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Abstract

Understanding the history of a gene family that evolves through duplication, speciation, and loss is a fundamental
problem in comparative genomics. Features such as function, position, and structural similarity between genes are
intimately connected to this history; relationships between genes such as orthology (genes related through a
speciation event) or paralogy (genes related through a duplication event) are usually correlated with these features.
For example, recent work has shown that in human and mouse there is a strong connection between function
and inparalogs, the paralogs that were created since the speciation event separating the human and mouse
lineages. Methods exist for detecting inparalogs that either use information from only two species, or consider a
set of species but rely on clustering methods. In this paper we present a graph-theoretic approach for finding
lower bounds on the number of inparalogs for a given set of species; we pose an edge covering problem on the
similarity graph and give an efficient 2/3-approximation as well as a faster heuristic. Since the physical position of
inparalogs corresponding to recent speciations is not likely to have changed since the duplication, we also use our

predictions to estimate the types of duplications that have occurred in some vertebrates and drosophila.

Introduction

Gene duplication and subsequent modification or loss is
a fundamental biological process that is well known to
create novel gene function [1]. The first step in most
multi-gene studies is to infer the historical relationship of
the genes in question; orthologous genes are related
through a speciation event in the history while paralo-
gous genes are related through duplication events. Due to
the accelerated rate of divergence of genes after duplica-
tion events [2-5], it is generally understood that a pair of
paralogous genes are likely to have diverged more than a
pair of orthologous genes. Certain recent paralogs, how-
ever, may not have had time to diverge significantly.
Therefore, paralogs can be further categorized into those
that have been created since a particular speciation
(inparalogs), and those that were created before the spe-
ciation (outparalogs) [6].
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If the speciation in question is a relatively recent specia-
tion then inparalogs represent recent duplications. Thus,
they have been used to study properties of duplications
under the assumption that the inparalogs have not had
time to significantly diverge from the state directly follow-
ing the duplication [7,8]. Another recent study has shown
that for mouse and human, sequence identity for inpara-
logs is the strongest predictor of gene function (e.g. much
stronger than orthology) [9].

This motivates the study of large-scale detection of
inparalogs. Tree-based inference such as reconciliation is
considered to be the most accurate and comprehensive
way to infer gene relationships [10-12]. However, large
scale application of such methods has historically been
limited due to the large amount of computation that must
be done to obtain an accurate gene and species tree, from
which the reconciliation can be calculated.

Thus, many studies rely on tools based on pairwise simi-
larity measures between genes. Although a daunting num-
ber of tools have been developed for orthology detection
(due to its relationship to function) [10,13], relatively few
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have been conceived with inparalog detection specifically
in mind. To our knowledge, the only methods that expli-
citly consider inparalog detection are InParanoid [14],
MultiParanoid [15], OrthoMCL [16], and Ortholnspector
[17], all of which employ the same basic methodology for
inparalog detection: the best similarity between genes in
different genomes is evidence for orthology, inparalogs are
then inferred to be all pairs of genes within one of the gen-
omes that are more similar than the putative ortholog pair.
MultiParanoid has a clustering method built on top of the
InParanoid framework to deal with multiple genomes.

In this paper we simultaneously consider the global
information given by multiple genes in multiple genomes;
this extra information affords us the power to detect less
similar pairs of inparalogs, and provides robustness
against gene loss. In particular, our approach gives a
lower bound on the number of inparalog pairs, based on
finding an “orthogonal edge cover” of the colored similar-
ity graph proposed in Zheng et al. [18]. In this graph,
each vertex represents a gene and its color represents the
genome it belongs to. The edges represent the similarity
(e.g. sequence, domain, structure, regulatory, isoform,
etc.) between the genes. The idea behind our method is
to cover the maximum number of genes by orthology
relationships. The genes that are left uncovered are con-
sidered to have arisen through duplication, and any such
gene that is similar enough to a covered gene is consid-
ered to be inparalogous to that gene.

The covering step of the method corresponds to finding
a so-called maximum orthogonal edge cover of the graph,
a problem first posed for finding functional ortholog sets
[18]. We propose two algorithms for this optimization
problem: one approximation algorithm which covers at
least 2/3rds of the number of vertices of a maximum
orthogonal edge cover, and a heuristic that is shown to be
faster and more efficient on dense graphs.

