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Abstract

Transcript quantification is a long-standing problem in genomics and estimating the relative abundance of
alternatively-spliced isoforms from the same transcript is an important special case. Both problems have recently
been illuminated by high-throughput RNA sequencing experiments which are quickly generating large amounts of
data. However, much of the signal present in this data is corrupted or obscured by biases resulting in non-uniform
and non-proportional representation of sequences from different transcripts. Many existing analyses attempt to
deal with these and other biases with various task-specific approaches, which makes direct comparison between
them difficult. However, two popular tools for isoform quantification, MISO and Cufflinks, have adopted a general
probabilistic framework to model and mitigate these biases in a more general fashion. These advances motivate
the need to investigate the effects of RNA-seq biases on the accuracy of different approaches for isoform
quantification. We conduct the investigation by building models of increasing sophistication to account for noise
introduced by the biases and compare their accuracy to the established approaches.
We focus on methods that estimate the expression of alternatively-spliced isoforms with the percent-spliced-in
(PSI) metric for each exon skipping event. To improve their estimates, many methods use evidence from RNA-seq
reads that align to exon bodies. However, the methods we propose focus on reads that span only exon-exon
junctions. As a result, our approaches are simpler and less sensitive to exon definitions than existing methods,
which enables us to distinguish their strengths and weaknesses more easily. We present several probabilistic
models of of position-specific read counts with increasing complexity and compare them to each other and to the
current state-of-the-art methods in isoform quantification, MISO and Cufflinks. On a validation set with RT-PCR
measurements for 26 cassette events, some of our methods are more accurate and some are significantly more
consistent than these two popular tools. This comparison demonstrates the challenges in estimating the percent
inclusion of alternatively spliced junctions and illuminates the tradeoffs between different approaches.

Introduction
Determining the relative abundance of gene transcripts
in a cell - whether in relation to each other or in rela-
tion to corresponding transcripts in other cells - is an
important and long-standing problem in genomics.
Since introduction of RNA-seq, a high-throughput
experimental method of measuring the RNA content of
a sample by reverse-transcribing it and sequencing the
resultant cDNA, this problem has been illuminated by

vast amounts of data and by many methods for elucidat-
ing transcript abundance [1]. Current collections of
RNA-seq data are rapidly growing in multiple dimen-
sions such as species, tissues, and conditions [2].
This data deluge necessitates more sophisticated and

accurate analysis methods, which in turn create an
opportunity to gain deeper insights into the role and
regulation of transcript abundance in important devel-
opmental and disease processes. Undoubtedly, one
important research area that can benefit from these
advances is the study of RNA splicing, an essential cellu-
lar process that effectively increases the phenotypic
complexity of eukaryotic organisms without
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necessitating an increase in their genetic complexity.
Accurate measurements of the expression levels for iso-
forms from a large number of genes are especially useful
for research into the molecular mechanisms that regu-
late alternative splicing in different tissues. For example,
the recent advances in the RNA splicing code that
determines the relative abundance of alternatively
spliced isoforms [3] was made possible by high-through-
put microarray technology. In principle, RNA-seq can
lead to much richer datasets at a fraction of the cost.
Thus RNA-seq technology can lead to significant new
breakthroughts, as the code quality achieved by [3]
leaves a lot of room for improvement. The focus of this
paper - estimation of the percent inclusion of alterna-
tively-spliced exons from RNA-seq data - is a step
toward a more accurate interpretation of the natural
splicing code. This problem is complicated by several
sources of bias in short read counts including those due
to the cDNA fragmentation and primer amplification
steps of current RNA-seq protocols [4,5]. These biases
lead to widely varying abundances for reads from differ-
ent positions in the transcript. We investigate this posi-
tion-specific bias further and suggest methods to
mitigate it.
Specifically, we restrict our interest only to exon-skip-

