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Abstract

Background: Prediction of B-cell epitopes from antigens is useful to understand the immune basis of antibody-
antigen recognition, and is helpful in vaccine design and drug development. Tremendous efforts have been
devoted to this long-studied problem, however, existing methods have at least two common limitations. One is
that they only favor prediction of those epitopes with protrusive conformations, but show poor performance in
dealing with planar epitopes. The other limit is that they predict all of the antigenic residues of an antigen as
belonging to one single epitope even when multiple non-overlapping epitopes of an antigen exist.

Results: In this paper, we propose to divide an antigen surface graph into subgraphs by using a Markov Clustering
algorithm, and then we construct a classifier to distinguish these subgraphs as epitope or non-epitope subgraphs.
This classifier is then taken to predict epitopes for a test antigen. On a big data set comprising 92 antigen-antibody
PDB complexes, our method significantly outperforms the state-of-the-art epitope prediction methods, achieving
24.7% higher averaged f-score than the best existing models. In particular, our method can successfully identify
those epitopes with a non-planarity which is too small to be addressed by the other models. Our method can also
detect multiple epitopes whenever they exist.

Conclusions: Various protrusive and planar patches at the surface of antigens can be distinguishable by using
graphical models combined with unsupervised clustering and supervised learning ideas. The difficult problem of
identifying multiple epitopes from an antigen can be made easied by using our subgraph approach. The
outstanding residue combinations found in the supervised learning will be useful for us to form new hypothesis in
future studies.

Background
A B-cell epitope is a set of spatially proximate residues in
an antigen that can be recognized by antibodies to activate
immune response [1]. B-cell epitopes are of two types:
about 10% of them are linear B-cell epitopes and about
90% are conformational B-cell epitopes [2-4]. Linear
epitopes differ from conformational epitopes in the conti-
nuity of their residues in primary sequence–residues of a
linear-epitope are contiguous in primary sequence while
the residues in a conformational-epitope are not. B-cell
epitope prediction is a long-studied problem of high

complexity which aims to identify those residues in an
antigen forming one or multiple epitopes.
This problem has attracted tremendous efforts over the

last two decades because of its significance in prophylactic
and therapeutic biomedical applications [5]. Various
approaches have been proposed to identify conformational
epitopes, for example, by clustering accessible surface area
(ASA) [6], by combining residues’ ASA and their spatial
contact [7], by grouping surface residues under their pro-
trusion index [8], by aggregating epitope-favorable trian-
gular patches [9], or by using naïve Bayesian classifier on
residues’ physicochemical and geometrical properties [10].
Far more approaches have been developed for predicting
linear epitopes. Some of these methods use just a single
feature of residues–such as hydrophobicity, polarity,
or flexibility only–to detect the crests or troughs of
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propensity values as epitopes [11,12]. The other methods
take complicated machine learning approaches, including
artificial neural network, Bayesian network, and kernel
methods, to tackle this problem [13-19]. With these tre-
mendous efforts, this field of research has been advanced
significantly and the best AUC performance has reached
to 0.644 [9]. However, there are still many limitations in
existing methods, and huge room for performance
improvement exists.
A limitation of those methods using geometrical proper-

ties [7,8,10] is that they only favor epitopes with protrusive
shapes, not identifying epitopes in other formations such
as planar shapes. In fact, many epitopes are shaped at
plain areas of antigens. For example, the surface atoms of
the epitope of paracoccus denitrificans cytochrome C oxi-
dase is very at in 3-dimensional space with a root mean
square deviation (rmsd, an index of non-planarity) of only
1.08Å (Figure 1). The second limitation of the conven-
tional methods is that they do not separate or distinguish
between any two epitopes in an antigen when multiple
epitopes exist. They only tell which residue of the antigen
is antigenic, but not tell to which epitope it belongs to.
That is, only a union of all antigenic residues, irrespective
to specific epitopes, are just predicted. This is a limitation
because multiple epitopes are possible at the same antigen
[20]. For instance, there exist two non-overlapping epi-
topes on the ubiquitin antigen: one of them has a very