We apply our method to the genomes of human, chim-
panzee, mouse, rat, zebrafish, pufferfish, Drosophila mela-
nogaster, and Drosophila simulans. We show compelling
examples of inparalogs that would not be detected by the
other methods (e.g. InParanoid). Finally, we show that the
distribution of the physical distance between inparalog
pairs that we compute is consistent with that of Ezawa
et al. [8].

Inparalogs and multiple species

Given species A and B, inparalogs are pairs of genes
such that one was duplicated from the other since the
speciation separating A and B. The pairwise nature of
this definition has led to tools like InParanoid which
consider only two genomes at a time. We later motivate
the use of many species when inferring inparalogy rela-
tionships. In particular, we show that by considering
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more than two species at once we can 1) be robust to
gene loss, and 2) find low similarity inparalogs.

We generalize the definition of inparalogy to consider
multiple species with a known phylogeny. For a set of
species S, any duplication occurring on a branch con-
nected to a leaf gives rise to an inparalog pair for S. A
lowest speciation for S is a speciation on the species tree
of S that has no more recent speciation with regards to
the species from S.

Definition 1. An inparalog pair for a species set S is a
pair of genes (a, b), such that a was duplicated from b
after a lowest speciation for S.

In the genealogy of Figure 1(c), there are no inparalogs
since the duplication d occurred before the speciation of
mouse and rat. On the other hand, the duplication 4 in
Figure 1(d) does correspond to an inparalog pair since it
occurred after the speciation between mouse and human/
chimp. Note that Definition 1 is a generalization of the tra-
ditional definition.

Inparalogs and edge covers

InParanoid builds sets of inparalog pairs which it then
must merge based on an extensive set of rules. We forgo
this complicated merging process by considering the
pairwise similarities in a global fashion. Further, our
method is robust to gene loss due to the fact that we con-
sider the genes from multiple genomes at once. Consider
the graph G(V, E), where V has one vertex per gene and
E has an edge e = (v, u) with weight w(e) corresponding
to the similarity of gene v and u. The vertices are colored
by the genome that they come from. We refer to G as the
similarity graph. Figure 1(a) shows a component of the
similarity graph for human, chimp, mouse, and rat, along
with the simplest gene history consistent with this infor-
mation. The similarity graph holds the global information
corresponding to the history of all gene families. An
important property about the genes in the similarity
graph is the following. Call any maximal set of genes that
originated from the root or from a duplication event an
ortholog set. For example, Figure 1(c) shows two ortholog
sets: the leaves labeled 2 originate from the duplication d,
while the leaves labeled 1 originate at the root of the tree.

Property 1 (orthogonality [18]). Any ortholog set cor-
responds to a subgraph of G where there exists at most
one vertex with a given color.

An orthogonal subgraph of G is a graph G" = (V, E’)
where E’ € E and every connected component is ortho-
gonal. We can consider the edges E” to be the evidence
for orthology sets. In the similarity graphs of Figures 1
and 2, each component induced by only the black edges
is orthogonal whereas the graph with all edges is not.

Our method is based on the observation that inpara-
logs belong to orthology sets of size one, whereas in the
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Figure 1 Inparalogs and multiple species. (a) is a connected component of the similarity graph (see Section Experiments on real datasets for a
description of the data) consistent with the gene history depicted in (c). With the complete information from all four species there are no
inparalogs inferred, as the duplication d is above the speciation between mouse and rat. (b) is the subgraph of (a) with rat removed from

consideration. One inparalog is inferred in the mouse with respect to human and chimp (as depicted in (d)).

absence of losses all other paralogs will be orthologous
to at least one other gene. Figure 1(d) depicts a history
where there is only a single copy of gene 2 in the mouse
which is inparalogous to gene 1 of the mouse, whereas
Figure 1(c) has no single copy gene and no inparalogs.

Thus, for a given subgraph of G we consider genes
that have at least one edge incident to them to be cov-
ered, since covered vertices represent those genes that
are orthologous to at least one other gene. This moti-
vates the following approach:

1. find an orthogonal subgraph of G such that the
maximum number of vertices are covered, and then
2. mark as inparalogs all uncovered vertices with high
similarity to some other gene in the same genome.

