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Abstract

in commodity computers today.

Background: With the cost reduction of the next-generation sequencing (NGS) technologies, genomics has
provided us with an unprecedented opportunity to understand fundamental questions in biology and elucidate
human diseases. De novo genome assembly is one of the most important steps to reconstruct the sequenced
genome. However, most de novo assemblers require enormous amount of computational resource, which is not
accessible for most research groups and medical personnel.

Results: We have developed a novel de novo assembly framework, called Tiger, which adapts to available
computing resources by iteratively decomposing the assembly problem into sub-problems. Our method is also
flexible to embed different assemblers for various types of target genomes. Using the sequence data from a
human chromosome, our results show that Tiger can achieve much better NG50s, better genome coverage, and
slightly higher errors, as compared to Velvet and SOAPdenovo, using modest amount of memory that are available

Conclusions: Most state-of-the-art assemblers that can achieve relatively high assembly quality need excessive
amount of computing resource (in particular, memory) that is not available to most researchers to achieve high
quality results. Tiger provides the only known viable path to utilize NGS de novo assemblers that require more
memory than that is present in available computers. Evaluation results demonstrate the feasibility of getting better
quality results with low memory footprint and the scalability of using distributed commodity computers.

Background

Among scientific disciplines, genomics has one of the
fastest growing bodies of data today. This is largely due
to the recent advances in next-generation sequencing
(NGS) technologies, which have tremendously reduced
DNA sequencing costs. This massive amount of sequen-
cing data have provided the basis to better understand
the tree of life and to identify molecular signatures of
human variation and disease mechanisms. To make such
analyses possible, the key computational task is to de
novo assemble raw reads from NGS technologies into
complete or near-complete genomes. However, the
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enormous amount of data creates an inevitable barrier to
the assembly process in terms of memory usage. In addi-
tion, the lower quality and limited read length produced
by NGS, as compared to the traditional Sanger sequen-
cing, make it extremely difficult to assemble reads into
long scaffolds, which are essential to facilitate the ana-
lyses of large-scale genome rearrangements.

Most of the modern NGS-based de novo genome
assemblers adopt the de Bruijn Graph (DBG) data struc-
ture to handle extremely high coverage data [1-3]. Several
assemblers have specifically been developed with some
success to assemble large genomes. In SOAPdenovo [4]
and ALLPATHS-LG [5], a DBG was constructed in a
large shared memory and the assembly process was done
in parallel within multiple threads. However, all of them
required hundreds of gigabytes (GB) of memory to
assemble large genomes, such as those from human and
other mammalian species. To tackle this problem, ABySS
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[6], YAGA [7] and PASHA [8] developed distributed
DBG algorithms that split the DBG and parallelize the
assembly process on a cluster on the basis of message
passing interface (MPI). However, this imposed consider-
able communication among servers because many adja-
cent vertices in the DBG could be located on different
servers. The amount of communication among servers
increases nonlinearly when the number of servers
increases, causing scalability issues. Some assemblers
made modifications to DBG in order to reduce memory
usage. Gossamer [9,10] used a compressed bitmap repre-
sentation of the DBG, resulting in a memory usage that
could be close to the theoretical minimum value of a
DBG. Cortex [11] utilized colored DBG to detect the var-
iations among 10 human genomes with less than 256 GB
of memory. SparseAssembler2 [12] reduced memory
usage dramatically by storing only a small fraction of k-
mers. SGA [13] used a compressed index of reads and it
could assemble a human genome under 60 GB of mem-
ory. Despite these developments, the memory usage of
these tools is still too large for current commodity multi-
core systems, limiting the scope of de novo assembly for
large genomes to research groups that own large compu-
ter clusters. Therefore we urgently need new computa-
tional framework for scalable de novo genome assembly.

In this study, we made a key observation that the root of
the NGS genome assembly problem in terms of memory
usage and scalability could be solved if the large computa-
tional tasks could be decomposed into modest-sized inde-
pendent sub-problems, which could then fit into smaller
memories and be solved in parallel. This can effectively
move large-scale de novo assembly tasks into commodity
PC networks. In addition, when it is done right, this new
approach would even lead to better assembly quality com-
pared to the current state-of-the-art assemblers, as shown
in detail later in this paper. We develop a highly effective
framework for decomposing the problem of genome
assembly from NGS reads. The decomposed sub-problems
can be either solved in a sequential manner using signifi-
cantly less memory or solved simultaneously if more com-
puting nodes are available.