smooth surface with a non-planarity of 1.04Å, while the
other stretches out remarkably with a non-planarity of
3.14Å. See Figure 2 for more details of their constituent
resides. In this work, we propose a graph-based model to
improve the prediction performance by identifying both
protrusive and planar epitopes and by detecting multiple
epitopes in an antigen if applicable (i.e., identifying all of
the epitopes instead of the union of all epitope residues).
The use of graph model is motivated by the following

biological observations. First, the tight packing of resi-
dues at each protein surface can be effectively repre-
sented by a graph. Second, epitope/non-epitope residues
form particular patches separately on antigen surfaces,
displaying distinct subgraphs of their own characteristics.
As shown in Figure 1, the binding site shapes like a
hydrophilic island (a hydrophilic subgraph) containing a
hydrophobic core (a hydrophobic subgraph). It can be
also seen that this island subgraph is surrounded by
hydrophobic non-epitope residues which form a non-epi-
tope subgraph. Third, the distinction between protrusive
and planar eptiopes can be manifested by the change of
weights in the connections between residues.
Our graph-based prediction method consists of three

main steps: construct a weighted graph to represent an
antigen surface, cluster the nodes of this weighted graph,
and learn a label (epitope or non-epitope) for each cluster.
Specifically, we take the idea of Delaunay tessellation and

Figure 1 A hydrophilic island with a hydrophobic core in the binding site of paracoccus denitrificans cytochrome C oxidase. Interacting
with an antibody (PDB complex 1AR1). The hydrophilic residues are rendered by blue and the hydrophobic residues are colored by orange. The
shade of colors represents hydrophobic intensity. This figure is produced by using Chimera [33].
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use Qhull [21] in the implementation of Delaunay tessella-
tion to construct a protein surface graph. The weights of
the edges in this graph are determined by X 2 test statis-
tics combined with a log odds ratio of each edge type. An
edge type is determined by the amino acid types of the
interacting residue pair. Then, a Markov CLustering algo-
rithm (MCL) [22] is used to partition the entire graph into
subgraphs based on the weights of the edges and the
graph topology. MCL simulates flows in a network with
two operations: expansion and inflation. Expansion
increases homogeneity of nodes within one subgraph,
while inflation evaporates inter-flow between different
subgraphs and amplifies flow within subgraphs. These
ideas mimic properties of residues connecting within an
epitope, within a non-epitope, or between an epitope and
a non-epitope. Thus, we can divide the weighted antigen
surface graph into a good set of subgraphs for the subse-
quent learning algorithms to predict these subgraphs as
epitopes or non-epitopes accurately.
Experimental results on a set of 92 non-redundant

antibody-antigen complexes compiled from the Protein
Data Bank (PDB) [23] show that our proposed graph
model improves the performance of B-cell epitope pre-
diction significantly and, it is also able to identify multi-
ple epitopes as well as predict epitopes with various
geometrical formations. For ease of reference, we refer
to the proposed B-Cell epiTope prediction model as
BeTop. Our data and web server for B-cell epitope pre-
diction are available at http://sunim1.sce.ntu.edu.sg/
~s080011/betop/index.php.

Materials and methods
Collection of antigen protein data
Protein complexes satisfying the following criteria were
retrieved from the PDB on May 14th, 2011: (i) the
macromolecular type is protein only, no DNA, RNA, or
their hybrid complexes; (ii) the number of protein chains
in an asymmetric unit of one complex is larger than two;
(iii) the length of every chain is larger than or equal to
30; (iv) the X-ray resolution of one complex is less than
3Å; and (v) the structure title contains at least one of the
following terms: antibody, Fab, Fv, or VHH. We obtained
622 antibody-antigen complexes. As transformed and
redundant chains in the raw PDB complexes may cause
noise effect on the results, we removed all of the trans-
formed chains and duplicate chains. One antigen chain is
considered as a duplicate if there exists one pair-wise
chain similarity between this chain and one of the other
in the data set larger than 80%, a threshold widely used
to remove redundant antigens [24]. Removal of duplicate
chains by pair-wise chain similarity may filter out multi-
epitope antigens, but it can significantly reduce more
noise data because the number of non-epitope residues is
extremely larger than the number of epitope residue for
an antigen. Asymmetric units in each complex that do
not have structural difference were also excluded from
our consideration. Finally, a non-redundant data set con-
taining 92 antibody-antigen complexes were collected for
our model training and testing. Epitope residues on anti-
gen surfaces were determined by using the Euclidian dis-
tance of 4Å for every antigen-antibody PDB complex,

