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Abstract

Background: Recently, information derived by correlated mutations in proteins has regained relevance for
predicting protein contacts. This is due to new forms of mutual information analysis that have been proven to be
more suitable to highlight direct coupling between pairs of residues in protein structures and to the large number
of protein chains that are currently available for statistical validation. It was previously discussed that disulfide bond
topology in proteins is also constrained by correlated mutations.

Results: In this paper we exploit information derived from a corrected mutual information analysis and from the
inverse of the covariance matrix to address the problem of the prediction of the topology of disulfide bonds in
Eukaryotes. Recently, we have shown that Support Vector Regression (SVR) can improve the prediction for the
disulfide connectivity patterns. Here we show that the inclusion of the correlated mutation information increases of
5 percentage points the SVR performance (from 54% to 59%). When this approach is used in combination with a
method previously developed by us and scoring at the state of art in predicting both location and topology of
disulfide bonds in Eukaryotes (DisLocate), the per-protein accuracy is 38%, 2 percentage points higher than that
previously obtained.

Conclusions: In this paper we show that the inclusion of information derived from correlated mutations can
improve the performance of the state of the art methods for predicting disulfide connectivity patterns in
Eukaryotic proteins. Our analysis also provides support to the notion that improving methods to extract
evolutionary information from multiple sequence alignments greatly contributes to the scoring performance of
predictors suited to detect relevant features from protein chains.

Background
Disulfide bonds are covalent cross-links between cysteine
side chains that play very important roles in the native
structures of globular proteins. Folding, stability, and ulti-
mately function of secreted proteins in cells are influenced
by the formation of disulfide bonds between cysteine resi-
dues [1]. Predicting the topology and the location of disul-
fide bridges in a protein from its sequence therefore plays

a relevant role in protein structural and functional annota-
tion. Several computational methods are presently avail-
able for computing cysteine properties in a protein
sequence and they can be grouped into: i) methods that
predict the disulfide bonding state [2-4]; ii) methods that
predict the topological connectivity patterns by assuming
that the cysteine bonding state is known [5-8]; iii) methods
that compute both i) and ii)[9-12]. Recently we developed
DisLocate, a two-stage method for disulfide bond predic-
tion in Eukaryotes comprising two integrated modules.
The first based on Conditional Random Fields (CRFs) pre-
dicts the cysteine bonding state; the second based on a
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Support Vector Regression (SVR) predicts the topology of
the disulfide bridges [12]. DisLocate improved over pre-
vious methods by introducing for the first time the infor-
mation of the protein subcellular localization in the
prediction of the disulfide bonding state [12].
Here we address the problem of improving the second

step of the prediction, namely the prediction of disulfide
connectivity pattern, by exploiting the role of correlated
mutations. Correlated mutation analysis aims at elucidat-
ing relations between pairs of residues in the protein
structure that may influence its folding. Routinely, this is
done through the identification of the co-evolution of dif-
ferent positions in a multiple sequence alignment. The
notion of correlated mutation describes that an unfavour-
able residue mutation in a structural contact can be com-
pensated by the simultaneous change of the direct
partner in such a way that the original interaction is pre-
served (compensatory mutation) [13]. It has been
recently observed that with sufficient and correct infor-
mation about protein residue-residue contacts it is possi-
ble to predict some protein structures from the residue
chain [13-16].
Correlated mutation analysis was also introduced in

the context of disulfide bond connectivity prediction.
Simple correlation patterns of concerted appearing and
disappearing cysteines in multiple structural alignments
were used to predict the topology of disulfide bonds in
proteins [17].
In the present paper we propose the usage of informa-