Step 1 corresponds to solving the maximum orthogonal
edge cover problem. In Section Maximum orthogonal edge
cover we present an O(|V|(1-9)|E|) 2/3-approximation algo-
rithm for this problem, along with a faster and simpler
heuristic. Step 2 is implemented in two different ways.
The first way calls an uncovered gene inparalogous to the
highest weight neighbor that is covered, provided that
weight is above some threshold. The second considers the
possibility that a chain of duplications originated from a
single gene, and is described in the next section.

Chains of duplications
A chain of multiple duplications, each originating from the
previous duplicate copy, will result in multiple uncovered

vertices of a single color, as depicted for zebrafish in Fig-
ure 2. For this reason, we have an indirect version of
step 2 that builds a maximum spanning tree of uncovered
vertices under the premise that they are all inparalogs. In
the example of Figure 2 the maximum spanning tree hap-
pens to be a path of orange vertices.

Further motivation

The simplest notion of inparalogy requires only a single
genome and a measure of similarity between genes: the
most closely related genes would then just be the pro-
posed inparalogs. For example, Ezawa et al. [8] used the
synonymous distance and a threshold to identify recently
created paralogs. InParanoid uses a little more information
by including two genomes and taking genes as inparalogs
if their similarity is greater than the best orthology assign-
ment for either one. We motivate the need for a global
approach with two examples from the data in Section
Experiments on real datasets, where we applied our algo-
rithm to the whole genomes of two great hominoids, two
rodents, two fish, and two flies.

Figure 2 shows an example where a pair of inparalogs
for a low scoring pair is detected by our algorithm. In
particular, genes NP_956275.1, NP_001037819.2, and
NP_997852.1 are marked as inparalogous with respect
to the speciation between zebrafish and pufferfish. The
genes from human, chimp, mouse, rat, along with
NP_001037819.2 from zebrafish, are all annotated as
“interferon regulatory factor 2-binding protein 1”.
Remarkably, NP_956275.1 is annotated as “interferon
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such inparalogy for the speciation between zebrafish and pufferfish.

Figure 2 A connected component of the similarity graph. See Section Experiments on real datasets for a description of the data. Black edges
are part of our cover while red edges highlight inferred inparalog relationships. Despite the low similarity between genes NP_956275.1 and
NP_001037819.2, a clear signal for their inparalogy is present. The relationship is confirmed by gene annotations. InParanoid does not detect

87.4

regulatory factor 2-binding protein 2-A”, and the begin-
ning of the gene NP_997852.1 is annotated as “Inter-
feron regulatory factor 2-binding protein zinc finger”.
The genes for the inparalogy marked in pufferfish have
yet to be annotated in the NCBI database. Note that, at
77.0, the similarity between NP_001037819.2 from zeb-
rafish and GSTENG10028666001 from pufferfish is
below our threshold of 80 and is not depicted. Since the
similarity between NP_001037819.2 and NP_956275.1 is
less than this, InParanoid does not mark the two as
inparalogs with respect to the zebrafish/pufferfish

speciation; the InParanoid7 database labels the two as
inparalogs with respect to Drosophila melanogaster.

A slightly more general, but simpler, approach than that
of InParanoid would consider the similarity graph for two
genomes; in this case the graph is bipartite. Thus, a maxi-
mum matching on the weighted graph covers the maxi-
mum number of genes with the maximum amount of
global similarity. The uncovered vertices are then candi-
dates to be inparalogs; those that are similar enough to
other genes are considered to be inparalogous to those
genes. While this method may not suffer from the
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problem of lower similarity between inparalogs (illustrated
in Figure 2), it may suffer from that of Figure 3. In this
case we see a simple example where consideration of only
two genomes (mouse and rat) will hide the fact that there
was a loss of gene 1 in rat, resulting in a false inparalog
assignment of genes 1 and 2 in mouse.

Thresholds

Step 1 of our algorithm calls for a subset of the edges that
results in a minimum number of uncovered vertices.
Note that this measure does not have anything to do
with the number of edges or the weight of the edges that
are chosen; the maximum orthogonal partition problem
is inherently unweighted. For this reason, our method
requires a threshold for interspecies similarity scores; all
edges labeled above the threshold will be considered sig-
nificant. Similarly, to reduce false positives, the intraspe-
cies similarity scores may have a different threshold.