ping events [6,7]. The numerical quantity which cap-
tures relevant information for these events is termed
percent-spliced-in (PSI). For each exon-skipping event,
PSI is defined as the expression of isogorms containing
the alternatively spliced exon (i.e. those containing a
given cassette exon and its flanking constitutive exons)
as a fraction of the total expression for both alternatively
and constitutively spliced isoforms (i.e. those containing
the flanking exons only) which is reported in percent.
Accurate estimation of PSI is not only desirable on its
own, but it can also be used to improve the resolution
of differential splicing and thus improve the predictive
power of the splicing code [3].
There are several recent tools for estimating relative

abundance of isoforms, which deal with position-specific
biases in different ways [5,7-9]. MISO can directly esti-
mate PSI specifically for exon-skipping events [7], while
most others estimate the expression of whole isoforms
from which a PSI value may be derived. This makes
MISO the natural point of reference for our compari-
sons, but we also include Cufflinks [5] in the compari-
sons because of its popularity and explicit modeling of
fragmentation and amplification biases. However, for the
task of estimating PSI, Cufflinks’ focus on multi-exon
isoforms appears to be detrimental, as we show in the
Results section.
Our pursuit of robust estimates for PSI necessitates an

appropriate measure of the uncertainty for these esti-
mates. This additional necessity is crucial for the task of

deciphering the natural RNA splicing code. Linking
noisy RNA-seq read counts with the sequence determi-
nants of RNA splicing is a hard task that requires good
measurement of splicing levels even in case of tran-
scripts with minimal coverage. For this task it is just as
important to quantify the range of possible PSI values
supported by the RNA-seq data, given that the position-
specific bias can dramatically influence these estimates.
We start by framing the classic IID sampling assump-
tion as a Poisson model and modify it to mitigate the
effect of position-specific biases. This leads to three
methods of increasing complexity. We evaluate our
models in terms of their accuracy and consistency. We
compare our methods’ accuracy to each other and to
existing approaches of estimating PSI with respect to a
reference set of 26 RT-PCR measurements from a
human cell line. As we discussed above, we are inter-
ested in developing algorithms that provide robust esti-
mates: A handful of highly biased positions in the
transcript, from which a much larger number of reads is
obtained simply due to fragmentation bias, should not
unduly influence the estimate of PSI. Our results show a
moderate increase in accuracy and a significant increase
in consistency of our methods over the current state of
the art methods for quantifying of alternative splicing
events.

Methods
RNA-seq data
RNA-seq data was generated from a HeLa cell line by
the Blencowe Lab at the University of Toronto [10]. The
protocol consisted of polyA-selected RNA extraction,
random hexamer primed reverse transcription, cDNA
fragmentation (with mean insert size of 220nt), and
50nt paired-end sequencing by Illumina GA. This data-
set is publicly available on the NCBI Gene Expression
Omnibus with accession number GSE26463. 305 million
RNA-seq reads were sequenced and mapped to the
reference human genome (NCBI build37, UCSC hg19)
using TopHat, which is capable of reporting split-read
alignments across splice junctions [11]. TopHat pro-
duced error-free alignments for 66 million reads (about
22% of the total). For each exon-exon junction, the
reads that overlapped it by at least 8nt were selected
and their positions were noted. Positions that contained
reads mapping elsewhere were excluded. The number of
3’ fragment ends (i.e. reads starts) around the junction
was tabulated into a profile of read hits for each junc-
tion. This profile of read start counts is also called a
read cover, in contrast to the more popular read
coverage.
Figure 1 illustrates the actual cover profile for a