Besides the limitation on computing resources, several
works have compared NGS de novo assemblers [14-20]
and it is acknowledged that no assembler is the best
across all applications and datasets. To deal with this
issue effectively, our framework is designed in such a way
that it can seamlessly embed different assemblers into
the framework to take advantages of unique strengths of
each assembler. None of existing assemblers can do this.
These embedded assemblers work on decomposed sub-
problems mentioned above efficiently. Through an itera-
tive improvement approach facilitated by this framework,
we are able to achieve higher assembly quality than the
original assemblers themselves.
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Methods

Most assemblers can deal with small genomes (such as
E. coli) very well using a small amount of computation
resource and time. For very large genomes (such as mam-
malian-size genomes), most assemblers either cannot pro-
duce good results or require tremendous amount of
resources and/or time. Besides, assemblers usually have
their own design characteristics targeting at specific types
of genomes [21]. Our approach aims to substantially
reduce the computational complexity and resources
needed for large genome assembly. The key innovation is
to more effectively divide the genome assembly problem
into smaller sub-problems and assemble them individually
(without inter-node communication) with the flexibility of
using various off-the-shelf assemblers. We use an iterative
refinement approach to gradually improve the quality of
problem partitioning and the overall solution.

Key ideas

Tiled genome assembly

The rationale of our method follows our belief that the
genome assembly could be done part-by-part instead of as
a whole, namely the input reads can be divided into multi-
ple tiles (or clusters) and the assembly results of all tiles
can be merged as the final assembly. We call this approach
tiled genome assembly. We observed that if we can have all
related information (e.g., reads) for only a short fragment
of a target genome, most assemblers would get excellent
results and require much less memory. Including more
reads that correspond to larger regions increases memory
requirement and potentially makes assembly results worse.
The main reason is that de novo assemblers cannot tell
which part of the genome the reads belong to. However, if
we can partition the reads in an effective way, assemblers
can produce better results while requiring much less
memory.

Taking the DBG-based assemblers as an example, ideally
a contig (from a specific region in the target genome) is
supposed to be built using only the k-mers extracted by
the reads contributing to that region. However, most
assemblers extract the k-mers from all the input reads and
mix them together when constructing the DBG. More spe-
cifically, the k-mers whose source reads are not contribut-
ing to a specific region in the target genome may still be
used in the DBG construction process. For such k-mers,
we call them ambiguous k-mers. For genomes that are less
repetitive, the ambiguous k-mers could be few. But for
genomes that are highly repetitive, they can be significant
enough to confuse the assembly process.

Therefore, we designed a new approach to partition
the input reads into multiple tiles. Our goal is to have
each tile contain only those reads contributing to a spe-
cific region of the target genome. The reads in such
read tiles are called well-clustered reads. Thus the effect
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from ambiguous k-mers can be dramatically reduced.
Since each read tile has all the necessary information,
no communication would be needed among the assem-
blies of different read tiles. Since regions in the target
genome can be assembled independently and as a result,
each assembly will need less memory to complete.

Read clustering based on clustered contigs

A well-clustered read tile should contribute to a continu-
ous region of the target genome. The region can be com-
posed of one long contig or a set of contigs covering the
whole region without gaps in-between. A set of such con-
tigs is called well-clustered and can be obtained by sorting
or clustering closely related contigs together. Therefore, by
aligning the input reads against a well-clustered contig set,
the reads having high similarity with sub-sections in the
contigs can be collected as a well-clustered read tile. This
process is called read clustering. The collected reads can
then be assembled to produce a similar set of the contigs
but with improved contig lengths and quality.

Intermediate reference genome

A target genome can be considered as a combination of
multiple continuous regions (the minimum number is the
number of chromosomes in the target genome), where
each region can be contributed completely by one or
many contigs. Therefore, ultimately there would be multi-
ple well-clustered contig sets corresponding to multiple
regions in the target genome. In our approach, we treat
the contigs from assembly as the intermediate reference
genome and arrange the contigs in multiple clustered con-
tig sets.

