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Abstract

We present a novel ab initio predictor of protein enzymatic class. The predictor can classify proteins, solely based
on their sequences, into one of six classes extracted from the enzyme commission (EC) classification scheme and is
trained on a large, curated database of over 6,000 non-redundant proteins which we have assembled in this work.
The predictor is powered by an ensemble of N-to-1 Neural Network, a novel architecture which we have recently
developed. N-to-1 Neural Networks operate on the full sequence and not on predefined features. All motifs of a
predefined length (31 residues in this work) are considered and are compressed by an N-to-1 Neural Network into
a feature vector which is automatically determined during training. We test our predictor in 10-fold cross-validation
and obtain state of the art results, with a 96% correct classification and 86% generalized correlation. All six classes
are predicted with a specificity of at least 80% and false positive rates never exceeding 7%. We are currently
investigating enhanced input encoding schemes which include structural information, and are analyzing trained
networks to mine motifs that are most informative for the prediction, hence, likely, functionally relevant.

Background
Genome sequencing projects and high-throughput
experimental procedures have produced a rapid growth
in protein databases but only a small fraction of known
sequences have been determined to have a function by
experimental means. Determining or accurately predict-
ing protein functions and enhancing the annotation of
sequence databases is thus of paramount importance, in
order to expand our knowledge of the mechanisms of life
and to develop new drugs [1]. In spite of substantial
interest by the research community in the prediction of
protein functions, this, to date, remains a difficult pro-
blem for a number of reasons, partly because function
itself is to an extent ill-defined, partly because we still
lack a complete understanding of the complex relation-
ship between sequences, structures and functions. There
are numerous examples of divergent or convergent evo-
lutionary events which, respectively, lead to closely

related proteins with substantially different functions and
to proteins with very different folding patterns that share
the same function [2,3]. The TIM-barrel fold, for
instance, is known to be shared by many enzymes of
known structure and if in some cases it might have been
adopted by convergent evolution because of its stable
and useful characteristics, it also appears in homologous
enzymes which have diverged to assume different func-
tions [4]. By converse, the catalytic triad Ser-His-Asp
appears by convergent evolution in many non-homolo-
gous proteins such as two proteinases (chymotrypsin and
subtilisin) which have different folds but share similar
catalytic functions [1].
However, a large and growing amount of annotated bio-

logical data is available to try to shed light on these issues
and construct methods for automated function prediction.
If some predictive methods rely on amino acid sequence
analysis only, others take advantage of physio-chemical
and structural properties or phylogenetic information and
protein interactions while many others rely a combination
of multiple data types. Traditionally, predicting protein
function from the three-dimensional structure has been
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the most successful method but, since protein structures
are known for less than 1% of known protein sequences,
most proteins of newly sequenced genomes have to be
characterized by their amino-acid sequences alone [1].
Techniques to predict protein function from sequence

can be categorized into three main classes: sequence
homology-based approaches, subsequence-based appro-
aches and feature-based/ab-initio approaches. In homol-
ogy-based approaches an annotation transfer can be
proposed with confidence for the query protein [5] when
the query shows high sequence similarity to a family of pro-
teins of known function. In order for these methods to be
successful the function of the homologous family of
proteins must have been determined experimentally and,
especially, the level of sequence similarity should be typi-
cally higher than that required for transferring structural
annotation [6,7]. How much higher also depends on the
type of function to be transferred, though a minimal
sequence identity of 40% has been proposed [8-10]. This
limits the applicability of this class of methods to a small
fraction of all known protein sequences. When homology-
based methods are not applicable, subsequence-based
approaches, relying on multiple sequence alignments, can
identify conserved residues, sequence signature patterns
and sequence motifs crucial to determine the functional
role of proteins [11]. Especially frequency profile methods,
weighting residue positions according to the variability of
their contents in a group of homologous proteins, may be
sensitive detectors of distant homology [12]. In feature-
based approaches, instead, information about function is
assumed to be predictable via a range of features of pro-
teins, including secondary structure, post-translational
modifications and general properties of the amino-acid
composition [1]. These features are differently combined
to select only those that are mostly informative, non
redundant and minimally noisy and usually processed by
Machine Learning techniques such as Support Vector
Machines and Neural Networks. Among feature-based
approaches, one of the most cited works is [13] where
Neural Networks are used to extract these features from
protein sequences and the results are correlated with func-
tional and enzymatic classes. Neural Networks, indeed, are
one of the best suited computational algorithms for the
classification of biological data thanks to their capability to
identify patterns and correlations, their being error-and
noise-tolerant and able to deal with large volumes of data
[14].
Recently we have developed SCLpred [15], a predictor of

