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Abstract

Background: Drug repositioning offers an opportunity to revitalize the slowing drug discovery pipeline by finding
new uses for currently existing drugs. Our hypothesis is that drugs sharing similar side effect profiles are likely to
be effective for the same disease, and thus repositioning opportunities can be identified by finding drug pairs with
similar side effects documented in U.S. Food and Drug Administration (FDA) approved drug labels. The safety
information in the drug labels is usually obtained in the clinical trial and augmented with the observations in the
post-market use of the drug. Therefore, our drug repositioning approach can take the advantage of more
comprehensive safety information comparing with conventional de novo approach.

Method: A probabilistic topic model was constructed based on the terms in the Medical Dictionary for Regulatory
Activities (MedDRA) that appeared in the Boxed Warning, Warnings and Precautions, and Adverse Reactions
sections of the labels of 870 drugs. Fifty-two unique topics, each containing a set of terms, were identified by
using topic modeling. The resulting probabilistic topic associations were used to measure the distance (similarity)
between drugs. The success of the proposed model was evaluated by comparing a drug and its nearest neighbor
(i.e., a drug pair) for common indications found in the Indications and Usage Section of the drug labels.

Results: Given a drug with more than three indications, the model yielded a 75% recall, meaning 75% of drug
pairs shared one or more common indications. This is significantly higher than the 22% recall rate achieved by
random selection. Additionally, the recall rate grows rapidly as the number of drug indications increases and
reaches 84% for drugs with 11 indications. The analysis also demonstrated that 65 drugs with a Boxed Warning,
which indicates significant risk of serious and possibly life-threatening adverse effects, might be replaced with safer
alternatives that do not have a Boxed Warning. In addition, we identified two therapeutic groups of drugs
(Musculo-skeletal system and Anti-infective for systemic use) where over 80% of the drugs have a potential
replacement with high significance.

Conclusion: Topic modeling can be a powerful tool for the identification of repositioning opportunities by
examining the adverse event terms in FDA approved drug labels. The proposed framework not only suggests
drugs that can be repurposed, but also provides insight into the safety of repositioned drugs.
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Background
Drug repositioning (or repurposing) refers to the action
of discovering new uses or indications for the existing
drugs. Pharmaceutical companies, academic researchers,
and government agencies have focused resources on
repositioning as a way to augment the slowing drug dis-
covery pipeline due to shorter development timelines
and lower risk concerns compared to new drug develop-
ment [1,2]. Traditionally, drug repositioning mainly
relied on serendipity or ‘happy accidents’; the classic
examples are Viagra (sildenafil) and Thalomid (thalido-
mide) [3]. In silico approaches that provide a systematic
way to explore drug repositioning opportunities have
gained acceptance [4,5].
In silico drug repositioning seeks opportunities based

on retrieving and organizing different data profiles. One
rich repositioning resource is the NCGC Pharmaceutical
Collection (NPC), which contains all approved small-
molecule drugs and can be surveyed using ultra high-
throughput screening assays to systematically explore
repositioning opportunities across human diseases, parti-
cularly rare and neglected ones [6]. Kinnings et al. [7]
applied a support vector machine (SVM) approach using
molecular docking scores based on protein structure data
from Protein Data Bank (PDB) and identified a phospho-
diesterase inhibitor, Comtan, that could be potentially
repurposed to target Mycobacterium tuberculosis. Dudley
et al. [8] discovered the anticonvulsant topiramate’s
application to inflammatory bowel disease (IBD) by ana-
lyzing gene expression data from NCBI’s Gene Expres-
sion Omnibus (GEO) on IBD samples and 164 small-
molecule drug compounds. Electronic medical records
and PubMed are also used for in silico drug repositioning
via text mining [9,10].
There are several conceptual approaches to in silico drug

repositioning, which mainly focus on how similarity
between the drug space and disease space is assessed and
quantified [11-13]. Phenotypic data such as side effects are
an informative source of similarity assessment and has
been used in drug repurposing. Campillos et al. [14] inves-
tigated off-target effects by integrating side effect profiles
with chemical structures and identified several new drug-
target interactions. They validated 13 implied drug-target
relations by in vitro binding assays, of which 11 revealed
inhibition constants equal to or less than 10 mM. Lun et
al. [15] detected 3175 side effect and disease relationships
and applied an in silico method to predict repositioning
opportunities. Brouwers et al. [16] applied a network
approach to compare the relationship between side effect
similarity and off-targets shared by drugs.
There are several sources to obtain the side effect data,

