
PROCEEDINGS Open Access

A consolidation algorithm for genomes
fractionated after higher order polyploidization
Katharina Jahn, Chunfang Zheng, Jakub Kováč, David Sankoff*

From Tenth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Niteroi, Brazil. 17-19 October 2012

Abstract

Background: It has recently been shown that fractionation, the random loss of excess gene copies after a whole
genome duplication event, is a major cause of gene order disruption. When estimating evolutionary distances
between genomes based on chromosomal rearrangement, fractionation inevitably leads to significant
overestimation of classic rearrangement distances. This bias can be largely avoided when genomes are
preprocessed by “consolidation”, a procedure that identifies and accounts for regions of fractionation.

Results: In this paper, we present a new consolidation algorithm that extends and improves previous work in
several directions. We extend the notion of the fractionation region to use information provided by regions where
this process is still ongoing. The new algorithm can optionally work with this new definition of fractionation region
and is able to process not only tetraploids but also genomes that have undergone hexaploidization and
polyploidization events of higher order. Finally, this algorithm reduces the asymptotic time complexity of
consolidation from quadratic to linear dependence on the genome size. The new algorithm is applied both to
plant genomes and to simulated data to study the effect of fractionation in ancient hexaploids.

Background
Polyploidy, a genetic property whereby some k > 1 copies
of each chromosome co-occur in the haploid genome, is
widespread in flowering plants, and usually characterizes a
distinct species, non-interbreeding with the diploid (k = 1)
plant containing the same chromosomes, if this exists,
or with plants with any other k’ ≠ k. Tetraploids (k = 2)
are particularly common, but octoploids (k = 4) and hexa-
decaploids (k = 8) also occur, as do hexaploids (k = 3),
decaploids (k = 5), dodecaploids (k = 6) and other multipli-
citiesa . Polyploidization is considered a mutation, and is
not part of the normal life cycle of plants, or of the natural
history of a population, though sympatric populations of
different ploidies may occasionally originate in the same
geographical area, and share the same territory.
Over evolutionary time, polyploids may undergo redi-

ploidization. The k homeologous, or originally identical,

chromosomes, diverge in DNA sequence, in gene content
and gene order, and gross chromosomal structure,
through various processes such as chromosome fission or
fusion, inversion of chromosomal fragments, transloca-
tions of chromosome arms or other fragments from one
chromosome to another. A focus in this paper is fractiona-
tion [1], the eventual loss of most duplicate genes after
polyploidization. This may cause more gene order disrup-
tion than classical chromosomal rearrangements such as
inversion or reciprocal translocation. Although polyploidi-
zation, mainly tetraploidization, is known to have occurred
in ferns and other vascular plants, in yeasts and other
fungi, in goldfish and salmon, in Paramecium and other
protists, and even in a mammal, polyploidization followed
by fractionation are particularly prevalent in the history of
the flowering plants [2], where the alternation of the two
processes also necessitates the excision of excess non-
coding DNA [3,4], a major difference between these
organisms and some other evolutionary domains, such as
the mammals.

* Correspondence: sankoff@uottawa.ca
Department of Mathematics and Statistics, University of Ottawa, 585 King
Edward Avenue, Ottawa, Canada K1N 6N5

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

© 2012 Jahn et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:sankoff@uottawa.ca
http://creativecommons.org/licenses/by/2.0


The evolutionary disruption of gene order caused by
fractionation in a polyploid is a result of the partly ran-
dom choice of which of the k copies is deleted, i.e., which
of k homeologous chromosomes retain their copy of the
gene. This process was hypothesized by Wolfe and
Shields, who discovered the ancient tetraploidization of
Saccharomyces cerevisiae [5], and further studied through
the comparison of the S. cerevisiae gene order with that
of related diploid yeasts [6,7].
When the polyploid history of a diploid genome is dis-

covered through the detection of such interleaving pat-
terns plus the retention of the occasional remaining
duplicate, triplicate, etc., gene pair in formerly homeolo-
gous regions of the genome (since fragmented and rear-
ranged), the diploid is often called an paleopolyploid or
simply an ancient polyploid.
Fractionation deletes redundant genes from the k home-

