzy domains suggests a natural strategy of modulariza-
tion from a logical and functional perspective. As a result,
the methodology has been modularized in two sub-pro-
cesses, one for each domain, so as to contextually balance
the need of performance and manageability versus the
need of reuse as well. The first sub-process, handled by
the Crisp Rule Generator, is devised to generate a set of
fuzzifiable crisp rules starting from an input dataset,
whereas the second one, managed by the FIS Generator, is
thought to produce a whole FIS starting from the output
of the first sub-process. Both these components assume
the role of coordinators with respect to the activity flow
foreseen by each single sub-process. They coordinate all
the components of the method layer by activating their
functionalities, examining and validating their results, and
continuing the handling of the respective sub-process
accordingly.
The Method Layer contains the building block compo-

nents for implementing each single task foreseen in both
the crisp and fuzzy sub-processes. These components are
implemented on top of the Model&Data Layer in terms
of a collection of modules which accesses the respective
knowledge bases and data repositories, elaborates such
an information and stores the results into the knowledge
bases again. Moreover, all these components can be
opportunely specialized in order to support different cri-
teria, also by wrapping or utilizing existing tools.
More in detail, the Crisp Rule Extractor (Figure 5, left)

is the component in charge of first extracting a collection
of crisp rules from a specific Data Repository and then

Figure 4 The proposed three-layer architecture.
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storing it into the Crisp Knowledge Base. The extraction
procedure can involve the strict collaboration with a
Crisp Inference Engine, which is a component responsible
of evaluating the firing of a rule with respect to a specific
input data item.
The Crisp Rule Selector (Figure 5, right) is responsible of

getting the extracted rules from the Crisp Knowledge Base,
determining the best n rules (n is a user-defined para-
meter) to be successively used with respect to a specific
criterion and finally storing such a new rule set into the
Crisp Knowledge Base again. Since the criterion applied
for the selection might require the identification of the set
of rules with the highest confidence, such a component
can interact with the Crisp Inference Engine to evaluate
how each rule works on the dataset gathered from the
Data Repository.
Last, the Crisp Reductor (Figure 5, center) is devised to

get the selected rules from the Crisp Knowledge Base, sim-
plify their structure in order to grant the fuzzifiability and
finally store the reduced rules into the Crisp Knowledge
Base again.
The components of the method layer described until

this point cooperate among them to model the first sub-
process, and, thus, they are all coordinated by the Crisp
Rule Generator. The remaining components belonging to
the method layer act together for bringing in realization
the second sub-process, and, thus, they are all coordi-
nated by the FIS Generator.
More precisely, the Fuzzifier is designed to get the

reduced crisp rules as well as the description of each single
feature involved in them (e.g. in terms of range of admissi-
ble values) from the Crisp Knowledge Base, fuzzify them
into fuzzy rules, linguistic variables and terms and store
the results into the Fuzzy Knowledge Base, so as to actually
realize the fourth stage of the methodology (see Figure 6,
left). In detail, such a component makes in practice the
specific fuzzification criterion described at the end of the
Methods section.
Referring to the fifth stage of the methodology, the com-

ponent involved is the Fuzzy Configurer (see Figure 6,
center), which is responsible of setting the most appropri-
ate logical parameters to be used for the construction of

the final FIS, opportunely determined by the designer
based on experience and depending on the domain char-
acteristics. Moreover, depending on the typology of rea-
soning mechanism desired, the specific Fuzzy Inference
Engine, aimed at performing a fuzzy inference to obtain a
fuzzy output, is also configured and instantiated.
The component engaged for the realization of the last

stage of the methodology is the Fuzzy Adapter (Figure 6,
right), which is mainly devised to first get the partially
defined FIS from the Fuzzy Knowledge Base, successively
tune its logical parameters, in terms of parameters char-
acterizing shape and location of membership functions,
and rule weights, and finally store the completely defined
FIS into the Fuzzy Knowledge Base again. Such a compo-
nent strictly interacts with the Fuzzy Inference Engine
since every optimization strategy requires the evaluation
about how each fuzzy rule works on the dataset gathered
from the Data Repository.
Finally, the Model&Data Layer is responsible for the

management of the structures for inserting and gathering
information, respectively into and from both the Crisp
and Fuzzy Knowledge Bases and, in addition, for acces-
sing the disk-based data structures used by the data repo-
sitories. In particular, with respect to the data format in
the repositories, comma-separated values (CSV) are used
to store tabular data (numbers and text) in a plain-text
form. In particular, the first row contains the attribute
names (separated by commas) followed by each data row
with attribute values listed in the same order (also sepa-
rated by commas). This choice is due to the fact that
many data repositories or spreadsheet applications save
or export data into flat files in this format.
The design of this architecture in terms of software

classes has been depicted as UML class diagrams, where
each class has been summarily outlined below in terms of
only the most significant public operations defined, with
respect to the three different modules. In order to better
facilitate the reading of the diagrams, note that a solid line
models a structural association between two classes,
whereas a broken line indicates a functional dependency
between them. The first diagram includes the main classes
devised for implementing the architectural components,