For de novo assembly, we start from random partitions
of the reads in tiles, assemble the reads in each tile, and
merge all contig sets into one as the intermediate refer-
ence. In this case, the reads in an initial, randomly parti-
tioned tile will correspond to random regions in the target
genome. As a result, the initial contig sets that serve as the
intermediate reference will likely be fragmented and will
have errors. Our approach iteratively improves the cluster-
ing and thus the quality of the intermediate reference gen-
ome. In the end, the intermediate reference genome
converges to the final target genome.

Iterative assembly

The transformation from reads to contigs and from con-
tigs to reads forms a cycle. Thus the whole assembly flow
can be iterative. As more transformation iterations are
performed, contigs become longer with higher quality
since read clustering improves, and each tile contains less
irrelevant information that may confuse the assembly
process.

The Tiger algorithm

Based on aforementioned ideas, we developed “Tiled
Iterative GEnome assembleR,” or Tiger. Here “tile” is a
synonym of “set” or “cluster”, representing the tiled
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computation nature in the assembly process. The con-
ceptual flow is illustrated in Figure 1.

Step 1. Reads partitioning: We first partition the
input reads into multiple read tiles. In our current
implementation, the input reads are randomly parti-
tioned evenly into N subsets, which can be determined
by users based on the available resources and the total
size of the input reads.

Step 2. Read assembly: Read tiles are assembled indivi-
dually, using an off-the-shelf assembler, such as Velvet,
embedded into Tiger. Depending on the available system
memory, the assembly of read tiles can be done indepen-
dently in serial or in parallel on a shared or distributed
memory computer cluster. There is no communication
between the assemblies of different read tiles.

For the embedded assembler requiring specifying a k-
mer size, k-mer sizes are decided either manually by users
or automatically through the auto-k-mer scheme in Tiger.
For the manual k-mer designation, a k-mer size is used in
all read tile assemblies for all Tiger iterations. Otherwise,
the auto-k-mer scheme randomly picks k-mer sizes within
a given range and records the best k-mer size in the
assembly results. The best k-mer size and the randomly
picked ones will be considered in the subsequent assem-
blies. User-specified k-mer size can be introduced into this
k-mer history database but may not be used again if the
first attempt is not good. The number of used reads in the
assembly, the total length of the contigs, and the resultant
N50s are used to evaluate whether a k-mer size can help
produce the best result without knowing the target gen-
ome. This avoids the problem of picking a contig set with
high N50 and low coverage and enables Tiger to find a
good direction in the iterative process and to converge to
high quality results.

Since Step 2 is the first time to assemble the initial read
tiles, the contigs can be short and may cause long run-
ning time in the later iterations. We address this issue by
merging the contig sets and feed the merged contig set to
Velvet with the LONGSEQUENCE flag enabled. Velvet
may further elongate the contigs by treating the input
contigs as long reads. The new contig set is used when it
is better than the merged contig set. The output contig
set is scaffolded by SSPACE [22]. The scaffolded contig
set is the input to Step 3. The purpose of this scaffolding
process is to leverage paired-end information to bridge
contigs which may be from different assemblies. This is
beneficial for better clustered contigs at Step 3. The scaf-
folding process also helps resolve duplicated contigs from
different assemblies.

Step 3. Contig clustering: The overall contig cluster-
ing algorithm is depicted in Figure 2. A graph that mod-
els the contig connectivity intensity is built from the
merged contig set. This graph is called the contig connec-
tivity graph. Graph vertices are the contigs. Vertex
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Figure 1 Schematic view of our iterative framework for genome assembly.

weights are contig lengths. Edge weights are defined
based on the contig overlapping degree with each other.
Note that the contig connectivity graph is much smaller
than the DBG so it uses much smaller amount of mem-
ory. We then apply a graph-partitioning tool, METIS
[23], to partition the graph into contig clusters. METIS is
known to be fast and memory-efficient in processing mil-
lions of graph vertexes.

The contig lengths (vertex weights) are given less impor-
tance than the contig overlapping degrees (edge weights)
in the graph partitioning process. This is because we want
the partitioned contig connectivity sub-graphs to be more
edge-oriented instead of being vertex-oriented. But we still
need to consider the vertex weights for the situations
where there exist many short contigs with little connectiv-
ity in-between. This is very common for the assembly
results in the first few iterations on assembling randomly
partitioned read tiles. These short contigs ought to be dis-
tributed to all clusters evenly. This not only preserves
their existence in the following Tiger iterations but also
reduces their influence on the rest of the clustered contigs.