ologs in an arbitrary way, as long as at least one copy of

each k−tuple is retained, as in Figure 1. Methods for infer-
ring the rearrangement distances between the paleopoly-
ploid P (referred to as an “ancient polyploid” despite being
a present-day genome, long since re-diploidized) and
an unduplicated sister genome D automatically infer that
there are rearrangement breakpoints where adjacency
no longer exists between single-copy survivors, since the
latter are on different chromosomes. This inflates the
apparent number of reciprocal translocations, greatly
exaggerating the overall amount of chromosomal rearran-
gement that has taken place in the two sister genomes. A
goal of our work is to be able to computationally detect,
characterize and correct for this impediment to the study
of evolution.
Our method is based on the identification and isolation

of “fractionation intervals”, regions in both the ancient
polyploid and its sister diploid that may have been rear-
ranged internally, but have (so far) been unaffected by

Figure 1 Fractionation leading to different adjacencies in diploid and ancient hexaploid

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 2 of 11



rearrangements exchanging genes from within the interval
and genes external to the interval. A second objective of
our work is to inventory these regions across the two gen-
omes so that they can be studied quantitatively. The statis-
tical properties of the intervals bear on current topics of
interest in plant evolutionary genomics, whether dupli-
cated genes are silenced or deleted one by one or through
the deletion of longer stretches of DNA, whether a fractio-
nation region tends to lose genes largely from one or two
of the k homeologous chromosomal segments or equally
from all of them, and on the question of subgenome domi-
nance, i.e., whether any such bias towards one or some of
the homeologs persists from the original polyploidization
event and is unaffected by chromosome shuffling.
In previous work on ancient tetraploidy [8], we proposed

a procedure for “consolidation” of two fractionated regions
in the ancient tetraploid that correspond to a single region
in a sister diploid. These are then represented by a single
“virtual” gene, identical in the diploid and in two copies in
the ancient tetraploid, removing the cause of excess rear-
rangement in the comparison of the two genomes. In the
present work, we devise a new consolidation algorithm
that can analyze polyploidy of any order (k = 2, 3, …), not
just tetraploidy. Its running time is asymptotically linear in
the genome size, improving on the previous quadratic
time method. As the default option in its implementation,
it analyzes fractionation regions that are only bounded by
rearrangement breakpoints, but it can also consider the
formulation in the previous work, where fractionation
regions were bounded either by breakpoints or duplicated
genes.
One of the most significant evolutionary events in the

Tree of Life was a hexaploidization that occurred in the
eudicot lineage of flowering plants, some 150 million years
ago [9]. Soon after this event, there was a massive radia-
tion of plant species, giving rise today to some 200,000 dif-
ferent species, which provide humans with the large
majority of the familiar fruit and vegetables we consume.
This event, along with other hexaploidizations (e.g.,

tomato), octoploidizations and decaploidizations (e.g.,
strawberry), motivate our extensions and improvements
of the current consolidation method.
Then to illustrate our method, we will simulate the

rearrangement and fractionation of one ancient polyploid
genome, that of the grapevine, following the hexaploidi-
zation event. Unfortunately, all of the published flowering
plant genomes are descendants of this event or descen-
dants of a more complicated series of polyploidizations in
the monocot clade, so that there is no extant genome
unaffected by polyploidization to compare grapevine
with. We do, however, know the number of chromo-
somes in the pre-hexaploid ancestor, and can estimate
the number of genes it contained [10]. We can then use

these parameters in our simulations to investigate the
relationship between fractionation and real versus appar-
ent genome rearrangement. In addition, we can compare
our algorithm versus the previous method in the compar-
ison of grapevine with poplar, an ancient tetraploid.

Methods
Problem definition
For the original consolidation algorithm a fractionated
region was defined as an interval I1 on a diploid refer-
ence genome D whose genes occur distributed over two
intervals, I2 and I3 (the latter possibly empty), on an
ancient tetraploid genome P such that I1 = I2 ∪ I3, I2 ∩
I3 = ∅ and all genes of I1 occur as single-copy genes in
P. We extend this definition of a fractionation region in
two directions: first we drop the requirement that I2 and
I3 may not intersect. In doing so, it is possible to detect
regions in which fractionation is still ongoing, as redun-
dant gene copies may still be present in duplicated
regions. Note that “intersection” refers to the gene sets
I2 and I3, not physical overlaps of the index intervals
that define the locations of I2 and I3 on P. (For obvious
reason, the latter type of interval intersection is not
allowed in context of fractionation.) Second we let gen-
ome P be of any type of ploidy k > 1 and therefore
allow the genes from I1 to occur distributed over up
to k different, non-physically overlapping intervals I2, ...
Ik+1 on P, as long as I2 ∪ ... ∪ Ik+1 = I1 holds, and none
of the I2, ... Ik+1 contains more than one copy of any
gene from I1. The last condition reflects our goal to
identify genomic regions that were shaped by fractiona-
tion. Any k + 1-tuple (I1, I2, ... Ik+1) that fulfills the
above conditions is called a virtual gene.
The formal definition of the generalized fractionation