Figure 2 An example of a multiple-epitope antigen. The ten residues with color orange are the residues of the epitope on the ubiquitin
antigen (chain X) in PDB complex 3DVG, while the fourteen residues colored in forest green are the residues of the epitope on the ubiquitin
antigen (chain Y) in PDB complex 3DVG.
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following the traditional method for determining epitope
residues [7].

Construction of epitope prediction model
The training phase of our prediction method has the fol-
lowing steps: (i) antigen surface triangulation, (ii) weight
calculation for edges, (iii) clustering on the nodes of the
graphs, and (iv) supervised learning for distinguishing
between epitope subgraphs and non-epitope subgraphs.
The details of each step are presented below.
Triangulation of an antigen surface
A surface graph of an antigen structure is built in two
steps: determine the surface atoms of the antigen, and
then build an atom-level graph for these surface atoms
and upgrade into a residue-level graph. To obtain surface
atoms of an antigen with 3D coordinates, we compute
each atom’s ASA by using NACCESS [25] with the
default probe size. Those atoms with ASA ≥ 10Å2 are
defined as surface atoms. A graph of these surface atoms
is constructed as per Delaunay triangulation rule which
has been commonly used to construct protein surface
graph [26]. To upgrade an atom-level graph into a resi-
due-level graph, we ignore connections of the atoms
within the same residue, e.g., ignore connection between
Ca and Cb of Alanine; and then merge multiple atom
connections between two different residues into one
edge, e.g. merge the connection between OD1 of Aspar-
tate and CG1 of Isoleucine and the connection between
OD2 of Aspartate and CG2 of Isoleucine into one edge.
Atom connections that have Euclidian distances larger
than 6Å are also removed. Then, residues are distin-
guished by their positions–i.e., two residues are consid-
ered different if they have different positions even when
they are of the same amino acid type. Figure 3 shows a
graph of an antigen after triangulation, in which nodes
are surface residues and edges represent residues’ spatial
relations.
Weight calculation for edges
The weight between two residue types x and y within an
epitope subgraph or within a non-epitope subgraph in
our graph database is given by

Wxy = α · Wχ2

xy + (1 − α) · WL
xy, (1)

where W is the normalized value of W, and WX 2

xy and
WL

xy are the X 2 test and the log odds ratio of the fre-

quencies of xy (edge between x and y) between epitope

clusters and non-epitope clusters, respectively. WX 2

xy and

WL
xy are calculated by using

Wχ2

xy =
∑
c

(Nc
xy − Ecxy)

2/Ecxy (1a)

WL
xy = log (Pxy/Qxy) (1b)

where c Î {epitope, non-epitope}, Nc
xy is the number of

edges with type xy and label c in our training data, Ecxy
is the number of expected edges with type xy and label
c, Pxy is the probability that a pair of residues xy in epi-
topes, and Qxy is the probability that a pair of residues
xy in non-epitopes. Pxy is given by

Pxy = Nxy/
∑
x′

∑
y′

Nx′ y′ ,

where, Nxy is the number of residue pairs xy in a clus-
ter, i.e., the number of edges connecting two nodes with
one node labeled as x and the other as y. Qxy is calcu-
lated by the same way of computing Pxy.
The weight calculation for boundary edges is very inno-

vative. A boundary edge is an edge connecting an epitope
residue and a non-epitope residue. We group all of the
boundary edges (e.g. dashed black lines in Figure 3) in
our graph database as a class, and take all epitope edges
(e.g. solid blue lines in Figure 3) as the other class. Then,
we apply Equation (1a) and (1b) to calculate the weights
W ′