By focusing graph partitioning on edge intensity, over-
lapping contigs will be grouped together and would be
rebuilt as one long complete contig later at Step 5.
These contigs are used to produce well-clustered reads
in the read clustering process at Step 4. That is, this
contig clustering step makes crucial contribution to the
quality of results of the later steps.

Building of a contig connectivity graph can be time-con-
suming if a traditional sequence alignment method is used,
like the Smith-Waterman algorithm [24]. Since the degree
of overlap between contigs need not be determined exactly
for our purposes, we apply a heuristic algorithm based on
the image recognition algorithm using vocabulary trees in
[25], with inverse document frequency scoring dropped.
We begin by extracting consecutive sequences of equal
length (called words) from each of the contigs in the set.
The extracted words are used to build a map (or inverted
file) from the words to the contigs containing them. A con-
tig connectivity graph is then built from the map with the
edge weights being set to the number of words in common
between the vertices (contigs) connected by that edge.
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l_l—|

2 = = N N

contigs M

=

¢'—)llll N o
—)Il-llll = '1611'02 =

contigs C; and C, have
N words in common

I_) words
D)
—

Extract words Build word map Derive word overlaps Build graph

Partition graph

Figure 2 Contig clustering algorithm. Words are extracted from contigs. The number of common words between two contigs is used as the
edge weight in the graph. Contig lengths are modeled as vertex weights. The contig connectivity graph is thus built, followed by the METIS
partitioning process. The partitioned sub-graphs are clustered contig sets.
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Since the connectivity graph stores only the contig connec-
tivity information, the memory usage of this step is much
lower than that at the read assembly step. Regarding run-
time, building a connectivity graph dominates the whole
step. Building the word map can be done in parallel but we
leave it as future work. Overall the runtime is still much
shorter than Step 4 and 5.

Step 4. Read clustering: The entire input read set is
aligned to the contig sets from Step 3. The reads having
high similarity to each contig set are collected as one
read cluster. Each read is collected once for each cluster.
This means a read can appear in multiple read clusters if
similar contigs are not clustered together. This process
guarantees any read potentially contributing to a contig
set will be collected. The read-to-contig alignment is
done by Bowtie [26]. For paired-end reads, if one of a
read pair aligns to the given contig cluster, both reads are
collected. This step provides the opportunity to extend
and/or bridge the contigs. This clustering process can be
done in parallel or in serial on a shared or distributed
memory computer cluster. No communication is needed
between read tiles. The required memory is also propor-
tional to the size of a read tile.

Step 5. Read assembly: We assemble the read tiles, the
same as we do at Step 2. But the assembly of the merged
contigs from all read tile assemblies may not be per-
formed. If the assembly of the merged contigs is not
improving, it is skipped in later iterations to save time.
Based on our experience, we found it is useful to have this
additional assembly in the first few iterations.

Step 6. Post processing: If we have reached the given
number of iterations, we will just exit. Otherwise, go to
Step 3. Step 3, 4, and 5 form an iterative process.

To sum up, the rationale behind our framework is that
the improvement on contig quality of the current itera-
tion can be carried over to the next iteration through
more accurate read clustering. An optimal clustering
solution will be achieved if only reads contributing to a
contig are clustered for assembling the contig. This
approach differentiates our algorithm from the previous
work and provides our framework the capability of
improving an existing contig set further.

Results
Evaluation environment setup
Two well-known assemblers were embedded into Tiger
for this evaluation, i.e. Velvet [3] (version 1.2.03, com-
piled with max k-mer 96 and 4 categories) and SOAPde-
novo [4] (version 1.05), named as Tiger-Velvet and
Tiger-Soap, respectively.

Two types of evaluation were carried out: type R and type
I, labeled as Tiger-Velvet/Soap-R/I. Type R (Random)
started from the randomly partitioned multiple read tiles
followed by Tiger-Velvet/Soap, which demonstrated that
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Tiger can manage the randomly partitioned read tiles
and gradually improve the result to achieve better NG50
than the corresponding single-tile assembly (i.e., the solu-
tion provided by the original assembler itself). Type I
(Improved) started from the assembly result generated by
Velvet/SOAPdenovo (instead of random partitioning), fol-
lowed by Tiger-Velvet/Soap, respectively, to improve the
result. This was to demonstrate that Tiger could also
improve the single-tile assembly by its embedded assem-
bler. Both types of evaluation used 150-tile assembly with
auto-k-mers.