An interspecies threshold that is too high will yield an
unweighted graph with components that are very small,
and we will lose the power of the multiple genome
inference. An interspecies threshold that is too low may
yield large components that have too many optimal
solutions. While there may be some question as to what
threshold is the best, we have yet to do a detailed study
on this. Instead, we have chosen conservative thresholds
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for both measures; all the results reported in this paper
have interspecies threshold of 80 and intraspecies
threshold of 70.

Maximum orthogonal edge cover
In this section we describe the algorithms for maximum
orthogonal edge cover. Our 2/3-approximation algo-
rithm runs in O(|V|(1:9)|E|) time. While the heuristic
has the same worst-case complexity, we show in Section
Experiments on simulated datasets that the running
times are faster in practice.

Take a set S with a color function ¢: S+ N

Definition 2. An orthogonal partition of set S is a parti-
tion US; = S such that for any distinct s, r € S;, ¢(s) = (7).

Take a graph G = (V, E) with a color function
¢:V — N. Traditionally, an edge cover is a subset E’ S
E such that all vertices are present in at least one edge
of E’; for this we reserve the term perfect edge cover. For
our purposes, we relax the definition of “edge cover” to
be any subset of E.

Definition 3. An edge cover of G is a subset of E.

Consider the partition of V induced by the connected
components of an edge cover.

Definition 4. An orthogonal edge cover of a graph G
is an edge cover where the induced partition on V (by
the “is connected to” relation) is orthogonal.

a)

75.8 99.1

B Human

B chimp

[ Mouse

[ Rat 12
[ Human

Figure 3 Losses in the context of multiple genomes. (a) is a connected component of the similarity graph (see Section Experiments on real
datasets for a description of the data) consistent with the gene history depicted in (b) representing protocadherin gamma b1 (1) and b2 (2)
genes. The protocadherin gamma b1 gene is known to have been lost in rat [34]. It is essential that human or chimp be considered in the
analysis with mouse and rat, otherwise a false inparalog relationship would be inferred between the two mouse genes.

1 2 2
[ rat

1 2
[chimp [B Mouse
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A maximum orthogonal edge cover of G is an ortho-
gonal edge cover which covers the maximum number of
vertices, over all possible orthogonal edge covers.

Let v(E) denote the vertex set for some edge set E.
The maximum orthogonal edge cover (MAX-OREC)
problem can be stated as follows:

Input: Undirected graph G = (V, E) and color function
c:V— N.

Solution: An orthogonal edge cover E’ € E (i.e. for
each connected component C of G’ = (V, E’) we have ¢
(s) # c(r) for all distinct s, r € C).

Measure: The number of vertices covered (i.e. |[V(E’)]|)

We present a 2/3-approximation algorithm for MAX-
OREC. Our approach is to first compute edges that
cover the maximum number of vertices for each color,
while ignoring the orthogonality constraint. We then
show that the connected components of this edge cover
have a particular structure, allowing us to ensure ortho-
gonality without removing too many edges.

Bipartite matchings

Consider the bipartite graph B(x) = (U, W, F) where U
is the subset of V with color x, W = V \U, and F con-
sists of the edges that span U and W (i.e. U = {v : vlv,
cv)=«}and F = {(u, w) : (u, w) € E,uec U, we W}).
The following property on orthogonal edge covers holds.

Property 2. A maximum matching M(x) on B(x) cov-
ers the maximum (over any edge cover) number of ver-
tices of color x, without breaking the orthogonality
constraint.

Now take a maximum orthogonal edge cover Q*, and
an edge cover consisting of all the edges from all the
bipartite matchings R = U; M(i). The following is a
direct consequence of Property 2.

Lemma 1. |[v(Q%)| < |v(R)|.

If every connected component of H = (V, R) has an
orthogonal edge cover, then |[v(R)| = |v(Q*)|. We show
in the next section that, while we can not always find an
orthogonal edge cover for every component, we can
always find an edge cover that includes at least 2/3rds
of the vertices in the component.