xy for the boundary edges by setting c Î {boundary_-

class, epitope_classg}. This process is also applied with
regard to the boundary class and non-epitope class (e.g.,
edges with solid orange lines in Figure 3) to determine

weights W ′′
xy for the boundary edges. In other words,

W ′
xy and W ′′

xy are determined by using the exactly same

equations as computing Wxy, with substitution of the
relevant class label c. The weight of a boundary edge xy is

finally set as W ′
xy or W ′′

xy whichever is larger. Those

boundary edges with heavy weights (larger than a thresh-
old W0) are definitely boundary edges between epitope
and non-epitope subgraphs. We remove them to sharpen
the distinction in the later clustering step and supervised
learning. Boundary edges might change to another set
when different computational methods are used to define
epitope residues, such as using accessible surface area lar-
ger than 1Å2 upon binding with an antibody [6,27] and
distance threshold of 4Å [7,28], 5Å [29] or 6Å [30]. How-
ever, Ponomarenko et. al. have shown that epitope resi-
dues have no significant difference when various criteria
are used to capture epitope residues [24].
As a few number of large weights can pull all weight

values towards zero after normalization, we further con-
trast normalized weights Wxy to amplify important
weights and suppress trifling weights by

f (W) =
1

1 +
(

θ
W

1 − W

)−γ
.
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where θ and are g optimized as 3 and 3 in this study.
Since there are only 20 different standard residue

types, the total number of different weights between two
residue types is 210 (= C20

2 + C20
1 ) .

Clustering on nodes in an antigen surface graph
Antigen surface graphs are constructed by Qhull with
weights W on edges determined by the procedure above.
We then use mcl [22] (an implementation of the MCL
algorithm with inflation coefficient r of 1.8) to cluster the
nodes and edges of every antigen graph into subgraphs. In
the MCL algorithm, the graph of an antigen surface resi-
dues is represented by a square matrix M, where each
row/column represents a surface residue and the value of
each entry is the weight of these two residue types. In the
expansion stage of MCL, M is expanded as the normal
product of itself; during the inflation stage, the matrix M
undertakes Hadamard power with coefficient r followed
by normalization. This two steps keep on in iteration until
an equilibrium state is reached, i.e., when expansion and
inflation do not alter the matrix any more.
The subgraphs of an antigen surface clustered by MCL

are not always clean and some subgraphs may contain a
mixture of epitope residues and non-epitope residues. To
clean up the training data, we consider a subgraph as an
epitope subgraph if the number of epitope residues in
this subgraph is larger than the number of non-epitope
residues and, as a non-epitope subgraph if no or very few

(say, at most two) epitope residues show up. Subgraphs
with other situations are considered as noise data which
are overlooked during model training. We adopt this
strategy because of the small number of epitope residues.
We note that this approach is tolerant to false positives,
but is sensitive to false negative.
Supervised learning for distinguishing epitope subgraphs
and non-epitope subgraphs
By using mcl, each antigen surface graph is clustered
into a number of subgraphs. To distinguish between
epitope subgraphs and non-epitope subgraphs, we
design a feature vector to represent all of these sub-
graphs in our training data. Each subgraph is trans-
formed into a feature vector with 1770 dimensions,

which comprises 20 (= C20
1 ) dimensions of single resi-

dues, 210 (= C20
1 + C20

2 ) dimensions of residue pairs,

and 1540 (= C20
1 + C20

2 · C2
1 + C20

3 ) dimensions of resi-
due triangles. A single-residue feature takes the
weighted summation of X 2 test and log odds ratio on
the frequencies of the residue type between epitope
clusters and non-epitope clusters, which is similar to
the calculation of the weight of a pair of residue types
shown in Equation (1). A residue-pair feature takes the
weight of this edge in the subgraph as its value, and a
triplet feature takes the average weight of the three
edges in the subgraph as its value.