The machine for these evaluations is installed with
Intel Core i7 CPU 950 (4 physical cores in clock rate
3.07 GHz), 24 GB system memory, and 2 TB disk space.
Five of such machines were used.

Data used

The human chromosome 14 data set in the GAGE assem-
bly competition [20] was mainly used to assess Tiger. The
chromosome length is 88 Mbp excluding Ns. The data set
details are summarized in Table 1. Same as [20], the reads
were corrected by Quake [27] before assembly. The other
data set was the 4.6 Mbp long E. coli genome (Illumina
paired-end reads, accession no. SRR001665) with 36 bp
read length, generated from a 200 bp insert length, E. coli
K-12 M@G1655 library (accession no. NC_000913). The
assembly results were analyzed by the evaluation script
from [28], using the MUMMer package [29], with 200 bp
as the minimum contig length.

The same analysis metrics in [20] are reused in Table 2
and Table 3. The NG50 value is the smallest contig size
such that 50% of the reference genome is contained in
contigs of size NG50 or larger. The error-corrected NG50
is calculated by splitting contigs at every misjoin and at
every indel that is longer than 5 bp. SNPs mean the single
nucleotide differences. Inversions are the reversed
sequences in strands. Relocations are the sequence rear-
rangements. “Unaligned ref.” is the bases in the reference
that was not aligned to any contig. “100% - Unaligned ref.”
is the genome coverage. “Duplicated ref.” is the sequence
occurrence frequencies in contigs.

Evaluation results

Table 2 and Table 3 summarize the evaluation results.
More detailed results are listed in Appendix: Tables. For
human chr14 data, we show that Tiger results have better
NG50s and genome coverage as compared to the best
Velvet and SOAPdenovo results using k-mer sizes 61 and
55, respectively, indicating that Tiger can iteratively
improve the assembly results. To demonstrate that Tiger
can improve not only the best single-tile assembly result
but also a common one by its embedded assemblers,
Tiger-Velvet-1 used the Velvet best result as input and
Tiger-Soap-I used the SOAPdenovo result with k-mer
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Table 1 Details of the human chromosome 14 read libraries.

Genome size (bp) Read library 1

Read library 2 Read library 3

# of reads Insert length

# of reads

Insert length # of reads Insert length

88,289,540 32,621,862 155

14,054,994

2,280-2,800 2,009,674 35,000

size 61. It is noted that although Tiger applies an iterative
assembly process, with the same parameter setting and
inputs, Tiger can reproduce the same results.

The NG50s and coverages of the type R show continu-
ous improvement from iteration to iteration. The best
NG50s by Tiger-Velvet/Soap-R reach 11.6 kbp and 3.6
kbp (or 2.2x and 1.2x improvement), respectively, as com-
pared to the best Velvet/SOAPdenovo results. The type I
results also show continuous NG50 improvement. Regard-
ing the coverages, although Tiger-Velvet-I results have an
improving trend, such trend is not clear on Tiger-Soap-1I
results. The best NG50s by Tiger-Velvet/Soap-I reach 10.9
kbp and 3.8 kbp (or 2.1x and 1.3x improvement),
respectively.

As for the accuracy, the best Tiger-Velvet/Soap results
of both R and I flows had higher SNPs and indels errors.
The misjoin errors by the best Tiger-Velvet-R result were
less. But the best results of Tiger-Velvet-I and Tiger-Soap-
I/R had higher misjoin errors. We suspect this is because
the read clustering step has collected some irrelevant
reads due to unresolved duplications. Note that, in the
E. coli results, both Tiger-Velvet/Soap produced similar
misjoin errors against their counterparts. This suggests
that the higher error rate in Tiger is also related to the
reads characteristics.