protein Subcellular Localization (a simple definition of
protein function) powered by a novel Neural Network
architecture we have introduced and called N-to-1 NN.
The main appeal of the N-to-1 NN model is that it is cap-
able of automatically extracting small sets of highly infor-
mative features from the subsequences of a protein, thus

combining advantages of feature-based and subsequence
based methods. In our tests SCLpred matches or outper-
forms the state of the art in subcellular localization predic-
tion. In another independent study N-to-1 NN were found
to improve the state of the art in detecting transmembrane
b-barrel chains [16].
Here we present a predictive method, based on N-to-1

NN, which is able to classify animal proteins into six enzy-
matic classes derived from the enzyme commission (EC)
classification scheme. Because the selection of an appro-
priate input coding method is one of the most significant
factors determining the performance of the prediction
[14], we represent each sequence position by the residue
frequency derived from multiple sequence alignments
instead of using single protein sequences, thus exploiting
the additional information contained in patterns of residue
substitutions that reflect the family’s features, such as
three-dimensional fold, development of protein complexes
and participation in the same chemical pathways [17]. The
performances we obtain are substantially higher than
those reported in previous studies.

Methods
Dataset
The enzyme dataset used to train and test our method is
created using the ENZYME database available at http://
www.expasy.org/enzyme/ (released on 28/06/2011) which
provides UniprotKB/SwissProt entries. Enzyme sequences
are selected for only metazoa taxonomy group and,
according to EC numbers, classified into six main classes
describing the reaction they catalyze: oxidoreductase
(EC.1), transferase (EC.2), hydrolase (EC.3), lyase (EC.4),
isomerase (EC.5) and ligase (EC.6). In order to obtain
high quality data, we exlude enzymes with the same EC
numbers and with less than 50 amino acids; using an all-
against-all BLAST search (with e = 10−3) to reduce redun-
dancy, we eliminate enzymes with more than 30%
sequence identity to any other in the same functional class
in a first step and to any other in the entire dataset in a
second step. The enzymatic sequence dataset consists
finally of 6081 entries. We should stress that this is, to the
best of our knowledge, the largest high-quality, curated,
non-redundant dataset representing this set of enzymes,
and we have generated it specifically for this work. The
dataset is available upon request from the authors. Table 1
shows the number of sequences per class obtained after
the preprocessing phase.
Input coding
In order to add evolutionary information to our dataset,
each sequence position is represented by the amino
acid-residue frequency derived from multiple sequence
alignments extracted from uniref90 [18] from February
2010 containing 6,464,895 sequences. The alignments
are generated by three runs of PSI-BLAST with
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parameters b = 3000 (maximum number of hits) and e =
10−3 (expectation of a random hit) as in [15]. The input
presented to the networks is the frequency of each of
the 20 non-gap symbols plus an extra input for the total
frequency of gaps in each column of the multiple
sequence alignment (MSA) for a first version of the
dataset in which we provide only evolutionary informa-
tion and which we call MSA-dataset. In a second ver-
sion, called MSA+SS-dataset, 3 additional inputs are
considered for each residue to include information on
the secondary structures which the given residue is pre-
dicted to belong to by the Porter server [19-22].