tion derived from correlated mutations to improve the
prediction of disulfide connectivity over a set proteins
including 1797 chains (PDBCYS). We evaluate two differ-
ent approaches of computing the correlated mutations:
corrected mutual information (MIp) and sparse inverse
covariance estimation (iCOV). MIp is a corrected version
of mutual information specifically designed to remove the
background noise due to both phylogenetic and entropic
biases [18]. The latter approach (iCOV) which is based on
sparse inverse covariance estimation was recently intro-
duced for the problem of predicting contact maps [20].
Here we combine information derived with both methods
for computing correlated mutations with features that
were previously found relevant for predicting the disulfide
connectivity and implemented in our DisLocate [12]. In
order to highlight the effect of correlated mutations we
benchmark the newly developed predictors on the same
dataset (PDBCYS) previously adopted to evaluate DisLo-
cate [12]. Our results show that correlated mutation analy-
sis adds to the previously introduced features and
improves the prediction scores. This indicates that corre-
lated mutations are a significant piece of information also
when computing the connectivity pattern of disulfide
bridges in protein structures.

Methods
Mutual information among cysteines
Mutual Information (MI) can be used to provide a mea-
sure of the co-evolution of two positions in a protein
sequence. In protein structures the measures of co-evolu-
tion and MI in particular have been extensively applied
for predicting residue contacts in proteins [13-16]. Here
we focus only on sequence positions that contain cysteine
residues. We then compute a multiple sequence align-
ment for each protein of interest and we extract the posi-
tions that correspond to cysteines in the query
sequences. By this, we end up with sub-alignments that
contain as many columns as the number of cysteines that
are present in the query sequence. The Mutual Informa-
tion MI between cysteines i and j is then computed as
follows:

MI(i, j) =
∑

a,b

fi,j(a, b) log
fi,j(a, b)

fi(a)fj(b)
(1)

where fi(a) and fj(b) are the relative frequencies of
amino acid types a and b at position i and j, respec-
tively, and fi,j(a,b) is the relative frequency of the amino
acid pair ab at positions ij.
The MI metric suffers of several drawbacks mainly due

to entropic effects and phylogenetic biases that reduce its
efficacy in predicting residue contacts [18]. The entropic
bias occurs when a given position in the multiple align-
ment exhibits a high variability (entropy). These positions
tend to have higher level of MI than those with a lesser
entropy [18]. The phylogenetic bias is due to the phyloge-
netic relationships between organisms represented in the
alignment that may generate an uneven distribution of
sequence residues [18]. In order to overcome these issues,
it has been proposed to correct the MI values as computed
in Equation 1 by the so called average product correction
(APC) [18]. APC measures the background signal of MI
due to entropic and phylogenetic biases. This corrected
metric is called MIp. The MIp for positions i and j is then
obtained as follows:

MIp(i, j) = MI(i, j)− MI(i,−)MI(−, j)

MI
(2)

where MI(i,−) is the average mutual information
between position i and all other positions (analogously
MI(−, j) for position j) and MI is the average mutual
information of all positions.

Sparse inverse covariance estimation
In recent works it has been pointed out that it is possi-
ble to improve the co-evolutionary information using
the inverse of the covariance matrix [19,20]. In particu-
lar, using information stored into the inverse of the
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covariance matrix, the performance of contact predic-
tion improves significantly with respect to the simple
MI or MIp by reducing the so-called indirect coupling
effect i.e. the statistical dependency observed in multiple
sequence alignment for residues that are structurally
distant [19-21]. One of the proposed approach (followed
here), is based on sparse inverse covariance estimation
and it is called PSICOV [20].
In this paper, we apply an approach similar to PSICOV

to estimate the level of direct coupling between cysteine
residues in proteins. As a result, given a protein with m
cysteines, we obtained a m by m matrix whose elements
can be interpreted as disulfide bonding scores. As
described for MI in the previous section, we consider mul-
tiple sequence alignment constrained to positions corre-
sponding only to cysteines in the query sequence. For a
protein sequence with m cysteines, the sample covariance
matrix can be then computed as follows:

Sa,bi,j = fi,j(a, b) − fi(a)fj(b) (3)

where fi(a), fj(b) and fi,j(a,b) are defined as in the pre-
vious section and S is a 21m by 21m covariance matrix
(here we also include the gap as a 21st symbol).
Assuming that the covariance matrix can be inverted

(the matrix is not singular), the inverse matrix provides
information about the degree of direct coupling between
different positions in the protein sequence [19,20]. Unfor-
tunately, the covariance matrix can be singular (since we
do not observe every amino acid in a given position of the
alignment). In order to estimate the inverse matrix,
authors proposed to use the sparse inverse covariance esti-
mation by means of the graphical Lasso optimization pro-
cedure[22,23]. This procedure attempts to estimate the
inverse covariance matrix by solving the following optimi-
zation problem:

d∑

i,j=1

Sij�ij − log det� + ρ

d∑

i,j=1

∣∣�ij
∣∣ (4)

where S is a dxd covariance matrix, Θ is the inverse cov-
ariance matrix and the last term is a regularization term
(the ℓ1-norm of the inverse matrix) that favors the sparsity
of the solutions. r is a hyper-parameter that governs the
level of desired sparsity (the greater is r the sparser is the
solution). The disulfide bonding score between cysteines i
and j of the protein is computed as follows:

C(i, j) =
∑

a,b

∣∣∣�ab
ij

∣∣∣ (5)

where the summation over a and b is taken by exclud-
ing gaps. Finally, the same average product correction is
used here to adjust the value for background noise as
described for MIp:

Cp(i, j) = C(i, j)− C(i,−)C(−, j)

C
(6)

where C(i,−) is the mean contact score between posi-
tion i and all other positions (analogously C(−, j) for posi-
tion j) and C is the overall mean contact score. We refer
to this bonding score as iCOV in the rest of the paper.

Predicting disulfide connectivity patterns
Once the cysteine bonding state is assigned, we predict the
connectivity pattern of the subsets of proteins that contain
at least a pair of cysteines in the bonding state by applying
a Support Vector Regression approach [12]. The SVR pre-
dictions of each possible pair of cysteines is used as edge
weight and the Edmond-Gabow algorithm is adopted to
predict the most probable disulfide pattern [5]. In order to
evaluate SVR, we use the same 20-fold cross validation
procedure described before [12], considering only proteins
with at least two disulfide bridges. SVRs were trained
using an input encoding based on global and local infor-
mation. The global information (that does not depend on
each particular cysteine pair) is defined by the Normalized
Protein Length (one real value), the Protein Molecular
Weight (one real value) and the protein amino acid com-
position (20 real values). The local pairwise encoding (that
depends on each particular cysteine pair) consists of the
following descriptors:

• two PSSM-based windows centered on the
cysteines forming the pairs. We used a window of
length 13, the best performing among the different-
sized windows we tested. With this choice, we ended
up with a vector of 13 * 20 * 2 = 520 components;
• the Relative Order of the Cysteines. This feature is
encoded with 2 real values that represent the normal-
ized relative order of a cysteines pair. Given a protein
with n cysteines (C1,C2,...,Cn), the corresponding nor-
malized ordered list of cysteines is given by (1/n,
2/n,...,n/n). For each pair of cysteines, the correspond-
ing values are then taken from the list (e.g. the pair
(C1,C4) is encoded as (1/n,4/n));
• the Cysteine Separation Distance. This feature is
encoded with 1 real value that represents the log-
cysteine sequence separation computed as SEP(Ci,
Cj) = log (|j - i|) where i and j are sequence posi-
tions of cysteines Ci and Cj, respectively.
• Correlated mutation information, based on MIp
and/or iCOV.