Figure 3 Diagram of an antigen surface graph. Nodes are residues and edges represent residues’ spatial relation. Blue nodes are epitope
residues, and orange ones are non-epitope residues. Dash lines are boundary edges between two clusters, while solid lines are edges within a
cluster.
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The number of nodes in a subgraph is very small (15
on average); but the dimension of each vector is very
large (1770). Therefore, each vector is very sparse and,
some features even have no differentiability between epi-
tope subgraphs and non-epitope subgraphs. Hence, fea-
ture selection is conducted to maximize classification
performance. The feature selection was done by using
the LIBSVM [31] feature-selection module targeting at
maximizing classification f-score. As a result, 144 from
the 1770 features are chosen for classifying epitope sub-
graphs from non-epitopes subgraphs.
Due to the extreme imbalance between the epitope

residue number and non-epitope residue number for an
antigen surface graph (15 and 120 on average in our
data set), the number of non-epitope subgraphs far
exceeds the number of epitope subgraphs as generated
by mcl. To address this imbalance problem, a two-stage
supervised learning, multi-SVM classification and trust-
reliable voting, is taken to accomplish the distinction
between epitope and non-epitope subgraphs. The num-
ber of SVM classifiers is automatically determined by
the proportion between non-epitope subgraphs and epi-
tope subgraphs. Based on our data set in this work, the
number of SVM classifiers is nine. For each classifier in
the first stage, a parameter grid-search is carried out on
a balanced training data set to maximize model perfor-
mance, while in the second stage the final decision is
voted and determined by

y = sgn

(∑
i

wi · f (xi) · δi − θ0

)
, (2)

where

δi = 1 − g(τ0 − |p0xi − 0.5|) · h
(∑

i

sgn(p0xi − 0.5)

)

g(x) =
{
1, x > 0
0, x ≤ 0

h(x) =
{
1, x �= 0
0, x = 0

sgn(x) =

{
1, x > 0

−1, x < 0
,

and the symbol annotations are as follows:

• y: epitope/non-epitope label for a sample predicted
by the model;
• wi: weight of classifier i computed by its
performance;
• f(xi): label for a sample x determined by classifier i
in the first level;
• p0xi : probability of classifier i that predicts sample x
as non-epitope;
• δi: determinant of classifier i. δi is 0 when the classi-
fier i is dubious and other confident classifiers exist.

θ0 is a threshold to filter out non-epitope residues, and
τ0 is used to control to what extent we trust the classifier.

Prediction of epitopes for an unknown antigen
Given an antigen with 3D coordinate information, the
following steps are taken to identify one or multiple epi-
tope for this antigen: (i) calculate each atom’s ASA by
using NACCESS, and filter out those atoms with ASA
less than 10Å2; (ii) construct an atom-level graph by
using Qhull and upgrade it to a residue-level graph; (iii)
assign weights to all edges of this residue graph, where
the weights are those determined during the training;
(iv) cluster this undirected and weighted graph into
exclusive subgraphs using mcl; and (v) transform every
subgraph into a feature vector, and predict its label by
the well-trained two-stage classification model. Epitope
residues are the residues within those subgraphs which
are predicted as epitope. Two epitope subgraphs can be
merged together if they are connected in the original
surface graph.

Results and discussions
Our graph-based method BeTop made remarkable
improvement on B-cell epitope prediction in compari-
son to the state-of-the-art methods. First, BeTop shows
significant improvement on overall prediction accuracy.
Second, BeTop is capable of predicting epitopes located
at both protrusive and planar surface areas. Third,
BeTop is able to identify multiple epitopes if an antigen
contains them. The detailed results of all these are pre-
sented below together with highlights of those features
that distinguish epitope subgraphs from non-epitope
subgraphs.