but this effort focused primarily on U.S Food and Drug
Administration (FDA) approved labels for marketed
drugs. The main reason for this preference is that a label

description is based on the observations in both clinical
trials and post-marketing surveillance, and so it repre-
sents a more systematic and comprehensive information
resource than what is available from sporadic adverse
event reporting after a drug is marketed. This research
focuses on three related sections of the drug label, Boxed
Warning (BW), Warnings and Precautions (WP), and
Adverse Reactions (AR), in order to establish a robust
relationship between drugs and side effects, rather than a
broader, less focused data source such as the Side Effect
Resource (SIDER) [17].
Drug labels require text mining techniques to extract

useful information. Mapping documents to a lower dimen-
sional concept space for semantic analysis is a well studied
subject in information retrieval and text mining [18].
Recently, topic modeling based on the graphical model
Latent Dirichlet Allocation (LDA) [19] has been applied to
biological research [20,21]. Topic modeling was applied to
the discovery of “topics” from textual drug labels, where a
topic is a set of words that represents a specific concept.
Our previous work in this field focused on whether topic
modeling could cluster drugs into biologically meaningful
groups from either a safety or therapeutic perspective. The
topic models we developed successfully grouped drugs
with similar safety concerns [22].
There are several in silico ways to detect drug reposi-

tioning opportunities. Among them, similarity based
approaches have been proposed and have several success-
ful examples [14]. Similarity measure can be based on che-
mical space, genomic space and clinical knowledge space.
Here, we employed the side effect data and used topic
modeling to search for repositioning opportunities.
In this study, we hypothesized that drugs with similar

side effect profiles likely share the same indications. In
contrast to our previous study [22], we wanted to dis-
cover the semantic relationship between drugs. We then
used this relationship as a measure of similarity between
drug pairs and used that similarity to identify potential
repositioning opportunities. A flowchart of the topic
modeling approach we used is shown in Figure 1. Our
results suggest that this approach could find alternative
drugs for a particular indication. Furthermore, safer alter-
natives could also be identified using this approach to
potentially replace BW drugs. We also identified several
therapeutic categories that were over-represented with
repositioning candidates, indicating that drugs in these
therapeutic categories may be more likely to be reposi-
tioning candidates.

Materials and methods
Drug label data set
DailyMed http://dailymed.nlm.nih.gov/dailymed/, a pub-
licly available data source, lists FDA-approved labels of
marketed drugs. Because a drug is often marketed with
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multiple brand names associated with multiple labels, we
used the most recent label according to its effective date
regardless of the brand name for each drug. Only drugs
that are taken orally or by injection were examined in
this study.

After identifying the drugs we would use, we parsed
labels with XML formats. We used the three labeling
sections related to the safety concerns (BW, WP, and
AR) for further analysis. Information in these three sec-
tions contains not only safety concerns, but also adverse

Figure 1 Flowchart of the study.
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events and precautions that should be considered in the
clinical use of the drug. We filtered raw text from the
labels with standardized side effect (SE) terms in the
Medical Dictionary for Regulatory Activities (MedDRA)
http://www.meddramsso.com/ maintaining the lowest
level terms consisting of 68,259 terms from 26 organs
[23]. The SE profile contained 4,822 SE terms for each
drug, which we used as the input matrix for topic
modeling.

Drug indication data set
One shortcoming of the drug labels is that the indication
sections do not list the indications in a way that can be
consistently matched with the terms in a database like
MedDRA. In order to integrate pre-processed indication
concepts, we utilized SIDER [17]http://sideeffects.embl.
de/, which provides indications for 888 drugs. For each
drug in both data sources, we integrated the side effect
profile from the drug label and indication terms from
SIDER. Integrating both sources resulted in 870 drugs.

Topic modeling
A topic model is a statistical model of documents. A
topic model or probabilistic latent semantic index (pLSI)
is not a generative model, therefore it can not fully
describe the dependency of documents, topics and
words [24]. In a Latent Dirichlet Allocation model
(LDA) a Dirichlet prior is introduced, so that not only
the model is generative for new documents, but also the
inference is more convenient [19]. The underlying con-
cept of LDA is that a document has a mixture of topics
and that each word is selected with a probability given
one of the document topics. For each document d, θ(d)
= P(z) stands for the multinomial distribution over
topics. Let P(w|z) be the probability distribution over
words w given topic z. Then, document d can be gener-
ated by following two steps for each word wi (where i is
the index for i-th word of document d): first, a topic j is
selected with a probability of P(zi = j) based on the
probability distribution P(z); second, a word wi is picked
out with a probability of P(wi|zi=j). Therefore, the gen-
erative process prescribes the following distribution of
words in document d:

P(wi) =
T∑

j=1

P(wi|zi = j)P(zi = j) (1)

where T is the number of topics.