representative constitutive (i.e. exclusion) junction with
a relatively high total number of reads. Position-
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dependent biases in the read cover lead to positions
with zero reads, as well as positions with many mode
reads than are expected based on other positions.
These two situations are sometimes treated differently,
but they are essentially due to the same cause: posi-
tion-dependent effects. Note that these position-depen-
dent effects are present in the majority of junctions
regardless of their underlying expression. Another
source of error is mis-matched reads but, in this work,
we deliberately used only error-free alignments (as
opposed to the common practice of allowing a small
number of mismatches) in order to differentiate the
positional biases from mismatch noise. When estimat-
ing PSI, the individual read covers for each pair of
alternative junctions that flank an alternative exon can
be tabulated into a joint inclusion junction cover using
half-counts at each position. This is common practice
for analyses of alternative splicing as it is assumed that
the increased sample size results in better estimates of
expression. However, we note that averaging the read
covers for the two alternative junctions is not appro-
priate when the constitutive annotation of the two
flanking exons is in question, and this approach does
not significantly reduce the harsh effects of positional
biases.

The existing tools for isoform quantification, MISO
and Cufflinks were provided with the entire alignment,
not just the reads mapping to junctions. MISO (version
0.2) and Cufflinks (version 1.2) were run with default
parameters except for the paired-end read insert size
and the number of samples from the appropriate poster-
ior, which were set to 220 and 10000, respectively.

Native model
The first model we study makes the simplifying assump-
tion that reads are sampled independently and identi-
cally distributed (IID) from the expressed isoforms. We
refer to it as the “Native” model, because its key compo-
nent, the Poisson arrival process, is a natural model for
IID read coverage. This “Native” model has worked suf-
ficiently well in the past for analysis in many respectable
DNA and RNA sequencing studies [2].
Many simple models of RNA-seq data assume, either

explicitly or implicitly, that reads are sampled uniformly
along the length of a transcript [1,12]. However, actual
RNA-seq data do not follow this assumption because of
multiple sequence- and position-specific biases inherent
in the cDNA library preparation and sequencing
[4,5,7,13]. Still, we might expect this assumption to hold
for sufficiently short regions on a transcript, such as the

Figure 1 Read cover of sample junction. A read cover profile shows the number of read alignments (y-axis) that start at a particular distance
(x-axis) from the splice junction. This histogram is a typical example of the 50nt neighborhood around a highly expressed constitutive junction.
This example exhibits two types of read mapping bias: sparse coverage (empty positions) and read-stacks (tall blue bars). The horizontal line (in
red) a = 3.4 marks the average expression of the junction determined by the Native model.
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neighborhood around an exon-exon junction. In this
case, the number of read starts xp mapping to each posi-
tion p near the junction should follow a Poisson distri-
bution whose mean is estimated by α̃ =

1
P

∑
p xp where

the region of interest spans positions {1, 2, ... P}. The
mean and matching variance a will estimate both the
overall expression for that junction and the model’s
uncertainty in that expression. Unfortunately, reads are
not distributed uniformly, even along short regions with
sufficient coverage. As shown on Figure 1, the read
counts covering the region within 50nt of a representa-
tive constitutive junction are highly variable and non-
uniform. The corresponding cover for the two alterna-
tive junctions (not shown) contains about twice as many
read counts in total, but they are split over two neigh-
borhoods of 50nt. In general, RNA-seq data deviates
from the Native Poisson model in two ways:

• the high sparsity of the data (~ 80% of positions
have no reads starting at them) causesα̃, the average
cover for the region, to underestimate the expected
abundance a.
• the variance of the non-zero elements xp > 0 is
three times larger than that dictated by the Native
model.

Note that the Poisson model describes the likelihood
P(xp | a) of observing a particular read cover profile xp
given the unknown expression a. However, we are inter-
ested in the posterior probability P(a | xp) of the hidden
expression given the observed data. This posterior can
be obtained from the likelihood of the observed data
and the prior over the expression through the classic
Bayes’ Rule:

P(α|x) = P(x|α) ∗ P(α)
P(x)

(1)

Once we have distributions over the expected expres-
sion for both the alternative (a.k.a. inclusion) and the
constitutive (a.k.a exclusion) junctions, ai and ae respec-
tively, we combine them to produce the posterior over
the PSI estimate of this model P(�Native|xip, xep) given the
observed read counts over the inclusion (xip) and exclu-
sion (xep) junctions, respectively. There is no closed-form
expression for this distribution, but we can estimate it
with the ratios of samples from the inclusion and exclu-
sion posteriors:

P(�Native|xip, xep) ∝
∑
αi ,αe:

αi

αi + αe
=�Native

P(αi|xip) ∗ P(αe|xep)
(2)

Gaussian model
In order to alleviate the shortcomings of the Native
model, we propose two simple modifications which
result in a new Gaussian model that is more robust to
the position-specific biases present in RNA-seq data. To
deal with the sparse cover and its effect on the expected
expression, a, we dismiss all unmappable positions, i.e.
those positions which coincide with the start of reads
that map elsewhere in the reference genome or tran-
scriptome. This leaves only the set of position indexes Q
which coincide with the hits of only uniquely-mappable
reads. Therefore, the normalized expression of a junc-

tion is γ =
1

|Q|
∑

q∈Q xq +
1
p
where we have added the

pseudo-count 1
P in order to avoid dividing by zero for

junctions which have no uniquely-mappable reads, e.g.
those that come from homologous regions of the
genome.
To deal with the high variance at positions with non-

zero read count, we approximate the PSI ratio of nor-
malized junction expressions with a Gaussian distribu-
tion. Unlike the Poisson distribution whose mean and
variance are identical by definition, the link between the
mean and variance of this Gaussian approximation can
be relaxed in order to make the model more robust.
The mean μ is estimated by the ratio of the normalized
read counts for the inclusion and exclusion junctions (gi

and ge, respectively). The standard deviation s is propor-
tional to the geometric mean of μ and its complement 1
- μ. The variance s2 is normalized by the total number
of uniquely mappable reads in the alternative and con-
stitutive junction Γ = gi|Qi| + ge|Qe|, where |Qi| is the
number of uniquely-mappable positions for the inclu-
sion junction, and |Qi| is that for the exclusion junction.
Finally, the variance is lower-bounded by an arbitrary
threshold in order to avoid over-fitting the noisy RNA-
seq data:

μ̃ =
γ i

γ i + γ e
σ̃ 2 = max

[
0.01,

μ̃(1 − μ̃)
�

]
(3)

This approximation allows us to skip the Bayesian
procedure and sampling approximation required by the
Native model, since we can directly specify the posterior
distribution of our estimate for PSI given the read
counts around a junction: P(�Gaussian|xp′) ∼ N (μ̃, σ̃ 2).

Bootstrap technique
To robustly estimate PSI without explicitly modeling
sequence and position dependent bias, we propose a
method based on randomly resampling the observed
data. This method computes the degree of uncertainty
in PSI by estimating the consistency within the observed
dataset. It belongs to a general class of statistical
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methods called bootstraping that have been successfully
used to model complex and unknown distributions [14].
The bootstrap can be used to assess the uncertainty in

the PSI estimates produced by any method that takes
position-dependent read counts as input. Here, we use a
Poisson model. We assume that there are P mappable
junction positions for each exon skipping event. We
observe xip inclusion reads and xep exclusion reads for
each position p = {1, 2, ... P}. To estimate PSI from such
a dataset, a simple approach assumes that for every
position, xip and xep are generated by a Poisson distribu-
tion with real-valued underlying abundances bi and bj

respectively. A Poisson distribution is used to model the
process of how RNA-seq reads in each position arise
from the true abundance of isoforms in the biological
sample. Because of the IID assumption, the maxmimum
likelihood (ML) estimator of b is simply the sum of the
observed reads. Instead of simply using the ML estima-
tor, we take a Bayesian approach where we assume an
improper prior for P(b) = 1 for the abundances of both
inclusion and exclusion variants. The posterior of b is a
Gamma distribution with a shape parameter equal to 1:

P(β) = 1; (4)

P(�x|β) =
∏
k

P(xp|β); (5)

P(xp|β) = Poission(x|β); (6)