Significant improvement of prediction accuracy
Four performance metrics are adopted to evaluate
model performance–viz., sensitivity (sen), specificity
(spe), f-score, and accuracy (acc). They are defined as
sen = TP/(TP + FN), spe = TN/(TN + FP), f-score =
2*pre*sen/(pre + sen), and acc = (TP + TN)/(TP + FP +
TN + FN), where TP, TN, FP, and FN represent the
number of predicted true positive, true negative, false
positive and false negative samples, respectively. Due to
the imbalance nature in the composition of non-epitope
residues and epitope residues in an antigen, accuracy is
not competent to measure model performance. Instead,
f-score is more appropriate to evaluate BeTop’s perfor-
mance and to compare with other models.
Ten fold cross validation is applied to measure the over-

all performance of BeTop on the 92 non-redundant anti-
gen-antibody PDB complexes. The f-score comparison
between BeTop and the state-of-the-art epitope prediction
methods DiscoTope [7], SEPPA [9] and ElliPro [8] are
shown in Figure 4. We note that ElliPro can produce a
short list of candidate epitopes. Its performance reported
here is summarized based on its best result among all of
the predicted candidates for each antigen. In the case that
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BeTop identifies multiple epitopes for an antigen, its per-
formance is reported in the same way as ElliPro for a fair
comparison. From Figure 4, it can be seen that BeTop out-
performs all existing models significantly. The f-score
t-test p-values between BeTop and the other models are
shown in Table 1 to illustrate the significance level that
BeTop is better.
The averaged sensitivity, specificity, accuracy and AUC

values for DiscoTope, SEPPA, ElliPro and BeTop are
shown in Table 2. It is clear that BeTop is remarkably
better than other models in terms of sensitivity, accu-
racy and AUC. The specificity of BeTop is slightly lower
than that of ElliPro, but this value is much better than
the other two models. More detailed results for each
antigen in terms of sensitivity, specificity, f-score and
accuracy can be found in the supplementary material
Additional File 1: Table S1.
One of the novel ideas used in this study is reducing

the weight of boundary edges to distinguish epitope
from non-epitope. Thus, we further compare the perfor-
mances of BeTop with suppressing weights of boundary
edges and without suppressing weights of boundary
edges. Experimental results show that the averaged
f-scores are 0.45 and 0.41 for the two situations, with
increment of f-score by 8.9%. The t-test p-value of 0.11

between the two sets of f-scores also demonstrates the
improvement of performance by decreasing weights of
edges enriched in boundary class.

Locating epitopes with planar formations
Existing conformational epitope prediction methods such
as [7,8,10] heavily rely on the spatial structure informa-
tion and non-planarity properties of antigens. They
usually have a good performance on epitopes that have a
protrusive surface, otherwise the performance becomes
poor. To understand the effect of non-planarity of epi-
topes on epitope prediction, we divide all of the epitopes
in our database into groups based on a non-planarity
index. The non-planarity of a residue cluster is measured
by the root-mean-square deviation of all the surface
atoms of this cluster of residues. It is expected that those
structure-based prediction models favor epitopes with
large non-planarity but not at epitopes.
Our experimental result is shown in Figure 5. It

is clear that BeTop works very well with an average
f-score 0.432 on at epitopes, namely on those epitopes
having a non-planarity less than 2Å. However, Disco-
Tope, SEPPA and ElliPro all had difficulties to detect
such epitopes with f-scores of only 0.214, 0.207, and
0.337 respectively.

Figure 4 B-cell epitope prediction performance by BeTop, DiscoTope, SEPPA, and ElliPro. The optimal parameters a, θ0 and τ0 are set to
0.3, 0.3 and 0.05, respectively.

Table 1 F-score t-test p-values between BeTop, DiscoTope, SEPPA and ElliPro.

DiscoTope (0.22 ± 0.14) SEPPA (0.25 ± 0.16) ElliPro (0.36 ± 0.20) BeTop (0.45 ± 0.16)

DiscoTope 1.6e-1 7.9e-8 1.8e-17

SEPPA 2.3e-5 7.3e-15

ElliPro 2.0e-3
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Taking PDB entry 1AR1 as example again (Figure 1), its
epitope consists of 19 residues, and the non-planarity of
this epitope is as small as 1.08Å, indicating a very flat sur-
face area. The f-score achieved by BeTop is 0.88 (with 16
true positives and 1 false positive). However, ElliPro,
SEPPA, DiscoTope made an f-score of 0.273 (with 7 true
positives and 22 false positives), 0.000, and 0.000, respec-
tively. As another example, the prediction performance by
BeTop, ElliPro, SEPPA and DiscoTope on the epitope resi-
dues of PDB entry 1N8Z are 0.667, 0.194, 0.198 and 0.07,
respectively. This epitope also has a very planar surface
with non-planarity of 1.88Å.
For epitopes having a large non-planarity bigger than or