Figure 5 The stages coordinated by the Crisp-Rule Generator.
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across the three layers, which operate in the crisp domain
and are responsible of realizing the first three stage of the
methodology (Figure 7, top). The second one includes the
main classes realizing the components which operate in

the fuzzy domain and are in charge of implementing the
last three stage of the methodology (Figure 7, middle). The
last one includes the main classes realized for the manage-
ment of the data repositories (Figure 7, bottom). These

Figure 6 The stages coordinated by the FIS Generator.

Figure 7 The UML class diagrams.
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classes also offer facilities for automatically partitioning
the dataset into learning and testing sets, in order to sup-
port the n-fold cross validation method.

Proof of concept: a DDSS for diagnosing breast masses
The architecture has been used to instantiate a DDSS
example aimed at accurately diagnosing breast masses
starting from the widely used Wisconsin Breast Cancer
Dataset (in the following, WBCD) to evaluate the feasi-
bility of the methodology.
This dataset was computed from fine needle aspiration

(FNA) of a breast mass through image processing and
was collected at the University of Wisconsin; it can be
obtained from UCI (University of California at Irvine)
machine learning repository. The samples contain fea-
tures describing characteristics of the cell nuclei present
in the image. The version of WBCD used consists of 10
features obtained from FNA, namely radius, texture, peri-
meter, area, smoothness, compactness, concavity, con-
cave points, symmetry, fractal dimension. Each feature is
represented with 3 values, namely the mean, standard
error and the worst or largest (mean of the three largest
values), but only the mean value was taken into account.
The two outputs are benign and malignant. All the
instances were properly recorded without any missing

value. The diagnosis class is distributed with 357 benign
samples and 212 malignant samples.
The architecture was instantiated for creating the DDSS

as described in the following. Preliminary, it is worth not-
ing that the tenfold cross validation method was used for
the assessment of such a DDSS and the classification rate
was chosen as metric to evaluate the goodness of the final
results achieved. Such a way, the whole methodology was
tested for its validation, since the goodness of the final
results was considered as proof of feasible and efficient
integration of different methods according to its activity
flow in order to obtain fuzzy-based DDSSs. As a result,
the DDSS is described below with respect to each stage of
the methodology, by reporting the partial results calcu-
lated only for a fold for the sake of brevity.
Crisp rules were extracted as equally weighted from a J48

decision tree, induced by WBCD. Such a method was
wrapped on the top of its WEKA implementation. Figure 8
outlines the resulting decision tree and the corresponding
set of rules, grouped according to the diagnosis class, i.e.
malignant and benign, respectively and ordered according
to their coverage, shown in brackets in Figure 8, indicating
the number of correctly classified instances.
Successively, a simplification method based on the most

confident selection with respect to the rule coverage was

Figure 8 The rules extracted.
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adopted, where the number of rules to be generated was
fixed to 2, i.e. one for each output class. The selected rules
(see Figure 9, top), were opportunely reduced by involving,
in particular, only the rule 2 (see Figure 9, middle).
With respect to the Fuzzification stage, a method here

proposed, based on a determinant of interpretability, was
applied. In more detail, in the case of numeric features, a
collection of at most three partitions is generated for the
universe of discourse of each linguistic variable, by consid-
ering one crisp rule at a time and translating its predicates
involving numeric features from their crisp forms to the
corresponding fuzzy representations:

pcI(x
c) ≡ (xc < vc) → pfI ≡ (xf is tfI ) (12)

pcII(x
c) ≡ (xc < vc1 ∧ xc > vc2) → pfII ≡ (xf is tfII) (13)

pcIII(x
c) ≡ (xc > vc) → pfIII ≡ (xf is tfIII) (14)

where tfI , t
f
II
and tfIII correspond to linguistic terms (e.g.

low, medium and high) linearly ordered and with
boundary regions between successive terms. It is rele-
vant to highlight that the semantics associated to each
linguistic term obtained in such a way is strictly applica-
tion-dependent and is meaningful only in the context of
the rule for which it has been defined. As a result, this
method defines as many terms for each linguistic vari-
able as the different crisp predicates which use the cor-
responding feature when examining rule by rule.
Moreover, in such a way, the crisp boundaries expressed
in each predicate for the numeric features involved are
discharged. Thus, on the one hand, the same fuzzy pre-
dicate can be generated from two different instances of
a specific form of crisp predicate appearing in two dif-
ferent rules. On the other hand, by working at rule
level, even if, in more than one rule, many crisp predi-
cates share a same numeric feature with different crisp
boundaries, its universe of discourse is not further parti-
tioned in order to consider the possible sub-partitions
identified by the overlapping of different crisp intervals.