problem is as follows:
Input: Triple (L, D, P), where

• L is a set of genes,
• D is a diploid genome with gene set L, i.e. L is par-
titioned among a number chromosomes, and the
genes on the chromosomes are ordered.
• P is an “ancient” 2k-ploid genome with gene set L,
i.e. each gene of L occurs in any copy number
between 1 and k; the genes are partitioned and
ordered on a number of chromosomes

Output: Triple (L’, D’, P’), where

• D’ is a diploid over the gene set L’,
• P’ is a “pure” 2k-ploid of L’ (all genes occur exactly
k-times),
• L’ is a set of virtual genes whose intervals I1 define
pairwise disjoint gene sets whose union is L.

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 3 of 11



Preliminaries
Before we start with the description of the actual algo-
rithm, we shortly revise the concept of range minimum
and range maximum queries. Given two index positions
i ≤ j on a sequence S (like in our context a sequence of
genes), a range minimum query returns the smallest ele-
ment found in the interval on S that is bounded by the
two positions. Likewise, a range maximum query returns
the biggest number in this interval:

• rMax[i, j] = max{S[i], S[i +1], ..., S[j]},
• rMin[i, j] = min{S[i], S[i +1], ..., S[j]}.

Both types of queries can be answered in constant
time after a preprocessing of S that takes time linear in
its length [11,12].
For our algorithm we need the answers to the following

range maximum and range minimum queries: For every
index position occ that refers to an occurrence of a gene g
and the up to k occurrences occ’ of the next bigger gene g’
occurring on the same chromosome (if such occ’ exist), we
need the range maximum and range minimum of the
intervals [occ, occ’] (or [occ’ , occ], if occ’ <occ). With k
being a constant, these values can be precomputed in lin-
ear time with respect to the size of L.
For the special case that every gene has at most one

occurrence on each chromosome these above queries
are uniquely defined for each chromosome position. In
this case we refer to the above values as “range maxi-
mum of occ“ and “range minimum of occ“.

Basic consolidation algorithm
We assume that the chromosomes of the diploid D are
ordered and that the genes in L are named based on the
order of their occurrence on D.
To simplify the initial description of the algorithm, we

assume that no two copies of a gene are located on the
same chromosome in P. The technical details that need
to be added to the algorithm when this is not the case
are discussed further below in a separate section.
The outline of the algorithm is the following: we iterate

through all genes g in the order of their occurrence in D
and add their occurrences on P one after the other to the
list of already processed gene occurrences. As soon as we
have added the last occurrence of a gene g, we test which
virtual genes (I1, ..., Ik+1) we can find that have the recently
processed gene as biggest element. To do that we start
from the occurrence most recently added to the list and
then iterate backwards through the older list elements.
The gene occurrences on P encountered in this process
are distributed to the (initially empty) I2, ... Ik+1 such that
gene occurrences located on the same chromosome are
always added to the same interval.

This process stops once all intervals I2, ... Ik+1 have at
least one element and we get to an occurrence that is
located on the (k + 1)-st different chromosome and
there is no interval left to place it. This means that the
gene occurrences accumulated in the backward search
are distributed over too many chromosomes to form a
virtual gene in a 2k-ploid genome. We also stop if we
get to an occurrence whose range maximum value is
bigger than the gene from which we started our back-
ward search. This gene occurrence and the occurrence
of the next bigger gene on the same chromosome can-
not be together in the same interval Ijunless the biggest
gene located in between is also included. But this gene
is bigger than the biggest gene in the current list, the
gene from which we started the current backward
search. The two occurrences may still be grouped
together in a virtual gene but if so, this will only be
determined in a backward search starting from a bigger
gene.
The smallest gene in a virtual gene is detected in the