equal to 3Å, BeTop also performs better than the other
models. The f-score is improved by 65.6%, 55.7% and
11.8% over DiscoTope, SEPPA and ElliPro, respectively. In
particular, in comparison to ElliPro, which detects twisted
epitopes based on residues’ protrusion index, BeTop still
achieved a better performance.
In summary, the f-score of the 3 existing methods

becomes poor when the non-planarity of epitopes becomes
flat. However, BeTop performs equally well under both
protrusive and planar conditions, demonstrating that our

proposed BeTop graph model is invariant to the change of
epitope non-planarity.

Identifying multiple epitopes from an antigen
Although BeTop is trained on single-epitope antigen-anti-
body complexes, the framework has no limitation on the
number of predicted epitopes. To evaluate BeTop’s cap-
ability in identifying multiple epitopes in an antigen, we
tested it on a data set of epitopes that are comprehensively
explored in [20].
The multiple epitopes of these antigens are determined

by the following steps: (i) determine epitope residues for
each complex by using the 4Å Euclidian distance criteria
between the antigen and antibody; (ii) calculate a pair-wise
epitope similarity between two complexes X and Y of the
same antigen by using SXY = |X ∩ Y |/min(|X|, |Y|); (iii)
cluster epitopes based on their similarities for each anti-
gen; (iv) select representative epitopes for each cluster
with the best resolution, and map all representative epi-
topes to one of them with the finest resolution. Finally 9
antigens with a total of 20 epitopes are obtained.
BeTop can identify 8 out of the 9 antigens with multi-

ple epitopes; and for all of the 20 epitopes, BeTop can

Table 2 The averaged performances comparison between BeTop, DiscoTope, SEPPA and ElliPro on sensitivity,
specificity, accuracy and AUC.

DiscoTope SEPPA ElliPro BeTop

sensitivity 0.377 ± 0.278 0.526 ± 0.345 0.501 ± 0.290 0.665 ± 0.239

specificity 0.686 ± 0.168 0.665 ± 0.255 0.849 ± 0.137 0.809 ± 0.162

accuracy 0.631 ± 0.133 0.659 ± 0.193 0.798 ± 0.126 0.802 ± 0.134

AUC 0.531 ± 0.127 0.595 ± 0.157 0.675 ± 0.140 0.737 ± 0.107

Figure 5 Performance comparison at different levels of epitope non-planarity.
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detect 19 of them. However, the conventional approaches
would take the union of all the epitope residues on an
antigen as a single epitope. The average performance of
sensitivity, specificity, f-score and accuracy of applying
BeTop to multiple epitope prediction are 0.393, 0.907,
0.321, and 0.858, respectively. As an example, BeTop
achieves an averaged f-score as high as of 0.611 in identi-
fying the two epitopes on the prion protein (Figure 6).
Detailed performance is available at Additional File 2:
Table S2.
As expected, BeTop can identify as many epitopes as

possible when they exist on an antigen. For instance, there
are four epitopes on the antigen hen egg white lysozyme.
BeTop can detect all of the four epitopes with an average
f-score and accuracy of 0.376 and 0.849. These experimen-
tal results show that multiple epitopes predicted by BeTop
are not false positives, and it does not mix up multiple epi-
topes either.

Graphical triplet patterns for epitopes
We are interested in outstanding features that distinguish
epitopes from non-epitopes. By transforming epitope and
non-epitope subgraphs into feature vectors and selecting
distinct features by LIBSVM, we obtained 144 from the
1770 features. See the full details in Additional File 3:
Table S3. Features that favor epitopes are shown in Fig-
ure 7. Interestingly, residue triangles of the pattern XXY
(no order constraint), where X is a polar residue and Y is