Dataset description
In this study we used the dataset PDBCYS introduced
before [12]. From PDB (release May 2010) we extracted
1797 Eukaryotic protein structures with resolution <2.5
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Å with at least two cysteine residues and global pairwise
sequence similarity <25%. PDBCYS includes 7619 free
and 3194 bonded cysteines. Since PDBCYS contains
pairs of proteins with detectable local sequence similar-
ity, we clustered all the chains using a local sequence
similarity score. First, we ran a BLAST sequence search
using all the proteins of the set versus themselves. Then,
for each pair of proteins we selected the higher bi-direc-
tional (say p1 vs p2 or p2 vs p1) sequence identity as
reported in the BLAST output. We subsequently treated
the proteins as nodes of a graph and assigned an edge
between two nodes only where local sequence identity
between the corresponding protein sequences was >
25%. In addition, we computed the connected compo-
nents of the graph and treated each group of nodes as a
protein cluster. Finally, the clusters were grouped in 20
disjoint sets used to train and test the method. We used
these 20 subsets to evaluate our method and to compare
its performance with previous approaches by adopting a
20-fold cross-validation procedure.

Performance measures
In the following Nc is the number of correctly predicted
bonds, Np is the total number of predicted bonds, Nb is
the total number of observed bonds, Npatt is number of
correctly predicted disulfide connectivity pattern and N
is the total number of chains.
To score the disulfide connectivity prediction we com-

puted the following indices:

• the precision Pb:

Pb =
Nc

Np
(7)

• the recall Rb:

Rb =
Nc

Nb
(8)

• the Qp:

Pb =
Npatt

N
(9)

For sake of readability in the Tables we report the
indices in percentage (i.e. the obtained values are multi-
plied by 100).

Technical details
All multiple sequence alignments used to compute both
the MIp and the iCOV features have been generated by
running 3 iterations of the jackhmmer program which is
a part of the HMMER 3.0 package (http://hmmer.org)
against the UNIREF90 sequence database. The inverse

covariance estimation was performed by means of the
glasso R package available at the CRAN archive (http://
cran.rproject.org/web/packages/glasso/index.html), the
same used in [12]. All the estimations have been per-
formed using the exact algorithm of the glasso code (see
glasso package documentation for details). glasso algo-
rithm depends on a parameter r that conditions the
sparsity of the reconstructed inverse covariance matrix.
This parameter also affects the algorithm run time: the
smaller is r the longer is the required time. Below we
report the results obtained when r is set to 1e-8, that
was chosen as trade-off between the computational time
and the method performance (computed on the valida-
tion sets). MIp values were computed as described in
[18]. For the SVR implementation we used the libsvm
package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) with
a RBF kernel.

Results and discussion
Prediction of disulfide connectivity with known
bonding state
In order to evaluate the effect of correlated mutations in
the task of predicting the topology of disulfide bonds, we
first assume that disulfide bonded cysteines are known.
We evaluated the performance of methods considering
subsets of proteins with a different number of disulfide
bonds (from 2 to 5). The reported accuracy was obtained
using the same 20-fold cross validation procedure pre-
viously described [12].
In Table 1 the results obtained by evaluating only the

correlated mutation information are listed. Both MIp and
iCOV are evaluated as unsupervised predictors. This was
done by considering the correlated mutation values com-
puted with the MIp and iCOV algorithms as a measure of
the extent of the interaction between pair of cysteines
without applying any supervised learning procedure. We
constructed two simple predictors by directly interpreting
MIp and iCOV as disulfide bonding potentials among
cysteines and predicting the highest scoring set of cysteine
pairs as the most probable disulfide connectivity pattern.
The pattern selection was done by computing the maxi-
mum-weight perfect matching with the Edmond-Gabow
algorithm as previously described [5]. The performance of
these unsupervised predictors reported in Table 1 (43.7-
44-5% of Qp and 49.9-51.7% of Pb), are significantly
higher than a random predictor and higher than methods
that do not include evolutionary information [5]. Differ-
ently from the case of contact prediction [20], in our case
MIp routinely outperformed iCOV with the exception of
the case of three disulfide bonds, where iCOV obtained
the highest score.
In Table 2 we report the performance of the SVR-based