backward search if the following holds: (i) We have
reached the last occurrence of a gene, as a virtual gene
needs to comprise all occurrences of any contained
gene. (ii) During the backward search we encountered
no gene occurrence with range minimum smaller than
the gene represented by our current position in the
backward search. Otherwise we need to continue the
backward search at least until the gene occurrence
representing this range minimum value is reached. If (i)
and (ii) hold, each Ij in (I2, ..., Ik+1) is either empty (at
most k − 1 of them) or the genes contained fall in the
range between the gene where the backward search was
started and the gene at the current position of the list.
Also all occurrences of genes on P in this range are part
of one of the intervals (I2, ..., Ik+1). At this point, then,
we have identified a virtual gene. Note that at least one
virtual gene can be found for every start gene of the
backward search, namely, the virtual gene that consists
only of the occurrences of the starting gene itself. We
maintain a list where we store for every backward search
only the longest virtual gene. After all genes and their
occurrences have been processed, we do a backward
search over this list, adding only those intervals to L’
that are not subintervals of the previously added inter-
val. By construction, the virtual intervals form a parti-
tion of L . The algorithm as stated avoids multiple
intervals on the same chromosome, although with little
complication this can be removed.

Backward search
The above algorithm is not yet linear in the genome
size, as each backward search may process the whole list
of already processed gene occurrences. In the following

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 4 of 11



we show how this search can be done in constant time.
Table 1 outlines the procedure.
To improve the backward search, we distinguish

between terminal and non-terminal units in the list of

processed gene occurrences. Terminal units are those
gene occurrences that have been most recently added to
a I2, ... Ik+1. Their number is obviously bounded by k. A
non-terminal unit can either be a single non-terminal

Table 1

(Consolidation algorithm)

Input: diploid genome D, ancient (2k)-ploid genome P, gene set L

Output: gene set L’, each element of L’ is a virtual gene shared between D and P, the set of the virtual genes forms a partition of D .

1: for each chromosome c in the diploid genome do

2: recentTerm ¬ undefined

3: for each gene g on chromosome c do

4: for each occurrence occ of gene g on the hexaploid genome do

5: create new terminal unit newTerm, set link to previous terminal unit

6: if newTerm is not the first terminal unit on its chromosome then

7: turn the older terminal unit into non-terminal unit newNonTerm

8: update links between terminal units

9: set startPos(newNonTerm), rMin(newNonTerm), rMax(newNonTerm)

10: end if

11: recentTerm ¬ newTerm

12: end for

13: [rMinmin, rMaxmax] ¬ [g, g]

14: currUnit ¬ newTerm

15: termCount ¬0

16: minStartPos ¬ undef

17: while currUnit exists and termCount ≤ k and rMaxmax ≤ g do

18: if currUnit is a terminal gene then

19: termCount ¬ termCount + 1

20: rMinmin ¬ min(rMinmin, gene of currUnit)

21: if rMinmin ≥ gene of currUnit then

22: minStartPos ¬ gene of currUnit

23: end if

24: end if

25: if currUnit is a non-terminal unit then

26: if rMax(currUnit) ≤ g then

27: while prevUnit(currUnit) is non-terminal and rMax(prevUnit(currUnit)) ≤ g do

28: merge prevUnit(currUnit) into currUnit

29: update link to previous unit

30: update startPos(currUnit), rMax(currUnit) and rMin(currUnit)

31: end while

32: if startPos(currUnit) exists and rMinmin ≥ startPos(currUnit) then

33: minStartPos ¬startPos(currUnit)

34: end if

35: end if

36: rMinmin ¬ min(rMinmin, currUnit.rMin)

37: rMaxmax ¬ max(rMaxmax, currUnit.rMax)

38: end if

39: currUnit ¬ prevUnit(currUnit)

40: end while

41: add [minStartPos, g] to list of virtual intervals

42: end for

43: end for

44: remove redundant intervals from list of virtual intervals to obtain a partition of D