Table 4 lists the runtime and memory usage results on
the read assembly to demonstrate the low memory usage
of tiled assembly using multiple auto-k-mers. Tiger-Velvet
consumes the least amount of memory as low as 0.16 GB.
On the other hand, Tiger-Soap still consumes 1.8 GB even
though the read tile file size is around 10 MB only,
whereas the 1-tile read file size is 4.7 GB. The runtime
between the evaluations by Velvet/SOAPdenovo and
Tiger-Velvet/Soap shows that Velvet and SOAPdenovo

run much faster when the read tile size is small. For
instance, the runtime for the 150-tile Tiger-Velvet-R
assembly with 8 auto-k-mers is less than twice of the 1-tile
Velvet assembly. The runtime between the Tiger-Velvet/
Soap evaluations with 3 and 8 auto-k-mers shows that
embedded Velvet and SOAPdenovo take more time and
memory for better-clustered read tiles because the contigs
in a DBG can be assembled further by the clustered reads.
However, for less-clustered read tiles, the contigs are
shorter in a DBG with smaller memory and the assembly
ends earlier.

Table 5 further lists the detailed computational resource
usage using different numbers of threads across computers
by Tiger and its counterparts. The runtime and memory
usage include the whole Tiger assembly process from Step
3 to 5. Since the resource usage of a Tiger iteration can be
very different especially for the type R tests, we used the
first iteration of the type I because it is stabilized and con-
sumes more resources than the type R iterations. The
peak memory usage by Tiger using one thread was 1.87
GB and the runtime went to 4.69 hours. The 1.87 GB
memory is from the contig clustering (Step 3) because the
current implementation targets at 4 GB memory machine.
The memory usage of 4-thread execution was 2.44 GB.
This demonstrates Tiger’s capability of running on com-
modity computers.

When more threads across computers were given, the
runtime speedup were 2.98x, 5.69x, and 7.16x, which are
not proportional to the linear speedup, 4x, 12x, and 20x,
respectively with the given thread numbers (4, 12, and 20).
Since there were unparallelized parts, we dissected Tiger
into steps with individual timing information, as shown in
Figure 3. For the 1-thread evaluation, Step 4 took up to
81.86% out of all three steps 3, 4, and 5 since our current

Table 2 The human chromosome 14 assembly results in terms of continuity, accuracy, and statistics.

Evaluations Continuity Accuracy Statistics
Contig # NG50 (kbp) NG50 corr. (kbp) SNP Indels Misjoins Asm. (%) Unaligned ref. (%) Duplicated ref. (%)

Velvet 61k 28974 52 47 82,235 17,755 601 96.69 2.09 043
Tiger-Velvet-R 125i 20,189 11.6 9.3 84,577 21,847 533 97.90 1.98 1.50
Tiger-Velvet-l 7i 21,623 109 89 84811 21,470 654 98.43 1.53 148
SOAPdenovo 55k 50,094 30 30 67956 11,866 36 95.91 3.13 0.28
Tiger-Soap-R 120i 60,134 36 34 68881 12,839 185 99.40 3.01 2.79
Tiger-Soap-l 7i 55173 38 36 69,215 13,390 205 98.68 243 1.46

The columns include the number of contigs, NG50 size and its error-corrected size, the number of single nucleotide polymorphisms (SNPs), the number of indels
and misjoins in contigs, total assembly length, genome coverage (100 - Unaligned ref.), and duplications. K-mer 61 and 55 are the best k-mer sizes for Velvet and
SOAPdenovo, respectively. “#k” stands for the applied k-mer size. “#i” stands for the iteration number.
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Table 3 E. coli (SRR001665) 24-tile assembly results in terms of contiguity, accuracy, and statistics.

Evaluations Continuity Accuracy Statistics
Contig # NG50 (kbp) NG50 corr. (kbp) SNP Indels Misjoins Asm. (%) Unaligned ref. (%) Duplicated ref. (%)

Velvet 25k 147 87.0 67.3 238 37 2 97.89 0.56 0.01
Tiger-Velvet-R 51i 281 956 87.2 190 35 3 100.92 0.14 2.30
Tiger-Velvet-l 7i 276 954 87.2 211 33 12 10040 0.12 1.68
SOAPdenovo 27k 450 179 179 12 4 1 97.56 1.31 0.00
Tiger-Soap-R 80i 524 256 256 31 1 3 98.67 1.20 0.78
Tiger-Soap-| 7i 509 258 258 23 6 2 98.78 0.80 0.64

The columns include the number of contigs, NG50 size and its error-corrected size, the number of single nucleotide polymorphisms (SNPs), the number of indels
and misjoins in contigs, total assembly length, genome coverage (100 - Unaligned ref.), and duplications. K-mer 25 and 27 are the best k-mer sizes for Velvet and
SOAPdenovo, respectively. “#k” stands for the applied k-mer size. “#i” stands for the iteration number. Both Tiger-Velvet-l and Tiger-Soap-I evaluations use the

best results from Velvet and SOAPdenovo as input, respectively.