Covering bounded degree graphs
Consider the neighborhood of a particular vertex v from
H = (V, R) with color x. Any vertex in the neighborhood
of v with color y is a result of the matching M(x) or M
(y). Thus, there are at most two vertices of color y con-
nected to v. We call a graph with this property 2-neigh-
borhood-limited (2NL). We use the fact that H is 2NL
to show that we can find an orthogonal edge cover that
includes at least 2/3rds of the maximum number of pos-
sible vertices.

Call a path in a component alternating if vertices in
the path alternate between two colors. The length of a
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path is the number of vertices in the path. Then we
have the following two lemmas.

Lemma 2. A connected 2NL graph G that contains no
odd-length alternating path has a perfect orthogonal
edge cover.

Proof. Any even-length alternating path can be cov-
ered by taking every other edge on the path (a perfect
matching). Consider the graph G’ = (V, E’) where E’is E
without the edges that are removed from perfect match-
ings on even-length alternating paths. Note that this
graph has no alternating paths and that the degree of all
vertices is at least one.

Take a minimal edge cover C’ € E’ that covers all the
vertices of V. C" is composed only of stars (every com-
ponent has no simple path of length greater than two),
otherwise it would not be minimal. Since no edge of C’
links two vertices corresponding to the same color and
there exists no alternating paths in G’, the edge cover C’
must be orthogonal. D

Lemma 3. Each odd-length alternating path can con-
tribute to at most one uncovered vertex in a maximum
orthogonal edge cover.

Proof. Every other edge on an odd-length alternating
path can be matched, leaving a single vertex uncovered. O

Lemmata 2 and 3 imply the following algorithm for
finding an approximate orthogonal edge cover on a 2NL
graph where maximumMatching(H’) returns a maxi-
mum matching on H’ and minPerfectEdgeCover(H”)
returns a minimal perfect edge cover for each compo-
nent of H” that has more than one vertex (i.e. a perfect
edge cover where removing any edge will result in an
uncovered vertex). The correctness of the algorithm fol-
lows the same reasoning as the proof of Lemma 2.

Algorithm 1 getMAX-2NL-OREC(H = (V, R))

P = {the set of edges in alternating paths of H}

H’ = (v(P), P)

E” = maximumMatching(H’) U (R\P)

H”=(V, E’)

return minPerfectEdgeCover(H”)

Bringing things together

Say Algorithm 1 returns an edge cover Q for a 2NL
graph while an optimal edge cover is Q*. Then the fol-
lowing is a direct consequence of Lemmata 2 and 3.

Lemma 4. [v(Q)| > |v(Q*)| - p where p is the number
of odd-length paths in a 2NL graph.

So counting the number of odd-length paths gives us
an idea of how far we could be from the optimal. Since
the shortest possible odd-length path has three vertices,
and two of them can be covered, we get the desired
approximation guarantee.

Lemma 5. [1(Q)| > 2[v(Q")]

Now, using Section Bipartite matchings along with
Algorithm 1, we can use Algorithm 2 to approximate
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the MAX-OREC problem where M(x) is the maximum
bipartite matching between the vertices with color x and
all the other vertices. Say Algorithm 2 returns an edge
cover O while an optimal edge cover is O* Then the
following are a direct consequence of Lemmata 1, 4 and
5.

Theorem 1. |v(O)| > |v(O*)| - p where p is the num-
ber of odd-length paths in a graph.

Theorem 2. [v(O)| > ;[v(O*)]

Algorithm 2 getMAX-OREC(G)

R« 0

for each color x in G do

R < R U M(x)

end for

0« 0O

for each component C of H = (V, R) do

O « O U getMAX-2NL-OREC(C)

end for

return O

Running time

The running time of Algorithm 1 is O(,/|V||E|) since a
minimal perfect edge cover and a maximum matching
can be computed in O(,/|V||E|) time, while listing
alternating paths takes linear time. The running time of
Algorithm 2 is therefore O(|C|y/|V||E|), where C is the
number of colors. In the worst case this bound is
O(|V|9)|E]) since there are at most O(|V]) colors.

A fast heuristic

We also developed a practical algorithm for MAX-
OREC. It is simpler to implement and runs faster in
practice and performs better on dense graphs (see Sec-
tion Experiments on simulated datasets). The algorithm
does the following:

1. compute H, the union over all maximum bipartite
matchings for every pair of colors, and then
2. compute minPerfectEdgeCover(H).