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 5 of 11



gene occurrence or a consecutive stretch of non-term-
inal elements of the list that is represented by a single
unit. Every gene occurrence is initially a terminal unit
when added to the list and, unless it starts a new inter-
val, some other terminal gene must lose this status. To
update this element in constant time, we maintain a link
from each terminal unit to the previous one. Following
at most k − 1 links, we find the obsolete terminal unit
and do the updates necessary to convert it into a non-
terminal unit: in case the range minimum of the gene
occurrence defined by the new non-terminal unit equals
the gene represented by this occurrence, we set the
value of startPos of this gene. If the range minimum is
smaller, we keep startPos undefined for this unit.
Then during the backward search we track the num-

ber of terminal units we have seen so far in a variable
called termCount, the maximum of all range maximum
values seen so far in variable rMaxmax, and the corre-
sponding minimum of the range minimum values in
rMinmin. We also track minStartPos, i.e., the last posi-
tion in the list where a virtual gene was detected. The
value of termCount is updated whenever we reach a
new terminal unit, rMaxmaxis updated when a non-
terminal unit is processed and the maximum of the
range maxima in the unit is bigger than the current
rMaxmax. The value of rMinminis updated both at non-
terminal units and at terminal units. In the latter case,
however, the new minimum is only calculated between
the current rMinminand the gene represented by the
terminal unit. As a terminal gene, the occurrences of
the next bigger gene on the chromosome, and of the
genes located in between, are not relevant at this point.
Whenever we encounter two consecutive non-terminal

units in the backward search, we merge them into a sin-
gle unit. To do that we establish the minimum of their
range minima and the maximum of their range maxima.
We also need to update the value of startPos. If startPos
of the older unit exists, it becomes this value, unless
rMin of the newer unit is smaller than it. In that case it
becomes the value of startPos of the newer unit, or
undefined if that value does not exist.
New start positions of virtual intervals can be found at

non-terminal and terminal units. In non-terminal units
startPos needs to be defined and may not exceed the cur-
rent rMinmin to become the new minimal start position.
In terminal units the gene of the unit may not exceed the
current rMinmin. After the backward search for a gene g
is completed, the smallest start position of a virtual gene
ending at g is combined with g and added to the list of
virtual intervals. Once all g have been processed, we
retrieve L’ from this list as described earlier.
Apart from the merging of non-terminal intervals each

backward search processes only a constant number of
units. The total number of merging events between two

non-terminal units is bound by the number of genes in P.
Each processing of a unit and the merging of two units
takes constant time. Thus the total runtime of the algo-
rithm is in linear time with respect to the size of the gene
set L.

Allowing multiple gene copies on a chromosome
The challenge when allowing multiple copies of a gene
on a chromosome is the following: if we have an occur-
rence occ of a gene g on a chromosome on which the
next bigger gene g’ after g occurs more than once, the
range minimum and range maximum of occ may not be
uniquely defined. We observe that at most two occur-
rences of g’ are relevant for finding virtual intervals,
namely the closest to the left and to the right of occ. The
other occurrences could only be added to the same inter-
val as occ when one of the closer occurrences is also
added which is not possible as at most one occurrence of
a gene is allowed per interval. We change the algorithm
such that we initially keep both sets of range minimum
and range maximum for gene occurrences affected by
this effect. Once the smaller of the range maxima
becomes smaller than the current g, occ might need to be
merged with another non-terminal interval. We do this
but remember at the same time that the occurrence may
also be part of the other interval. Once we reach a g
which equals the bigger of the two range maximum
values of occ we switch it to the other interval, which
means in fact only that we now use the other set of range
minimum and range maximum for occ. If the range mini-
mum of the new set is bigger than the range minimum of
the old set, we may find a start position of a virtual inter-
val earlier.
Before we do this swapping we need to check if struc-

tural constraints became available that already define
whether occ belongs to the interval of the left or right
occurrence of g’. For example if an occurrence of another
gene to the right of occ, is the successor gene of a gene
that is in the interval left of occ, occ can only be in this
interval. Before making use of any of the range informa-
tion provided by occ we need to make sure it is up to
date with respect to the available structural constraints.
Note that such structural information may be available
already when occ is processed for the first time. Then occ
can be processed like any other occurrence with only one
set of range minimum and range maximum values.
Another novelty when allowing multiple gene copies

on one chromosome is that terminal genes need not
necessarily be transformed into non-terminal units
immediately after the next bigger gene on the chromo-
some is processed. Instead they can remain terminal
until the limited availablability of intervals I2, ... Ik+1
makes it necessary to merge intervals to continue the
backward search.