predictors that include in their input the correlated muta-
tion information. For sake of comparison, we also report
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the accuracy per protein of the best method based on SVR
that does not take advantage of the correlated mutation
information but exploits all the other input features
described in the Method section (Table 2, under the col-
umn labelled SVR). SVR is equivalent to the second mod-
ule of DisLocate [12]. From the data listed in Table 2, it is
evident that when the correlated mutation information is
included in the SVR input, the overall performance
increases (compare SVR with SVR+iCOV and SVR+MIp).
In both cases they outperform the baseline SVR predictor,
in particular for proteins that contain 4 and 5 disulfide
bonds (it was previously discussed that the difficulty of the
prediction increases as the number of cysteines increases
[5]). It is also worth noticing that iCOV seems to add
more information with respect to MIp as indicated by the
relative scoring values (columns SVR+iCOV and SVR
+MIp). Since iCOV and MIp appear to capture different
aspects of the correlation between cysteines, we also evalu-
ated a SVR-based predictor that includes among its fea-
tures both correlation measures (SVR+iCOV+MIp). In
this case the performance of the SVR further increases
and overpasses by 5 percentage points the recently pub-
lished SVR method (second step of DisLocate in [12]).

Prediction of disulfide connectivity with predicted
bonding state
In real cases, when new protein sequences are analysed,
it is not known if some of the cysteines are making

disulfide bonds in the three dimensional structure of the
protein. It is then useful evaluating the predictor accu-
racy starting from an unlabelled sequence and predict-
ing both the disulfide bonding states and also the
connectivity pattern. We evaluated the performance of
the connectivity pattern predictor based on SVR+iCOV
+MIp when the bonding state of cysteines is not known
but it is predicted. For this purpose, we adopted the
bonding state predictor previously introduced in DisLo-
cate which is based on Grammatical-Restrained Hidden
Conditional Random Fields [24] and protein subcellular
localization [12]. In this case, we used the GRHCRF part
of DisLocate to predict the bonding state and the new
predictor to assign the connectivity pattern. For sake of
comparison, we evaluate the method adopting the same
experimental setup previously described and using the
same cross-validation procedure [12]. Results are shown
in Table 3 and indicate that the improvement over Dis-
Locate is 2 percentage points of accuracy per protein.

Prediction performance as a function of the quality of
the multiple sequence alignments
MIp and iCOV are computed over multiple sequence
alignments. We therefore evaluate how the number and
the type of sequences included in the alignment (used
to compute the correlation among cysteines residues)
can affect the final result.
The number of aligned sequences in each multiple

alignment can vary from sequence to sequence. We eval-
uate the dependence of the method performance on the
number of sequences by computing Qp at increasing
threshold value of the number of proteins included in the
multiple sequence alignment. The results are reported in
Figure 1, where it is evident that the method has on aver-
age a lower performance on proteins, whose correspond-
ing multiple sequence alignments contain ≤5000
sequences. Alternatively, when the number of aligned
sequences is larger than 10000, the method on average
optimally scores. However, a large number of aligned
sequences may be not sufficient if the observed sequence
variation is not adding any information. In order to high-
light this effect, we evaluated the method performance as
a function of the number of effective sequences in the

Table 1 Performance on disulfide connectivity prediction
obtained with correlated mutation measures

# bonds ICOV MIp Random

Pb = Rb Qp Pb = Rb Qp Pb = Rb Qp

2 62 62 68 68 33 33

3 52.6 42.4 47.8 37.7 20 7

4 51.8 26.8 49.4 29.3 14 1

5 39.5 16.2 33.5 13.5 11 0.1

All 51.7 43.7 49.9 44.5 23 15

#bonds: number of disulfide bonds; iCOV: sparse inverse COVariance
estimation; MIp: MIp: corrected Mutual Information. Random: performance
obtained by a random predictor. Here Pb = Rb since the total number of
predicted bonds (which is known in this experiment) is equal to the total
number of observed bonds (Np = Nb). For index definition see Performance
measures.