implementation is not optimized yet. Step 5 took 15.30%.
However, Step 4 performs read-to-contig alignments,
where the runtime of alignment tasks is similar to one
another. This fits best the bulk-synchronous-parallel com-
putation model so the speedup numbers were 3.41x,
10.74x, and 15.26x, showing close to linear results of the
speedup, 4x, 12x and 20x, respectively. At Step 5, the
bulk-synchronous-parallel computation model is also
used. The last contig scaffolding task was parallelizable
within one computer so when the scaffolding task was in
progress, the other computers were idle. However,
although the rest of the tasks were mostly parallelizable,
the runtime speedup was still not linear. This is because
the assembly time of each read tile is very different from
one another such that unbalanced load takes place often,
meaning many threads were idle, waiting for the last one
to finish. This suggests the bulk-synchronous-parallel
model may not work well for Step 5 on parallel read
assemblies. Overall, there is still much room for future
work to further accelerate our framework.

For the Velvet and SOAPdenovo evaluations, the mem-
ory usage did not change much when more threads were
added. When 4 threads were used, the runtime speedup
for Velvet and SOAPdenovo were 2.02x and 1.72x,
respectively. No tests on multiple computers were carried
out since neither assemblers could execute across com-
puters with distributed memory. Although the assemblies
using the best k-mers consumed about 8.5 GB, locating

the best k-mers required enumerating all possible k-mers
which actually required more than the 24 GB memory on
the machine we did our tests, e.g. k-mer 37 for Velvet.
We used a computer cluster with 2 TB memory to over-
come the memory explosion in assemblies. On the other
hand, Tiger did not have this problem since in our eva-
luations each read tile size was about 1/150 of the input
reads. This shows the advantage of Tiger when a 2 TB
memory machine is not attainable.

Discussion

Choice and effect of the number of read tiles

The choice of the number of read tiles affects not only the
processing time for good results but also the quality of
results the assembler can reach. The more the number of
read tiles, the longer processing time it will take and the
better quality result the assembler can reach. Since in the
beginning iterations contigs are shorter and have less over-
lap with one another, the transformation between reads
and contigs needs more time to converge. When read tiles
reach a well-clustered state, the assembler can focus on a
smaller set of the read information and produce better
quality results.

Choice of k-mers for read tiles

The choice of k-mer sizes for DBG-based assemblers is
an unresolved issue. This is important because it has
noticeable impact on the assembly results. Related works

Table 4 The runtime and memory usage of the assemblies on the human chromosome 14 genome.

Evaluations Wall-clock Time (Hr.) Peak memory usage (GB) Thread # in total K-mer size # Tile #
Velvet 61k 095 8.26 1 1 1
Tiger-Velvet-R 1i 149 0.16 1 8 150
Tiger-Velvet- 1i 1.96 029 1 3 150
SOAPdenovo 55k 043 831 1 1 1
Tiger-Soap-R 1i 1.35 1.8 1 8 150
Tiger-Soap-| 1i 1.67 1.9 1 3 150

All evaluations are done using 1 thread. “#k” stands for the applied k-mer size. “#i" stands for the iteration number. Note: The runtime and memory usage for

Tiger is on the read assembly (Step 5) only.
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Table 5 Comparison of the runtime and memory usage on the human chromosome 14 assembly.
Evaluations Wall-clock time Speedup against 1 Peak memory usage Thread # in Machine  K-mer size Tile
(Hr.) thread (GB) total # # #
Velvet 61k 0.95 1x 826 1 1 1 1
Velvet 61k 047 2.02x 840 4 1 1 1
SOAPdenovo 043 X 831 1 1 1 1
55k
SOAPdenovo 0.25 1.72x 8.50 4 1 1 1
55k
Tiger-Velvet-| 1i 4.69 1x 1.87 1 1 1 150
Tiger-Velvet-| 1i 1.58 2.98x 244 4 1 1 150
Tiger-Velvet-| 1i 0.83 5.69x N/A+ 12 3 1 150
Tiger-Velvet-| 1i 0.66 7.16x N/A+ 20 5 1 150

“#k” stands for the applied k-mer size. “#i” stands for the iteration number.