=
βxp

xp!
e−β ; (7)

P(β|�x) ∝ P(β)P(�x|β); (8)

∝ β
∑

p xp(∑
p xp

)
!
e−β ; (9)

P(β|�x) = Gamma(1, 1+
∑
p

xp), (10)

where Gamma(θ, k) denote the real valued Gamma
distribution with scale parameter θ and shape parameter
k. In this application, the shape parameter is one plus
the sum of the reads across positions. The Gamma ran-
dom variable in the above equation incorporates our
belief of likely values of isoform abundances (b) given
the observed reads, with the IID assumption for read
generation across positions. However, the IID assump-
tion described above is highly incorrect, because of posi-
tion-dependent effects introduced by RNA-seq

technologies. We use the bootstrap to assess the uncer-
tainty induced by these effects as follows. Instead of
summing over the reads at all positions, we generate a
sample of P positions with replacement from the
observed data and then sum the reads at those positions
to produce an estimate of b as described above.
The above procedure is repeated to generate a distri-

bution of b estimates, which can be used to form a dis-
tribution of PSI. In our approach, one million bi and be

are generated with which one million samples of
Ψbootstrap are produced.

Robust mixture model
We propose a robust mixture model of read counts that
span alternatively-spliced junctions from exon skipping
events. The mixture has three components:

1. A zero-cover component to explain the empty
positions arising from sparse fragmentation bias.
2. A noise component to capture the read stacks
arising from the other type of positional bias.
3. A Poisson component to capture the remaining
signal in the read cover.

Formulating a mixture model allows us to explicitly
capture each of the two types of bias alongside the
underlying signal in RNA-seq data.
For each cassette splicing event, our model links the

hidden expression counts li and le, for the inclusion
and exclusion junctions, to the unknown PSI and cover-
age values: �λ ∈ Q and C Î ℤ, and to the observed read
counts: xip ∈ Z and xip ∈ Z where p Î {1, 2, ..., P} are
positions in the neighborhood of each junction. As
before, Ψl, C, and l are linked by a deterministic rela-
tionship:

�λ =
λi

C
where C = λi + λe (11)

Figure 2 shows the plate diagram for the Robust Mix-
ture model. Its priors and factors are described in the
following sections. The the priors and factors combine
via Bayes’ Rule (already described in Equation (1)) to
give the posterior distribution over the hidden variables
and mixture weights of this model.
Priors

• PSI: Ψl ~ Uniform[0, 1]
even though the empirical distribution is closer to

a convex Beta distribution with preference for
extreme values of Ψl, we use the least informative
prior in order to gain the most information about
this hidden variable of interest [7].
• Cover: C ~ Gamma(θ, k)
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with scale parameter θ = 77.77 and shape para-
meter k = 0.77 estimated from C’s empirical
distribution.
• Expression: A complex prior on li and le is
induced by the priors on Ψl and C through the rela-
tion in equation (11). We impose no further restric-
tion on the distribution of these hidden variables.
• Mixture: The weights of the three mixture compo-
nents represent the relative strengths of the signal
and the two noise models. The observed sparsity of
RNA-seq data ( where 80% of junction-neighboring
positions have no read alignments starting from
them) is an upper bound on the true sparsity
because we expect to see zero-cover positions in
junctions with very low expression. Therefore we
chose 60% sparsity as a reasonable compromise.
Likewise, the observed read-stack outlier rates for
the Illumina platform is a lower bound on the actual
fraction of outlier reads (3% of all junction-adjacent
positions have a read count that is 10× higher than

the simple average).

p0(mp) =

⎧⎨
⎩
0.60 Zero Cover (mp = 0)
0.36 PoissonModel (mp = 1)
0.04 Read Stacks (mp = 2)

(12)