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 6 of 11



Placing additional virtual genes
The consolidation algorithm we have presented may
return virtual genes with less than k occurrences on the
polyploid genome. We can place the missing occur-
rences in P’ to transform it into a “pure” 2k-ploid and at
the same time try reduce the number of (signed) adja-
cencies that are not shared between D’ and P’ . Since
the genes within an occurrence of a virtual gene can be
rearranged, we need to go back to the fractionation
region on D’ and P’ that defines the virtual gene to
decide whether the adjacencies between two pairs of
neighboring virtual genes are the same. Assume we have
the fractionation regions (5, 6, 7, 8)(9)(10, 11, 12), (13,
14), (15, 16) on D which occur as (−5, 6, 7)(10, −12, 11)
(15, 16) on P. The adjacency between 7 and 10 can be
explained by fractionation. We can add gene 8 at the
end of the first interval as it is not yet present and then
add a virtual occurrence of (9) after this interval. In
doing so we create three adjacencies that are shared
between the polyploid and the diploid and delete one
adjacency that is not. The same is not possible between
11 and 15, as the genes in virtual gene (10, 11, 12) are
rearranged on P. We can still place (13, 14) between the
last two virtual genes, but the net reduction of gene
adjacencies is zero.
To complete P’ to a pure polyploid we first add miss-

ing genes within the fractionation regions preferring
locations where the net reduction of gene adjacencies is
one, then zero. Genes that would increase the net num-
ber of gene adjacencies are not added by default but
could be if a complete reconstruction is desired. Then
we add occurrences of virtual genes to P’ to further
reduce the number of adjacencies. For that purpose we
count at each adjacency in P’ how many virtual genes
need to be added to obtain a positive net reduction of
adjacencies. Then we start placing virtual genes at adja-
cencies with the smallest number of missing virtual
genes while keeping track of the number of yet unplaced
occurrences of each virtual gene to prevent having more
than k copies in total. Once no more placements with a
positive net reduction of adjacencies are possible, we
continue with those of net gain zero. Optionally the
remaining virtual genes that increase the number of
adjacencies can be placed. This is a greedy approach
that may not find an optimal solution in terms of redu-
cing the number of adjacencies.

Results and discussion
To study the effect of fractionation on rearrangement
distances in hexaploid genomes for different rates of
gene deletion, we conducted a series of experiments on
simulated data. Simulated genomes were generated
based on the schema shown in Figure 2. An ancestral
diploid with 9000 genes was generated and randomly

distributed over 7 chromosomes, to simulate the ances-
tor of the core eudicots. The genome was triplicated in
one lineage to generate the ancestral hexaploid, modeled
after the grapevine. Genome evolution was simulated by
random chromosomal inversions and reciprocal translo-
cation in the proportions 20:1. Double deletion and sin-
gle deletion of genes were applied in the proportion
5.5:1.
The simulations were repeated 10 times for each com-

bination of r = 200, 600, 1000, 1400 rearrangements and
d = 0, 1200, 3600, 5000, 6400, 7800 deletions, and the
average over the 10 runs was plotted.
The dashed lines in Figure 3 represent the apparent

amount of rearrangement in the simulated genomes as a
function of actual amount of rearrangement and the
number of deleted gene copies. After applying the conso-
lidation algorithm (solid lines), the apparent amount of
rearrangement drops strongly and becomes almost inde-
pendent on the number of deleted genes. These findings
suggest that fractionation has the potential to cause a
strong bias in rearrangement studies of ancient poly-
ploids and, most important, that the consolidation is able
to minimize this distortion. We have recently shown the
same effect on simulated tetraploid data using the stricter
definition of fractionation intervals where no duplicate
genes are allowed in the fractionation region [8].
In a second experiment we studied how the choice of

the definition of fractionation regions affects their aver-
age size. For this study we generated tetraploid genomes
of length 24,000 with the above method and deleted
15,000, respectively 21,000 of the gene copies in the tet-
raploid lineage and using between 600 and 4800 rear-
rangements. Results of these experiments are plotted in
Figure 4.
These results are the clearest consequences of the differ-