So, any relationship that could exist between the rules
in terms of shared features is not taken into account.
Both these methodological choices, which can appear as
a simplification and a loss of generality, are guided by
the consideration that defining a justifiable, i.e. limited,
number of terms for each variable is another determi-
nant of interpretability [16]. Indeed, taking into account
all the possible overlapping of different crisp predicates
in terms of numeric intervals, by observing the whole
CRB, in order to deeply partitioning a shared feature,
would generate an overfitting of its universe of dis-
course, compromising the overall interpretability.
Furthermore, in the case of categorical features, the

method generates a collection of as many terms for
each linguistic variable as the crisp predicates occurring
in the whole rule set which assign a different categorical
value to the feature used.
For what concerns the predicted class, since it is also a

categorical variable, the number of terms associated to
the corresponding linguistic variable is assumed to be
equal to the number of different values the predicted
class can assume.
As a result, the fuzzification of the reduced rules gener-

ated a linguistic variable for every feature appearing in
their antecedent parts, namely perimeter, texture, concave
points and radius, each of them characterized by at most
two partitions for the corresponding Universe of Dis-
course. Moreover, the output class, i.e. diagnosis, was also
modeled as a linguistic variable assuming two specific
values, namely malignant and benign. The resulting fuzzi-
fied rules are outlined in Figure 9, bottom), where linguis-
tic variables and their terms are indicated with their first
letter capitalized.
Concerning the generation of the other parameters

pertaining the final FIS underpinning the DDSS, the
terms Low and High generated after the fuzzification for
the input variables were modeled with piece-wise linear
membership functions, whereas the terms Malignant and
Benign for the output variable were represented as single-
tons. The Singleton-type reasoning mechanism was used,
where min and max operators were chosen as T-norm

Figure 9 The rules selected (top), reduced (middle), and fuzzified (bottom).
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and S-norm functions, respectively. Moreover, the min
operator and the center of gravity singleton methods
were applied for implementing the implication and
defuzzification functions, respectively. A not-chained
Fuzzy Inference Engine was used by wrapping the imple-
mentation given within the JfuzzyLogic tool.
Finally, adaptation based on the DeltaJump algorithm

was carried out for optimizing only the membership
functions linked to the terms of the linguistic variables
involved into the fuzzy rules obtained. Such an algo-
rithm was wrapped on the top of the implementation
provided by the JfuzzyLogic tool. Only a metric based
on straight mean square error is used for the evaluation
with respect to the classification rate, while interpret-
ability [6] and confidence [4] are not considered yet.
The fuzzy partitions achieved for each linguistic variable
are outlined in Figure 10.
These results were finally validated with respect to the

classification rate measured for the DDSS instantiated
on the first fold for the WBCD dataset. In more detail,
they were calculated on both the training and learning
sets, depending on the rules achieved in the different
stages of the methodology, i.e. ranging from the crisp
rules obtained at the end of rule extraction, to their
selected and reduced version, until the fuzzified rules

before and after their adaptation. The validation results
are outlined in Figure 11.
Figures 12 and 13 sketch the GUI implemented for

facilitating the construction of a DDSS on the top of the
proposed architecture: the user is asked to specify the
dataset to be used, the algorithms or techniques to be
adopted in all the stages of the methodology with all the
parameters required for their configurations, and, finally,
the validation method for evaluating the results with
respect to a specific metric or index indicated (Figure 12).
Figure 13 reports the results achieved in terms of fuzzy

rules extracted, linguistic variables and terms involved in
the rules and, for each term, the corresponding member-
ship function optimized. Moreover, such results are also
enriched by means of the values assumed by the quanti-
tative metrics used for the validation.