Predictive architecture
The model proposed in this work is a N-to-1 Neural
Network based on the previous architecture SCLpred,
developed to predict subcellular localization [15], and
based on our framework to design Artificial Neural Net-
works for graphical data [23,24]. The N-to-1 NN model
is capable of approximating non-linear functions map-
ping sequences to features and features to classes in a
two-step prediction. In the first step, the sequence-to-
feature network is represented by:

f = k
N∑
i=1

N (h)(ri−c, . . . , ri+c)

where f is the feature vector f =(f1, ..., fh), ri is the i-th
residue in the sequence and N (h) is a non-linear func-
tion implemented by a two-layered feed-forward neural
network, with h non-linear output units, which takes as
input shifting windows of 2c + 1 residues. In all tests in
this work we use c = 15, corresponding to motifs of 31
residues. Parameter k in the equation is a normalizing
factor, which we in all tests we set to 10−2, although it
would be possible in principle to interpret it as a free
parameter and fit it to the examples. Thus the network
has I1 = (2 * 15 + 1) * 21 = 651 inputs for the MSA-
dataset, and I2 = (2 * 15 + 1) * 24 = 744 for the MSA +
SS-dataset. In this first step the network compresses all
2c + 1 windows of a given sequence into a fixed-size
feature vector f composed by h real-valued descriptors
which are automatically learned in order to minimize

the output error. The feature-to-output network in the
second step takes the feature vector f as input and maps
it into the property of interest o (in this case enzymatic
class) according to the following equation:

o = N (o) (f )

where N (o) is a non-linear function implemented by a
second two-layered feed-forward neural network. The
whole compound two-step predictive architecture is
itself a feed-forward neural network which is trained by
gradient descent via the back-propagation algorithm.
The free parameters of the overall architecture can be
controlled by: NH

f , the number of hidden units in the
first level network; NH

y , the number of hidden units in
the second level network; Nf, the number of hidden
states in the feature vector f, which is also the number
of output units in the sequence-to-feature network.
After preliminary experiments, we selected the following
structural parameters: NH

f = 14; NH
y = 13; Nf = 12. A

graphical representation of an N-to-1 NN is reported in
Figure 1.
Training
We train our model by 10-fold cross-validation. The
dataset is thus split into 10 subsets to perform 10 train-
ing runs where a different tenth of the overall set is
used as test set. Eight tenths of the overall set are used
for training (learning the parameters of the network),
one tenth for validation (to monitor the training pro-
cess) and one tenth for testing (only used for gauging
performances, but not to select parameters or hyper-
parameters of the network). For each fold we create 3
training experiments in which different tenths of the
overall set are set aside as validation sets.
Given that some classes are less numerous than

others, in each training set we replicate the examples in
those classes in order to have approximately the same
number of examples in each class.
Training is performed as in [15], by gradient descent on

the error modelled as the relative entropy between the tar-
get class and the output of the network. The overall out-
put of the network (output layer of N(o)()) is implemented
as a softmax function, while all the internal squashing
functions are hyperbolic tangents. The examples are
shuffled between epochs. The weights in the networks are
updated every 10 examples and 1000 epochs of training
are performed, which is sufficient to bring the training
error down to near zero in all cases. We use a momentum
term of 0.9. The learning rate is kept fixed at 0.2 through-
out training. For each training, we save the 10 best per-
forming networks (on validation), we ensemble average
the total 30 models saved (10 for each of the 3 training
versions) and evaluate them on the corresponding test set.
The final results for the 10-fold cross-validation are the

Table 1 Number of sequences per class in the dataset.

Metazoa dataset

Oxidoreductase 954

Transferase 2110

Hydrolase 2226

Lyase 208

Isomerase 136

Ligase 445

Total 6081
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average of the values obtained on each test set. Training
times for each model are approximately 60 hours on a sin-
gle state of the art core. Without the momentum term we
reach similar results, but training times are longer by a
factor 4-5, as more training epochs are necessary to reduce
the error. Once the system is trained, predictions by the
networks are obtained in under one second, two orders of
magnitude less than the cost of creating the MSA.
Evaluating performance
We evaluate the performance of our predictor using the
following measures:

GC =

√√√√√√
∑

ij
(zij − eij)

2

eij
N(K − 1)

Q =

∑
i zij∑
ij zij

(1)

where:

• zij : the number of sequences of class i predicted to
be in class j
• eij : the number of sequences of class i expected to
be predicted in class j by chance
• N : the number of sequences
• K : the number of classes