Determining number of topics
Like other dimension reduction methods in the litera-
ture, topic modeling aims to remove redundancy in
addition to finding topics in the documents. The

number of topics to be searched for is usually deter-
mined empirically or by some heuristic approaches such
as seen in recent studies [25,26]. On the other hand,
topic modeling can be also seen as a matrix factoriza-
tion method. In this work we suggest a different heuris-
tic approach to determine the number of topics. We
first used Principal Component Analysis (PCA) on the
drug-term matrix to attain the eigenvalues and then
minimized the information loss as follows:

argmin
k

∥∥∥∥∥

n∑

i=1

ei − λ

n∑

i=k+1

ei

∥∥∥∥∥ (2)

where l is a penalty, which regularizes the informa-
tion loss. We found that an optimal result is often
achieved when l = 2 in our study. In this case, the
number of topics k is determined as follows:

argmin
k

∥∥∥∥∥

k∑

i=1

ei −
n∑

i=k+1

ei

∥∥∥∥∥ (3)

Drug distance assessment
After obtaining the topics, one of the outputs of this
model is the probability distribution of topics for a given
drug, i.e., P(z|d), where z and d represent the random vari-
ables for topics and drugs respectively. This conditional
probability is a signature of the drug, which is used to
assess the drug similarities. Ding, et al. proposed a similar
signature for genes based on a distribution of topics,
which is determined by a straightforward counting [27].
We used the Kullback-Leibler (K-L) divergence [28], a

measure of the difference between two probability distri-
butions P and Q, to calculate similarities between drugs
based on conditional probabilities P(z|d). K-L divergence
is given by:

DKL(P||Q) =
∑

i

P(i) ln
P(i)
Q(i) (4)

In contrast to many metric measures, K-L divergence
is asymmetric. Therefore, as the pairwise distance
between drug A and B, D(A, B), we computed the fol-
lowing to symmetrize the relation:

D (A,B) =
DKL (A||B) +DKL (B||A)

2
(5)

Common indication search
Using the pairwise symmetrized K-L distance defined in
equation (5), we identified the nearest neighbor for each
drug in the dataset. We then examined any common
indication between a drug and its nearest neighbor. In
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order to generate a null distribution for each drug in the
dataset we randomly chose a second drug and noted any
common indications. We performed this procedure
10,000 times and recorded the percentage of trials in
which a common indication was successfully located.

Results
As shown in Figure 1, the study involves four steps: (1)
drug label preprocessing - three sections of drug labels,
BW, WP, and AR, were used and SE terms were
extracted using MedDRA terminology for each drug; (2)
topic number determination - PCA with an information
loss criterion was employed to determine the optimal
number of topics; (3) drug similarity measurement - the
drug-topic conditional probability matrix was obtained
by using topic modeling, based on which the drug-drug
similarity matrix was obtained by calculating K-L diver-
gence; and (4) drug-pair assessment - drug pairs were
assessed from both therapeutic and safety perspectives
based on their known shared indications.

Number of topics
We obtained the number of topics using PCA with an
information loss criterion as described in the Materials
and Methods section. Figure 2 shows how the optimal
number of topics was acquired via minimizing the infor-
mation loss as described in Equation (3). The information
loss reaches its minimum when the topic number is equal
to 52. This means the original 4,822 SE profile can be
represented by 52 topics.

Drug pairs with common indication
After assessing the distance by symmetrized K-L diver-
gence, we identified common indications for the closest

drug pairs. Using this information we calculated recall,
or the ratio of the number of pairs sharing an indication
to the total number of pairs. The dotted blue line in
Figure 3 shows how recall values increase as the number
of indications for a given drug increases. Out of 870 clo-
sest drug pairs, 569 shared at least one common indica-
tion, which corresponded to a 65% recall. We expect
that drugs with only one indication have a very low
chance to share that indication with other drugs. There-
fore, we recalculated the recall considering only those
drug pairs where at least one drug had multiple indica-
tions. As shown in Figure 3, when the drugs in the
query list have more than three indications, the recall
reaches 75%, and grows rapidly as the number of indica-
tions increases.
We repeated the same procedure for the randomly

selected drug pairs as a comparison (illustrated by the
green dotted line in Figure 3). The result shows that
both methods generated a similar trend, however, the
real model consistently outperforms the random selec-
tion by a factor of 5.