a hydrophobic or polar residue, are more likely to be epi-
tope residues, but the pattern XX itself has no such dif-
ferentiability. This type X of residues include Glutamine
(Q), Aspartate (D), Tyrosine (Y) and Leucine (L). For
example, residue pair Glutamine-Glutamine (QQ) inter-
acting with residue Arginine (R), Tyrosine (Y), Aspara-
gine (N), Lysine (K), Serine (S), Glycine (G), or Proline
(P) are rich in epitopes. But Glutamine-Glutamine itself
cannot be used to distinguish epitopes from non-epi-
topes. Furthermore, these meaningful features indicate
some general patterns including polar and hydrophilic
homogeneous residue pair surrounded by hydrophobic
or polar residues as shown in Figure 8(a), polar and
hydrophobic homogeneous residue pair encircled by
polar residues as shown in Figure 8(b), and hydrophobic
homogenous residue pairs accompanied by hydrophobic
residues as shown in Figure 8(c). In contrast, such phe-
nomena are not observed in the features enriched in the
non-epitope clusters; see Additional File 4: Figure S1.
To test the statistical significance of these features, we
calculated their G-test values [32]. The top ten features
that are in favor of the epitopes and the top ten features
that are enriched in the non-epitopes in terms of G-test
are shown in Table 3. Intriguingly, the top ten features
for the epitope class almost all have the form XXY (no
order constraint); this observation consolidates the fea-
ture patterns we have identified. However, no similar pat-
terns, such as XXY, can be found in non-epitope

Figure 6 Two epitopes with 3 overlapping residues on the prion protein. The 17 epitope residues within PDB entry 1TQB are colored in
orange, while the 15 epitope residues in PDB entry 2W9E are rendered in blue. The residues with green color are the three overlapping epitope
residues.
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Figure 7 Features that favor the epitope class. Here a feature is represented by two nodes connecting with a solid line. Two nodes with
patterns XY and YZ form a complete triangle XYZ, while patterns X and XY form only a contacting residue pair XY. The blue-filled nodes are
single residues in favor of the epitopes while the gray-filled nodes are not.

Figure 8 Examples of triplet feature patterns rich in the epitopes. The single letters in each colored rectangle is a residue and the double-
letter circles stand for contacting residue pairs. Different colors represent distinctive properties of residues. The edges connecting a residue pair
and a single residue form interacting residue triangles. For instance, (a) shows a set of residue triangles including QQR, QQN, QQS, QQY, QQK,
QQG and QQP that all favor the epitope class.

Table 3 Top ten features that are in favor of the epitope class and also those that are enriched in the non-epitopes in
terms of G-test.

epitope non-epitope

feature G-test feature G-test

SSL 9.12 YF 5.34

GGI 4.92 SAA 4.69

DDW 4.85 KQ 4.19

NGG 4.53 AC 4.04

RRT 4.23 A 3.20

DDF 4.21 EVV 2.74

STT 3.65 EA 2.59

FLL 3.26 FFV 2.54

QQS 3.13 HC 2.35

HF 2.89 N 2.35
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preferred features; see Table 3 and Additional File 3:
Table S3.

Conclusion
Epitope prediction is an important way to understanding
the immune basis of antibody-antigen interactions and
is beneficial to prophylactic and therapeutic solutions.
In this study, we proposed a novel graph-based model
(“BeTop”) to predict B-cell epitope by incorporating sta-
tistical ideas, graph clustering algorithms and supervised
learning approaches. Our experimental results con-
ducted on two data sets of non-redundant antigen-anti-
body complexes show that BeTop makes great
improvements for identifying those planar epitopes and
for distinguishing multiple epitopes in an antigen. We
have also presented interesting features and triplet fea-
ture patterns for the epitopes which will be useful for us
to form new hypothesis in the future studies.

Additional material

Additional File 1: Additional Table S1 – The performance of BeTop
on 92 antibody-antigen PDB complexes.

Additional File 2: Additional Table S2 – BeTop performance on
multiple epitopes prediction.

Additional File 3: Additional Table S3 – 144 features selected to
separate epitope clusters from non-epitope clusters.

Additional File 4: Additional Figure S1 – Negative features of non-
epitope clusters that distinct from epitope clusters.
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