Conclusions
Having in mind to extend the range of possible users of
fuzzy-based DDSSs with extensive and easy-to-use facil-
ities which could considerably reduce the level of knowl-
edge and experience required to their design and
realization, this work has first presented a formalization
of a refined and assessed version of a six-step methodol-
ogy to design and implement fuzzy-based DDSSs. Its

Figure 10 The fuzzy partitions adapted for each linguistic variable.
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strength relies on its generality and modularity since it
supports the integration of alternative techniques in
each of its stages. Stages are employed for: (i) the
extraction of crisp rules, (ii) the selection of a significant
partition from the whole rule set extracted, (iii) the
reduction of the selected rule set, (iv) the creation of
fuzzy rules, (v) the generation of the whole fuzzy infer-
ence system and (vi) its optimization.
Differently from other existing approaches [14], [15],

the described methodology is extremely flexible and does
not depend on the typology of fuzzy model to be defined,
since it enables the design and realization of fuzzy-based
DDSSs by taking into account many different and often
conflicting requirements, such as the accuracy maximiza-
tion or the complexity minimization. In more detail, it
can not only integrate state-of-the-art rule-induction and
rule-optimization methods, but also freely choose the
structural and operational elements of the fuzzy model to
be used, such as shape of membership functions or the
t-norm and s-norm connectors as well as the implication
and defuzzification operators. Moreover, methods that
use shared fuzzy sets for the rule base [16] are appropri-
ate within a small size work space with a good coverage.

Otherwise, in case of a weak coverage the rule base com-
pleteness is not guaranteed and, when dealing with large
systems, the number of combinations to manage is huge
[16]. On the contrary, the proposed methodology is well
adapted for large work spaces and generates more com-
pact incomplete rules with only the most locally signifi-
cant variables, defined successively with a partitioning
strictly dependent on the rules where they are involved.
The presented methodology has been realized, according

to a CBSD approach, in the form of a modular and porta-
ble architecture that has been carefully described from a
software engineering perspective.
This architecture has been conceived to support the

design of a fuzzy-based DDSS on increasing levels of
abstraction, thereby partitioning the overall design problem
into several sub-problems, where each single component at
every layer can be implemented from scratch or custo-
mized by existing available solutions. Such a way, it can sig-
nificantly reduce development effort and time-to-market,
and improve maintainability, reliability and overall quality
of final CDSS designed.
The development of this architecture has been last car-

ried out by using the Java language since it contains

Figure 11 The results achieved after the validation in terms of classification rate.
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Figure 12 The implemented system: how to configure each stage of the methodology.

Figure 13 The implemented system: the validation results with respect to a specific metric indicated.
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several features that argue for it. It is widely distributed
and has become one of the major programming languages.
The development kit, including compiler and debugger, is
freely available on a number of different computer plat-
forms. The core libraries contain many functions which
can be used directly and need to not be adopted from
external libraries, which is not the case in C++ for
instance. By exploiting Java features and diffusion in the
user-community, the proposed architecture has several
unique advantages, e.g. it reduces programming work.
Thanks to the huge amount of available Java software, in
fact, it is really easy creating new methods to be added to
the Method Layer of the architecture without the effort of
starting from scratch. Such a way, it is possible to exploit
the richness of quickly incorporating new developments
made by the active research community which is always
working in emerging fields. Moreover, due to the use of a
strict object-oriented approach for the its components, the
architecture can be used on any machine with Java.
Indeed, the concept of modularity of code is highly essen-
tial to increase the level of portability. As a result, any user
can apply the architecture to implement a DDSS on his
machine, independently of the operating system.
As a proof of concept, such an architecture has been

used to instantiate a DDSS example aimed at accurately
diagnosing breast masses starting from the widely used
Wisconsin Breast Cancer Dataset. The results obtained in
terms of classification rate proved the feasibility of the
whole methodology implemented in terms of the archi-
tecture proposed.
For what concerns the on-going work, knowledge

representation techniques such as ontology modeling are
investigated to be exploited in order to better define
from a semantic point of view the fuzzy variables and
terms involved into the rules and improve the readability
and understandability of the whole fuzzy-based DDSS.
The choice of using Java as programming language will
be able to facilitate this integration since the most repre-
sentative tools in the context of knowledge engineering
are implemented in Java and released as open source
projects. Moreover, since DDSSs, however, typically have
unequal classification error costs so that straight CR can-
not be assumed as a careful measure of the goodness of
a DDSS, in the future, also the confidence c will be eval-
uated to be used for selecting a DDSS; in fact, a good
DDSS should be highly confident with correctly classified
examples while it should be doubtful with misclassified
data points. In such a direction, also more sophisticated
adaptation techniques able to optimize multi-objective
cost functions will be integrated, so taking into account
simultaneously CR, the confidence c and the interpret-
ability. The last important point for future work is to
integrate the multi-threading and distributed computing
to speed computations up during the definition and

the adaptation of the fuzzy-based DDSS by using widely
available multi-processors and multi-core hardware.
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