Factors
• Deterministic: li, le ~ δ(li = Ψl * C)δ(le = C - li)
• Multinomial: mp ~ Multinomial(cz, cp, cs)
This factor allows our model to learn the actual

mixture weights for each of the components from
the observed data.
• Mixture: We use a mixture factor in order to cap-
ture each of the two biases and the actual signal in
separate components. The choice for each compo-
nent is motivated by the form of the signal or noise
it is designed to capture.

xp|mp,λ ∼
⎧⎨
⎩

δ(xp = 0) Sparsity (mp = 0)
Poisson (λ) Signal (mp = 1)
Uniform [1, L] Noise (mp = 2)

(13)

Figure 2 Plate model for Robust Mixture. Our Mixture Model for robust estimation of PSI and coverage of cassette junctions from RNA-seq
data. Only the read counts at each position (shaded xp) are observed. The mixture components (mp), robust expression estimates for each
junction (lie), and the overall cover (C) and percent-spliced-in (Ψ) are inferred by the model.
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Practical considerations
Performing inference in the Native and Robust Mixture
models described above is intractable due to the complex
partition function that normalizes the posterior distribu-
tion P(Ψ|xp). To compute the posterior, we could use
advanced approximate inference methods such as Expec-
tation Maximization used by IsoEM [8], Markov Chain
Monte Carlo used by MISO [7], and combinatorial optimi-
zation used by Cufflinks [5,12]. However, we note that dis-
cretizing the values of their parameters allows us to
approximate the partition function and directly calculate
the posterior distribution over the discretized PSI values:
Ψa and Ψl respectively. In contrast, the Gaussian and
bootstrap models give a posterior over Ψg directly, either
in a closed form expression or in the form of samples
from a provably exact distribution. Figure 3 shows that the
resulting posterior distributions for all PSI estimators are
well-formed, especially for junctions with sufficiently high
read cover, and gives support for the viability of our dis-
cretization scheme for junctions of medium or even low
read cover. Finally, performing inference with discretized
parameters takes considerably less time at a minimal loss
of precision. This allows our methods to analyze an entire
pre-aligned RNA-seq dataset in the manner of a few min-
utes, while other methods take tens of hours or even days
on the same task, while other methods take hours on the
same task.

Results and discussion
Accurate estimation of PSI
In order to evaluate the accuracy of our models and
compare it to that of the existing methods, we selected
a validation set of 26 cassette exons with reference PSI
values derived from RT-PCR experiments in HeLa cells
[10]. The 26 events include 11 high-expression events
with between 10 and 20 read starts per position, 8 med-
ium-expression events with about 1 read start per posi-
tion, and 7 low-expression events with 10 or fewer reads
total across all 50 positions (≤ 0.2 read starts per posi-
tion). Figure 3 compares the posterior distributions over
PSI inferred by six different methods: our four methods
described in the Methods section, and two popular tools
for isoform quantification, MISO and Cufflinks. All
tools shared the same input, but were able to extract
varying amount of information from it. The shared
TopHat alignment file included the mapping of reads to
a reference set constructed only from the constitutive
and alternative exons of the 26 cassette events. Our
tools were able to use only the reads mapping across
junctions, while MISO and Cufflinks was free to use the
entire set of alignments. Furthermore, our methods did
not benefit from the paired-end dependencies between
the reads, while both MISO and Cufflinks were able to

do so. To be fair, we note that Cufflinks is designed for
whole-transcript quantification. Thus, we did not expect
it to be competitive with the other methods on a highly
restricted reference set consisting of only three exons
per alternative splicing event
While limited, this comparison clearly shows that no

particular method outperforms the others on every event.
However, it does suggest that our methods are more
accurate, especially when they agree with each other. We
investigate the consistency of our methods in a later part
of the Results section. Unfortunately there is no canoni-
cal way to measure the error between a distribution esti-
mate and a point target. However, we modify three
existing distance metrics between distributions and pro-
pose a new metric which allow us to compute the overall
performance of the six methods on all 26 events. Given a
PDF distribution of PSI estimates P(x) and a target value
ψ described by discretized Gaussian distribution Qψ(x)
centered at the point target, ψ. We used an arbitrary
standard deviation s = 0.05 which is comparable to the
accuracy needed for downstream applications of PSI esti-
mates. The new metric directly computes the distance
between a distribution and its target.