ences between the two definitions. In the old method,
where fractionation regions contained only single-copy
genes, these regions were short, and their length depended
on the amount of deletion, but not very much on the
amount of rearrangement. In the new definition, where
fractionation regions can span both single- and double-
copy genes, the regions are much longer, there is virtually
no effect of the amount of deletion, but a strong depen-
dence on the number of rearrangements. This reflects the
exclusive role of rearrangement breakpoints in the new
definition, whereas the old definition also depended on
adjacencies between single-copy and multiple-copy genes.
Though analyzing the simulations has been instructive,

to investigate fractionation in the grapevine, as an ancient
hexaploid, would eventually require access to a diploid
genome from an outgroup of the core eudicots.
We have, nonetheless, been able to study the effect of

the choice of the fractionation interval definition on real
genomes. The bar plot in Figure 5 shows the relative

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 7 of 11



frequency of different fractionation region sizes in the
comparison of the ancient tetraploid poplar (Populus tri-
chocarpa) to the diploid sister genome grapevine (Vitis
vinifera). Note that the polyploidy studied here is

relatively recent compared to the core eudicot hexaploidy
shared by both genomes, so that the older gene pairs and
triples are easily filtered out using gene sequence com-
parison measures.

Figure 2 Simulation Schema. Schema for simulation of divergence between an ancient polyploid and a sister diploid.

Figure 3 Change in apparent rearrangement after application of the consolidation algorithm. Change in apparent rearrangement in an
ancient hexaploid compared to a diploid sister genome, as a function of actual rearrangements and number of deleted genes before (dashed
lines) and after (solid lines) application of the consolidation algorithm.

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 8 of 11



This graph gives a more detailed picture of the conse-
quences of weakening the definition of the fractionation
interval, when compared to the previous study [8]. The
distribution of sizes with the new definition not only
has a higher average values, but is much flatter than
with the old one.

Conclusions
The main contribution of this work is the algorithm that
reduces computing time from quadratic to linear in n, the
number of genes in the genome, and that applies to poly-
ploids of any order, not just tetraploids. Thus we were
able to analyze fractionation triggered by the all-important
hexaploidization event at the base of the core eudicots.
The previous definition of a fractionation region

required it to contain only single-copy genes. We have
proposed to weaken this restriction, allowing multi-copy
genes to appear in corresponding fractionation intervals
in the ancient polyploid, as long as each undeleted copy
of a gene is contained in a different such interval. This
weakening of the condition is not a necessary aspect of

the new algorithm, and both notions of fractionation
interval have their advantages. The stronger restriction
may be of more interest to biologists interested specifi-
cally in single-copy regions of paleopolyploid genomes.
The weaker restriction is more closely tied to the analy-
sis of genome rearrangement since the boundaries of
intervals are now necessarily rearrangement breakpoints
(or chromosome ends) and not necessarily adjacencies
with multi-copy genes. Moreover, under the new defini-
tion, the sizes of fractionation intervals are insensitive to
the number of deletions, a property which may be useful
for some research goals but detrimental for others.. The
fractionation interval under both conceptions resembles
“conserved intervals” in that all rearrangements have
either operated within such an interval or have left
these intervals intact, either because the intervals are
outside the scope of the rearrangement or the interval is
affected as a whole, without any effect internally. The
difference is that in the new, weaker, definition, the
entire paleopolyploid genome is decomposed into inter-
vals, not just the single-copy regions.

Figure 4 Size of fractionation regions as a function of the number of rearrangements. Size of fractionation regions as a function of the
number of rearrangements for both definitions of fractionation regions on simulated tetraploid data

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 9 of 11



A temporary impediment to applying this work is the
current unavailability of published flowering plant gen-
omes that have escaped polyploidization since the incep-
tion of this clade, but this difficulty should be resolved
in the near future with the publication of the Amborella
trichopoda genome [13].

Endnotes
aThe terminology for polyploids (di-, tetra-, hexa-, ...)
reflects the number of chromosomes in the non-meiotic
plant cell nucleus, with two copies, maternal and paternal,
of each chromosome. Working on the evolutionary time
scale, differences between these two are negligible, so it
suffices to study the haploid (k = 1, 2, 3, …, respectively).

Acknowledgements
Research supported in part by grants from the Natural Sciences and
Engineering Research Council of Canada. KJ was a recipient of a
postdoctoral scholarship from the German Academic Exchange Service. JK’s
stay in Ottawa was supported by a National Scholarship from the Slovak
Republic. DS holds the Canada Research Chair in Mathematical Genomics.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 19, 2012: Proceedings of the Tenth Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcbioinformatics/supplements/
13/S19.