To calculate the performance for each class we use:

Spec =
TP

TP + FP

Sens =
TP

TP + FN

FPR =
FP

FP + TN

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

where:

• True positives (TP): zii
• False positives (FP):

∑
j�=i zji

• True negatives (TN):
∑

v �=i
∑

j�=i zjv
• False negatives (FN):

∑
j�=i zij

Results and discussion
In order to examine the overall quality and accuracy of
our predictor we average the evaluating measures calcu-
lated for each of the 10-fold cross-validation test sets. In
Table 2 we compare the performances obtained after
training the N-to-1 NN models on the two different
input coding schemes used in this work. Our predictor
shows a better overall success rate in identifying enzymes
among the six main functional classes when trained and
tested on the MSA-dataset than on the MSA+SS-dataset.

Figure 1 N-to-1 NN architecture for predicting enzymatic class. An N-to-1 Neural Network. N copies of the N (h) network (only 3
represented for simplicity) process all the (overlapping) motifs of a predefined length in a sequence. The vectorial outputs fk of these networks
are added up and the resulting feature vector f is input to the N (o) network to produce the enzymatic class prediction.
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In particular, we observe higher GC values (86% for
MSA-dataset and 84% for MSA+SS-dataset) while Q
values are 96% for both input encodings. It is not entirely
clear why the addition of secondary structure informa-
tion proves slightly detrimental to the performances of
the models. It has been shown that secondary structure
does not provide enough information to classify func-
tions [17], and this is especially true for enzymes, which
can both exibit large amounts of structural variation
within a single class, and, by converse, very different
enzymatic activities in spite of nearly identical structures.
It is also possible that secondary structure information
may be essentially redundant in this case, as it is obtained
from the sequence-based predictor Porter [19] and the
same sequence is available to the N-to-1 NN. Quick
learning based on the secondary structure may bring the
hidden units of the model into saturation and hinder
further, subtler learning of sequence patterns. This
hypothesis is corroborated by faster training times we
observe when secondary structure information is
included.
It should be emphasized that the model obtains very

high GC values (which weigh all classes equally) and per-
forms accurately even for under-represented classes.
Although the best predictions are obtained for the classes
with the largest number of examples, such as oxidoreduc-
tase (2% FPR and 89% sensitivity), transferase (5% FPR
and 89% sensitivity) and hydrolase (7% FPR and 92% sensi-
tivity), the other classes are also well predicted: lyase (0.2%
FPR and 84% sensitivity); ligase (1% FPR and 85% sensitiv-
ity); and the smallest class isomerase (0.5% FPR and 72%
sensitivity).
It has been reported that even for pairs of enzymes

with over 70% residue identity in the optimal alignment
more than 30% do not belong to the same class (first EC
number) [6], underlying the difficulty of obtaining accu-
rate predictions based on sequence identity. However,
the overall accuracy of our method in predicting the
main enzymatic classes is very high for the datasets used,

in which sequence identity is below 30% for any two
proteins.
It should also be stated that unlike in profile analysis

methods such as [25] we calculate residue frequencies
without adding any further information such as weights
derived from the mutational distance matrix. In future
research we will be investigating whether richer input
coding may improve our predictions further. Moreover,
contrary to feature-based methods such as [13], we do
not apply any explicit feature selection process. N-to-1
NN implicitly operate feature selection on the sequence,
as information from all different motifs in a protein effec-
tively “compete” to be represented into a small feature
vector. Whether this fixed-sized representation of pro-
teins may shed light on the functional space of proteins,
and whether fully trained networks may be analyzed to
extract functional motifs on which predictions are based,
are two future direction of research we are currently
pursuing.
We qualitatively compare our results with the perfor-