• Variation distance, which measures the total devia-
tion between the two distributions

V(P,Qψ ) =
∑

0≤x≤1

|P(x) − Qψ(x)| (14)

• Disagreement distance between CDFs, which mea-
sures the maximum deviation. In our case, the maxi-
mum is attained at the mode of either P or Qψ

S(P,Qψ ) = max
0≤y≤1

∑
0≤x≤y

P(x) − Qψ(x) (15)

• KL divergence, which measures the asymmetric
disagreement between P or Qψ with respect to the
latter

DKL(Qψ ‖ P) =
∑

0≤x≤1

Qψ(x) log
P(x)
Qψ(x)

(16)

• Novel confidence-weighted L 1
2
error distance, is

designed to penalize distributions that distribute
weight away from the target ψ

E 1
2
(P,ψ) =

∑
0≤x≤1

P(x)‖x − ψ‖1
2

(17)
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Figure 3 Comparison of PSI estimates. Comparison of PSI estimators of different methods for (a) high- (b)medium- and (c) low-cover
junctions in a reference RT-PCR study. Each method’s estimated distribution over PSI is shown in different color, and the target PSI value is
shown as a yellow star on the x-axis. Methods which commit the most of their distribution mass near the star have the most accurate estimates.
The text inside each plot identifies a cassette event and gives the raw number of reads mapping to the constitutive (Ne) and the average of the
alternative junctions (Ni). This figure is best viewed in color.
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Table 1 shows the overall performance of each PSI
estimation method over the 26 target events according
to each of these error metrics. While our most robust
methods perform well on three of these metrics, it is
not surprising that MISO outperforms every other
method on the remaining S-metric because it always
distributes its posterior mass wider than our methods.
The disagreement distance, S(P, Qψ) rewards this exten-
sive hedging because it is very susceptible to sampling
noise which is abundant on Figure 3. The remaining
metrics are chosen to be more robust when faced with
this sampling noise.

Consistent estimation of PSI
In order to further investigate the consistency of PSI
estimation methods, we performed a random sub-sam-
pling procedure. This procedure chooses a random half
of the positions around a junction and uses the subset
of reads that start at those positions to obtain an
unbiased estimate of the noise associated with the posi-
tional bias. A dataset with reduced set of positions is
equivalent to a dataset with reduced signal-to-noise
ratio. Comparing the PSI estimate of a method given
each half of the positions can measure the consistency
of that method. Figure 4 depicts the consistency of the
most accurate methods from Table 1 with a non-stan-
dard 2D color visualization. We call a this visualization
a constellation plot because of its superficial resem-
blance to images of deep-space galaxies.
We expect more consistent methods to produce con-

sistently more similar estimates of PSI. For each
method, we calculate the KL-divergence between its PSI
estimate on a particular event to the PSI estimate on all
other events. We compare the mean of all cross-event
divergence to the divergence between PSI estimates
from complementary halves of the same event. The for-
mer divergence we call the inter-exon distance, and the
latter we call the intra-exon distance. Then, the ratio
between the inter- and intra-exon distances is a measure
of the method’s consistency for that particular exon.
More consistent methods will have a higher ratio over
all events. Figure 5 compares the consistency ratios of
our four methods and that of MISO using a larger

dataset of over 1000 events (including the 26 validated
by RT-PCR).
Consistency of the PSI estimates is especially impor-

tant to the downstream uses of our methods. If only a
randomly selected subset of positions are taken into
account, the PSI estimate (and its uncertainty) should
be very similar to the estimate that would be computed
based on the complementary set of transcript positions.
Thus we defined a measure of consistency of the estima-
tor as the ratio of the average distance of the PSI distri-
butions obtained from two different genes and the
average distance from PSI distributions obtained from
different position subsets of the same transcript. High
values of this ratio indicated that using a smaller subset
of the positions will not affect the estimate of PSI drasti-
cally, but that this is not achieved in a trivial way by
always estimating either a high or a very low level of
exon inclusion.