+ The memory usage across machines can not be measured in our environment.

[2,30,31] either explicitly iterate all possible k-mer sizes
or implicitly find suitable ones at different levels of
assembly granularities for best results. In Tiger, the input
reads are arranged in multiple relatively small clustered
read tiles such that these k-mer size searching algorithms
can provide better results. For the assemblers that require
specifying k-mer sizes, the auto-k-mer scheme in Tiger
picks the best k-mer sizes for each read tile. Based on our
experience, the best k-mer sizes selected by the auto-k-
mer scheme for each read tile are actually not the best
ones used by the best single-tile assemblies. For example,
in the Tiger-Velvet-R, the selected top three k-mer sizes
were actually 55, 57, and 59 instead of the best k-mer size
61 by Velvet.

Novel features in Tiger

Iterative improvement of assembly results: To the
best of our knowledge, none of existing methods can
provide this functionality. The iterative transformation
between contigs and reads gradually improves the read
clustering quality and thus assemblers need to manage
only a smaller portion of the original read information.
In the iterative process, the scale and complexity of the
assembly problems are reduced.

Low memory footprint of each read tile assembly:
Our focus is on decomposing the input reads into sub-
assembly problems, instead of decomposing the de
Bruijn graph data structure. The required memory for
an assembly is inversely proportional to the number of

300
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Figure 3 Tiger-Velvet-l 1i runtime comparison using the human chromosome 14 data. Different numbers of threads across machines are
used. The speedup base line is labeled as 1x for other corresponding columns. The k-mer size 61 is used in all tests to avoid varying runtime
caused by different k-mer sizes. Step 5* does not include SSPACE result since it does not execute across computers.
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read tiles. When the read coverage exceeds the number
of read tiles, the assembly of each tile may need large
amount of memory in the beginning iterations due to
random reads partitioning. This is because each read tile
may contain considerable proportion of all k-mers for
the whole target genome assembly. We can increase the
read tile number to make the memory of each read tile
assembly acceptable.

Assembler embedding: It is known that every assem-
bler has its characteristics for specific types of genomes
[21]. The input to our framework can be an assembly
result from assembler A. Tiger can embed assembler A to
further improve it, as what is demonstrated in our evalua-
tions. In addition, Tiger can also embed another assembler
B to improve the results done by A.

Scalable parallel assembly process: In Tiger, the most
time consuming steps are read clustering and read assem-
bly. Both are highly parallel and do not need communica-
tion between threads. This makes the framework suitable
for either distributed or shared memory computer
clusters.

Drawbacks in Tiger

More duplications: In the results, we saw more duplica-
tions in Tiger assemblies. For a single-tile assembly,
assemblers usually can detect duplications and resolve
some of them. Since in Tiger, assemblies for tiles are done
independently, duplications are more likely to take place.
The is because when the duplications are in the contig
ends, scaffolding tools usually can resolve them by mer-
ging contigs together. For example, the scaffolding tool
SSPACE can help eliminate contig-end duplications.
When the duplications are in the middle of two contigs,
we believe a post-processing step can resolve them, which
will be our future work.

Shorter scaffolds: We did not show the scaffold results
because currently at the contig clustering step, contigs are
clustered only based on the degree of overlap with one
another, but the contigs that can be scaffolded are not
taken into consideration. We will add a scaffolding phase
to Tiger in our future development.

Conclusions

We developed a novel methodology for sequence assem-
bly, providing comparable or better quality results while
adapting to available memory resources. The key idea
behind our approach is partitioning and clustering reads
so that the memory usage for assembly is inversely pro-
portional to the number of partitions. This fundamentally
resolves the issue of high memory requirement in
sequence assembly and potentially accelerates the research
progress of this field. Our approach can leverage existing
well-built assemblers and iteratively improve the results.
Our approach can also start from an already assembled
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result and further improve it, using the original read set.
To the best of our knowledge, none of works so far has
this capability. In situations where traditional assemblers
require more memory than that is present in available
computers, our approach provides the only known viable
path. Evaluation results demonstrate the feasibility of get-
ting better quality results with low memory footprint and
the scalability of using distributed commodity computers.
The Tiger program can be downloaded from http://
impact.crhc.illinois.edu/.
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