Note that the main difference with the approximation
algorithm is that we do not compute the same maxi-
mum bipartite matchings.

Results and discussion

Experiments on simulated datasets

We implemented the 2/3-approximation algorithm and
the heuristic in C++ and we applied them to simulated
datasets in order to compare their performance. We
generated random graphs using the G(#n, p) model intro-
duced by Gilbert [19]. A random graph G(n, p) has n
nodes and for each n(n - 1)/2 possible pairs of nodes, an
edge is created with probability p. The expected number
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of edges in a G(n, p) graph is <;) p. The probability p

corresponds to the expected percentage of completeness
of the random graph.

Figure 4-left shows the number of uncovered vertices
(averaged over 100 replicates) given by both algorithms
for random graphs of 2500 nodes and a varying
expected percentage of completeness. Clearly, the heur-
istic performs a lot better than the approximation algo-
rithm on dense graphs. It is also faster than the
approximation algorithm (Figure 4-right). However, the
approximation algorithm covers more vertices than the
heuristic on really sparse graphs (under 0.1% of comple-
teness). We also show the average number of odd-length
alternating paths that is found by the approximation
algorithm. Since the number of uncovered vertices given
by the approximation algorithm is always significantly
lower than the number of odd-length alternating paths
(except for very sparse graphs), it is clear that the
approximation algorithm covers more vertices than the
worst expected case (i.e. 2/3 of the optimal maximum
number of covered vertices).

Experiments on real datasets

In this section, we present an analysis of the inparalog
pairs inferred by our approach on the genomes of
human, chimpanzee, mouse, rat, zebrafish, pufferfish,
Drosophila melanogaster, and Drosophila simulans. We
first describe how we obtained the data and then we
show an example of how we can use recent inparalogs
to study modes of duplication.

Creating the input graph

We used CoGe:SynMap [20] interface to Last (Blast var-
iant) to make all-versus-all pairwise comparisons
between the studied species and the self comparisons.
SynMap is usually used to find syntenic regions contain-
ing a minimum number of genes (block size), but in the
context of this experiment, we simply used it with a
block size of one to identify all the homologous genes.
We discarded similarity edges when one gene in the
pair was more than 1.25 times longer than the other.
Modes of duplication and recent inparalogs

The most studied duplication mechanisms are whole
genome duplication, tandem duplication and retrotran-
sposition. Whole genome duplication has the effect of
simultaneously doubling all the chromosomes of a gen-
ome. It has been shown that whole genome duplication
has occurred at least once [21,22] and maybe twice
[23-25] in the vertebrate ancestor. Then, a fish-specific
round of genome duplication was reported by studies
conducted on teleost fish [26-28] and an additional
round was shown to have occurred in the salmonid fish
lineage [29]. As the name implies, tandem duplication
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creates adjacent duplicate gene copies. It is believed that
unequal crossing-over during meiosis is the principal
mechanism responsible for the creation of tandem
duplicates [30]. The third well-studied duplication
mechanisms is retrotransposition, which usually pro-
duces intronless gene copies that can end up anywhere
in the genome. In mammals, LINE-1 retrotranposons
are mainly responsible for creating those duplicates [31].

Another mode of duplication that has been receiving
more attention in the recent years is the one responsible
for the creation of segmental duplications. It has been
named duplicative transposition in [32] and drift dupli-
cation in [8]. This kind of duplication can create in one
step duplicate gene copies (with introns, as opposed to
retrotransposition) that are transposed anywhere in the
genome, even on different chromosomes. The biological
mechanisms behind duplicative transposition are not yet
fully understood, but it is believed that Alu repeats
could be involved in primates [33].

In order to better understand duplication mechanisms
and study the relative rates of the different types of dupli-
cations, it is interesting to study recently created gene
duplicates. For example, a study on recently emerged para-
logs in human, mouse, zebrafish, Drosophila melanogaster,
Drosophila pseudoobscura and Caenorhabditis elegans
suggested that drift duplication occurs nearly as often as
tandem duplication in vertebrates [8].