mance of the ProtFun method [13] that makes use of
Neural Networks as predictive architecture to combine
prefixed features from Human protein sequences and to
correlate them to six enzymatic classes defined according
to EC classification scheme. Both predictors are assessed
by 10-fold cross-validation and adopt the same class defi-
nition, but our neural network is trained and tested on a
larger dataset than the one used to train ProtFun.
Although tests on different datasets should always be
taken with caution, overall our method is far more accu-
rate than ProtFun and shows a more balanced sensitivity
and a considerably lower FPR across classes. According
to what it is reported for ProtFun’s results in [13], at a
level of thresholding giving 70% correct predictions, the
range of false positives varies from below 10% to below
40%, with most classes giving about 20% false positives.
Our predictor, instead, achieves better performances
showing correct predictions over 80% and a range of
false positives below 10% for five of the six classes, and a
correct prediction around 70% with a fraction of false
positives below 10% for the smallest class (isomerase).
A class-by-class comparison of our predictor and Prot-
Fun is reported in Table 3. Results for ProtFun are
derived from a graph in the original paper and are, as
such, approximate.

Conclusions
One of the most important challenges of Bioinformatics
at present and for the foreseeable future is to develop
accurate computational methods capable of annotating
the massive amount of proteins with unknown function
deriving from complete sequenced genomes. When
dealing with lack of significant sequence homology
between two proteins, it is hard to transfer functional

Table 2 Results after train and test on the two different
input coding schemes.

MSA MSA+SS

Spec Sens MCC FPR Spec Sens MCC FPR

Oxidoreductase 0.90 0.89 0.87 0.02 0.88 0.88 0.86 0.02

Transferase 0.90 0.89 0.84 0.05 0.90 0.87 0.82 0.06

Hydrolase 0.89 0.92 0.84 0.07 0.87 0.91 0.82 0.08

Lyase 0.91 0.84 0.87 0.00 0.89 0.82 0.85 0.01

Isomerase 0.81 0.72 0.76 0.01 0.84 0.69 0.76 0.00

Ligase 0.89 0.85 0.86 0.01 0.87 0.84 0.85 0.01

GC 0.86 0.84

Q 0.96 0.96
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annotations reliably. Moreover, divergent/convergent
evolutionary events make this task more difficult [26].
Among function prediction tools, sequence frequency
profile methods are the most effective at detecting evo-
lutionarily and functionally significant residue patterns
(e.g. active-site residues/portion) which can be properly
harnessed for enzymatic class prediction.
In this article, we presented a predictive method based

on a novel Neural Network architecture able to map a
sequence into a vector of properties and to extract relevant
information from amino acid frequencies derived from
multiple sequence alignments. We have developed one
kingdom specific predictor for animals into six classes for
enzymatic sequences. We have trained and tested our
method in 10-fold cross-validation on large non-redun-
dant subsets of annotated enzymes from UniprotKB/Swis-
sProt according to the EC classification scheme.
Encoding inputs correctly and effectively is conductive

to improved performances. In our case we are capable
of extracting information both from residue frequencies
at a given sequence site and from long patterns of resi-
dues which are considered without loss of positional
information. Although we do not know yet which pat-
terns are stored while automatically compressing the
sequence into a feature vector, and we will investigate
the matter in the future, the high classification perfor-
mances we achieve suggest that the network is able to
recognize those functionally conserved portions of enzy-
matic sequences that are related to the reaction on
which the EC classification scheme is based. We com-
pared our method to ProtFun which has been shown to
be one of the most accurate methods for function pre-
diction and, although comparisons on different datasets
are to be taken with caution, we obtained performances
exceeding those of ProtFun by over 10% while also con-
siderably reducing false positive rates. We also investi-
gated a richer input encoding which includes predicted
secondary structures as an additional input. In this case
we did not observe an increase of the overall accuracy,
probably due to lack of relevant additional information.
We intend to investigate other sources of additional

information (e.g. solvent accessibility, intrinsic disorder,
contact density [27,28], location of binding sites, post-
translational modifications) in our future research.
Although we have obtained state of the art perfor-
mances, we aim to extend the training on a wider data-
set. We expect this to be a beneficial to our network
because, unlike other models that work solely on sim-
pler features such as single-residue frequencies, it has a
higher number of free parameters and the ability to
detect complex, long patterns of residues. We are cur-
rently working on a extensive dataset that comprises
every EC sequence of the ENZYME database without
kingdom distinction and a further direction is to solve
the challenging aspect of predicting the second and the
third levels of EC classification.
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