Runtime and efficiency
While accuracy and consistency are the most important
considerations for any approach of estimating PSI, run-
time and efficiency are becoming increasingly relevant
as the amount of RNA-seq data grows rapidly. Table 2
compares the runtimes of all methods on both the small
validation set of 26 events and the larger set of 1051
events. To estimate the distribution over PSI values for
each event, we used 10,000 samples for all methods.
Sampling from the Gaussian model was direct whereas
other models sampled the expression for inclusion and
exclusion isoforms separately. It is not surprising that
the run time of our pre-processing grows linearly with
the number of RNA-seq reads, and we expect the same
happens to the pre-processing subroutines of both
MISO and Cufflinks. However, the estimation subrou-
tines in the two established tools are disproportionately
slower on the larger dataset than any of our simple
methods, including the robust and very consistent boot-
strap model.

Conclusion
This work addressed the problem of estimating relative
abundances of alternatively-spliced cassette exons from
the sparse and noisy evidence in RNA-seq data. First,
we investigated the raw data and reviewed known frag-
mentation biases resulting from current RNA-seq proto-
cols. Next, we identified position-specific anomalies
affected by these biases, and proposed a modular prob-
abilistic framework that robustly estimates the PSI and
total coverage of alternatively-spliced exon junctions.
Using this foundation, we framed the classic IID read
sampling assumption as a Poisson model and termed
the two types of position-specific deviations in the
actual data as sparse cover and read stacks. Using the

Table 1 Accuracy

Error Native Gaussian Mixture Bootstrap MISO Cufflinks

V 28.5 24.1 27.2 24.2 30.9 43.7

S 12.90 15.26 15.87 15.22 9.87 12.65

DKL 264 102 94.2 92.0 220 1115

E1/2 9.34 7.08 6.62 6.65 9.28 14.65

Comparison of error between different PSI estimation methods with respect
to RT-PCR target. The best methods with lowest error in each row are bolded.
Robust Mixture model is abbreviated to “Mixture”.
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established framework, we proposed three novel prob-
abilistic methods of increasing complexity, which miti-
gate the effects of these two biases. We compared our
methods’ accuracy to each other and to existing
approaches of estimating PSI with respect to a reference
set of 26 RT-PCR measurements from a human cell

line. Our results showed a moderate increase in accu-
racy and a significant increase in consistency of our
methods over the current state-of-the-art for quantifica-
tion of alternative splicing events. While we presented
and referenced several methods for quantifying alterna-
tive splicing, our goal was not to pick a single champion

Figure 4 Consistency of PSI estimates. Constellation plot of the estimated PSI distributions from one vs. another half of the positions in each
cassette event. The distribution of PSI along the x-axis, Px(Ψ) over the range (0-100%) is estimated from a random half of the positions and the
distribution on the y-axis Py(Ψ) comes from the remaining half of the positions. The distributions are color-coded according to their methods.
The intensity of each pixel (x, y) = (a, b) corresponds to the product of the distributions Px(ψ = a) * Py(ψ = b). In regions where the distributions
for different methods overlap, the one with the higher probability is shown and the rest are suppressed. Each white diagonal marks the region
of perfect agreement for both distributions. The yellow star along each diagonal is placed at the x- and y-coordinate matching the PSI value
determined by RT-PCR for the event whose name and cover are printed in white font. This figure is best viewed in color.
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that is superior to all others, but to compare the
strengths and weaknesses of the various approaches. We
hope that these advances will enable more sensitive
downstream analyses, such as better determinants of dif-
ferential splicing which can eventually lead to an
improved RNA splicing code.
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