Analysis of the inparalog pairs

We identified inparalog pairs in the studied genomes and
retrieved information on their physical distance and per-
cent similarity. Figure 5 presents, for each species, the
distribution of the inparalog pairs for three classes of
physical distance and four classes of percent similarity.
The three classes of physical distance represent inparalog
pairs separated by less than 50 kbp, inparalog pairs

separated by more than 50 kbp and unlinked inparalog
pairs, i.e. inparalog pairs that are located on different
chromosomes. The 50 kbp boundary was chosen as an
attempt to separate possible tandem duplication events
(physical distance of less than 50 kbp) from the other
more far-reaching duplication mechanisms (like retro-
transposition and duplicative transposition). We used
three boundaries to divide the inparalog pairs into four
percent similarity classes, in order to verify if there is a
correlation between the age of the duplication events and
the physical distance.

Only mouse and D. melanogaster have inparalog pairs
with a physical distance of less than 50 kbp, which sug-
gests that tandem duplication could occur more frequently
in those species. Inparalog pairs having a physical distance
of more than 50 kbp are rare in chimpanzee, rat, zebrafish
and pufferfish, but make for an important fraction of the
inparalog pairs of human, mouse and the two drosophilas.
The most interesting case is in human, where more than
20% of the >50 kbp inparalog pairs are recent (>95% simi-
larity). This could suggest that a significant number of
linked duplicative transpositions or retrotranspositions
occurred relatively recently in human, which is consistent
with the findings of Ezawa et al. [8].

For all the species, a large fraction of the inparalog
pairs are unlinked. This is especially true for zebrafish
and pufferfish, where more than 80% of the inparalog
pairs are located on different chromosomes. Interestingly,
the majority of the unlinked pairs in the fish species have
a low percent similarity. We hypothesize that this could
be the result of ongoing fractionation after the fish-speci-
fic whole genome duplication. Human, chimpanzee and
rat all have at least 10% of recent unlinked inparalog
pairs (>95% similarity). This could be evidence of recent
duplicative transpositions or retrotransposition. Older
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Figure 5 Proportions of inparalog pairs inferred in the 8 species studied.

unlinked inparalog pairs (<95% similarity) do not neces-
sarily correspond to older duplicative transposition
events. For example, a scenario involving tandem dupli-
cation followed by genomic rearrangement events could
have produced the same results.

Conclusion

We presented a new graph-theoretic approach for the
detection of inparalogs. Our method uses a maximum
orthogonal edge cover on the similarity graph and then
identifies inparalogs in the set of uncovered vertices. We
developed a 2/3-approximation algorithm for this problem

and a heuristic that was shown to be faster and more effi-
cient on dense graphs. Note that our method is not suita-
ble for finding orthologous gene relationships since our
edge covers aggressively leave the minimum number of
genes unmatched. Zheng et al. [18] discuss other objective
functions on the similarity graph that are more suitable
for orthology detection.

We have shown compelling examples of why using the
information for multiple species gives more accurate
inparalog predictions and how our method allows us to
infer inparalogs that would not have been found by other
methods like InParanoid. We then presented an example
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of how we can use recent inparalogs to study modes of
duplication. Our analysis of the genomes of human, chim-
panzee, mouse, rat, zebrafish, pufferfish, D. melanogaster
and D. simulans suggested that many recent tandem
duplications occurred in mouse and that a significant
number of linked duplicative transpositions or retrotran-
spositions occurred relatively recently in human.

We did not show speed comparisons with other existing
methods like InParanoid because our method was very
fast on real data. The results on the real datasets were
obtained in 10 seconds on a typical Linux workstation.

On the methodological side, algorithmic improve-
ments that consider edge weights while finding an edge
cover are possible, as well as improved preprocessing of
the data. The question remains as to which other mea-
sures of similarity our method is most powerful with.

On the evaluation side, we attempted to make large-
scale comparisons against inparalogy given by reconcilia-
tion (Ensembl gene trees), but we were not able to convert
in an automated manner a statistically significant number
of gene names from SynMap to Ensembl IDs in order to
do so. While computing statistics — like the number of
inparalog pairs shared with a method like InParanoid —
are possible, direct comparison as to which method finds
the correct inparalog relationships remains difficult since
few independent methods or bench experiments exist for
finding such relationships.
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