Table 2 Performance on disulfide connectivity prediction obtained with different SVR-based methods

# bonds SVR SVR+iCOV SVR+MI SVR+MI+iCOV

Pb = Rb Qp Pb = Rb Qp Pb = Rb Qp Pb = Rb Qp

2 75 75 76 76 73 73 76 76

3 60 48 62.8 55.3 59.6 50.6 62.8 55.3

4 57 44 67.1 51.2 61 46.3 67.7 51.2

5 46 19 55.1 27 54.1 29.7 58.9 32.4

All 60 54 65.2 58.6 61.9 55.5 66.2 59.3

# bonds: number of disulfide bonds; MIp: corrected Mutual Information; iCOV: sparse inverse COVariance estimation; SVR: Support Vector Regression; and their
combinations as indicated. For details see Methods. Results are evaluated on the PDBCYS dataset [12]. SVR results are taken from [12]. For index definition see
Performance measures.
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alignment (NEFF score) [25]. NEFF is calculated as the
exponential of the entropy value averaged over all col-
umns of the multiple-alignment: in this respect NEFF is
also interpreted as the entropy of a sequence profile
derived from the multiple-alignment [25]. NEFF is a real
value ranging from 1 to 20. Multiple sequence alignments
consisting of very similar sequences (or singletons) have a
NEFF value close to 1, while random (uniform) align-
ments generate a NEFF of 20. Figure 2 shows that also
for the problem at hand, the larger the NEFF value the
higher is the method performance, achieving the maxi-
mum at NEFF = 10 (in our dataset the maximum value is
11). These findings are in agreement with the notion that
the more representative is the multiple sequence align-
ment, both in terms of sequence abundance and diver-
sity, the higher is the expected predictive performance of
the method [19,20].

Conclusions
The prediction of protein structures from their sequences
it is still an open problem in Structural Bioinformatics,
especially considering that the disproportion between the
number of putative protein sequences with respect to the
number of known 3D structures is exponentially increas-
ing. The bonding state of cysteines plays a relevant role in
stabilizing the tertiary folds of proteins, in defining protein
functions and in triggering functionally relevant conforma-
tional changes [26]. The knowledge of disulfide bonds is
very important to predict the protein structure in ab initio
and comparative modelling since it poses constraints to
the possible chain conformations [27,28]. In this paper we
introduce a new method to predict disulfide bonds starting
from protein sequence. We investigate the effect of the
information derived from correlated mutations on the pro-
blem of predicting the topology of disulfide bonds in pro-
teins. We show that correlated mutations in the form of
corrected mutual information (MIp) and inverse of covar-
iance matrix (iCOV) carry a significant quantity of infor-
mation that was not completely exploited before for the
task of disulfide bond prediction. We present a new
method that implementing information derived from cor-
related mutations improves the performance over the state
of the art method DisLocate [12]. Finally, we highlight that
the optimal performance of the method can be achieved
when the number of sequences included in the multiple
alignment from where information on correlated mutation
is derived is in the range of 10000 protein chains and the

Figure 1 Scoring the method at increasing number of sequences in the MSA. The accuracy per protein (Qp) of the different methods is
plotted as a function of the number of protein chains in the multiple sequence alignment (MSA quality) used to derive information on
correlated mutations. MIp: corrected Mutual Information; iCOV: sparse inverse COVariance estimation; SVR: Support Vector Regression; and their
combinations as indicated. For details see Methods.

Table 3 Prediction without a prior knowledge of the
cysteine bonding state

# bonds DisLocate SVR+MI+iCOV

Rb Pb Qp Rb Pb Qp

1 83 46 76 93 46 76

2 67 52 61 71 59 62

3 47 41 35 55 49 38

4 52 37 35 63 48 38

5 39 39 15 50 49 16

All 52 42 36 60 50 38

Legends are as in Table 2.
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correspondent NEFF value of the alignment is greater or
equal to 10.
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