Authors’ contributions
CZ, JK and DS worked on a linear time algorithm for the original
consolidation problem. KJ generalized the problem definition and developed

the algorithm presented in this paper. KJ, CZ and DS designed and
conducted the experimental study. KJ and DS drafted the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 19 December 2012

References
1. Langham R, Walsh J, Dunn M, Ko C, Goff SA, Freeling M: Genomic

duplication, fractionation and the origin of regulatory novelty. Genetics
2004, 166:935-945.

2. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C,
Sankoff D, dePamphilis CW, Wall PK, Soltis PS: Polyploidy and
angiosperm diversification. American Journal of Botany 2009,
96:336-348.

3. Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC:
Fractionation mutagenesis and similar consequences of mechanisms
removing dispensable or less-expressed DNA in plants. Current Opinion in
Plant Biology 2012, 15:131-139.

4. Eckardt N: A sense of self: the role of DNA sequence elimination in
allopoly-ploidization. Plant Cell 2001, 13:1699-1704.

5. Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of
the entire yeast genome. Nature 1997, 387:708-713.

6. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C,
Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P:
The Ashbya gossypii genome as a tool for mapping the ancient
Saccharomyces cerevisiae genome. Science 2004, 304:304-307.

7. Kellis M, Birren BW, Lander ES: Proof and evolutionary analysis of ancient
genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004,
428:617-624.

8. Sankoff D, Zheng Z: Fractionation, rearrangement and subgenome
dominance. Bioinformatics 2012.

9. Jaillon Ot: The grapevine genome sequence suggests ancestral
hexaploidization in major angiosperm phyla. Nature 2007, 449:463-467.

Figure 5 Size distribution of Populus-Vitis fractionation regions. Size distribution of Populus-Vitis fractionation regions. Blue bars: distribution
generated with the original definition where fractionation intervals may only contain single copy genes. Red bars represent the generalized
definition that allows multiple copies of a gene if they occur in different intervals.

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S19
http://www.ncbi.nlm.nih.gov/pubmed/15020478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15020478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21628192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21628192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22341793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22341793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11487685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11487685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9192896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9192896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15004568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15004568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22962459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22962459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17721507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17721507?dopt=Abstract


10. Zheng C, Chen E, Albert VA, Lyons E, Sankoff D: Ancient eudicot
hexaploidy meets ancestral eurosid gene order. submitted .

11. Bender MA, Farach-Colton M: The LCA problem revisited. Latin American
Theoretical Informatics, Volume 1776 of LNCS Springer Verlag; 2000, 88-94.

12. Fischer J, Heun V: A new succinct representation of RMQ-information
and improvements in the enhanced suffix array. Proceedings of the 1st
International Symposium on Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies (ESCAPE’07), Volume 4614 of LNCS 2007, 459-470.

13. Leebens-Mack J, Der J, Ayyampalayam S, Burnett J, Chamala S,
Chanderbali A, Estill J, Jiao Y, Liu K, Lan T, Lyons E, Tomsho L, Tang H,
Wafula E, Walts B, Albert V, Barbazuk B, Ma H, Sankoff D, Schuster S,
Soltis D, Soltis P, Wessler S, dePamphilis C: The Amborella genome: An
evolutionary reference sequence for comparative plant genomics. Poster
at SMBE (Society for Molecular Biology & Evolution) 2012.

doi:10.1186/1471-2105-13-S19-S8
Cite this article as: Jahn et al.: A consolidation algorithm for genomes
fractionated after higher order polyploidization. BMC Bioinformatics 2012
13(Suppl 19):S8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Jahn et al. BMC Bioinformatics 2012, 13(Suppl 19):S8
http://www.biomedcentral.com/1471-2105/13/S19/S8

Page 11 of 11


	Abstract
	Background
	Results

	Background
	Methods
	Problem definition
	Preliminaries
	Basic consolidation algorithm
	Backward search
	Allowing multiple gene copies on a chromosome
	Placing additional virtual genes

	Results and discussion
	Conclusions
	Endnotes
	Acknowledgements
	Authors' contributions
	Competing interests
	References