Safety issues in drug repositioning
Balancing safety and efficacy is a key goal in drug devel-
opment. One of the aims of drug repositioning is to find
safer drugs to replace currently prescribed drugs that
may have safety concerns. A drug with a BW has been
defined by the U.S. Code of Federal Regulations
(21CFR201.57) to be capable of causing serious adverse
reactions or even death [29,30]. If an alternative drug
with fewer safety concerns can be identified, it would be
a major benefit to public health. There are 342 drugs
with a BW in this dataset. We examined the drugs paired
with a BW drugs for each of the 342 BW drugs. We suc-
cessfully identified potential safer alternatives (candidates
without a BW) for 65 drugs, indicating that the proposed
method may offer a new way to search safer drugs to
replace ones with safety concern for the same indication.
For instance, cefazolin is prescribed for urinary tract
infections and has a BW, but our research suggests that a
safer alternative, cefuroxime, may be used for the same
disease.

Drug repositioning opportunities for therapeutic
categories
We extracted the first level term from the Anatomical
Therapeutic Chemical Classification System (ATC)
http://www.who.int/classifications/atcddd/en/ for drugs
involved in drug pairs that shared at least one common
indication. Figure 4 shows the distribution of reposition-
ing candidates identified by therapeutic category and the
corresponding p-value for 14 therapeutic categories. For
each therapeutic category, we calculated the percentage
of drugs with a nearest neighbor sharing one or more

Figure 2 Optimal number of topics: information loss is plotted
vs. number of topics; the minimal information loss occurs
when the number of topics equals 52.
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common indications and used a Fisher’s exact test to
check if the observed distribution deviates significantly
from the expected distribution.
Two therapeutic categories, M (Musculo-skeletal sys-

tem) and J (Anti-infective for systemic use), had the high-
est percentage (86% and 82%, respectively) of drug pairs
sharing common indications and statistically significant
Fisher’s Exact tests (p-values < 0.05). This suggests that
drugs in both groups are more likely to be able to be
repurposed. For example, most nonsteroidal anti-inflam-
matory drugs (NSAIDs), e.g., ibuprofen, belong to the
Musculo-skeletal system category yet ibuprofen is a COX
inhibitor and can initiate pain relief. The proposed method
found that the nearest neighbor of indomethacin is ibu-
profen. Indomethacin has an anti-Parkinson’s effect [31],
suggesting that ibuprofen might be effective for Parkin-
son’s disease as well. Animal studies and clinical trials
have demonstrated that ibuprofen can reduce the develop-
ment of Parkinson’s disease [32]. Since ibuprofen is an
over-the-counter drug, the results demonstrate that our
method has the ability to find safer alternative drugs for
the treatment of the same disease.

Discussion
Discovering new uses for an existing drug is challenging.
Traditionally, repositioning opportunities were discovered

mainly by chance or by expert opinion. An in silico
approach to drug repositioning is an important contribu-
tion to the drug discovery pipeline by offering a compre-
hensive method for suggesting alternative therapeutic uses
of existing marketed drugs.
In this work, we developed an in silico approach based

on topic modeling. FDA approved drug labels were used
because of their well-defined and well-structured termi-
nology. In particular, we used topic modeling to calculate
a probabilistic topic distribution of adverse event terms
appearing in the sections related to safety issues for each
drug. We then measured the distance between pairs of
drugs by means of this probabilistic topic distribution. We
considered a candidate for drug repositioning to be identi-
fied if the nearest neighboring drug shares a common indi-
cation. This method provides several notable advantages.
First, with its unsupervised nature, topic modeling does
not require a priori information about the drugs. Secondly,
it offers clear and easily understandable criteria for deter-
mining if a drug pair contains a repositioning candidate.
Lastly, even if a suggested drug pair does not share any
common indications, it may be worth further investigation
because one of them may have an unknown indication
that could have potential application.
The advantage of topic modeling is that a document is

linked to several topics and the relationship between

Figure 3 Recall vs. number of indications: Drugs with a low number of indications have a lower chance to find a nearest drug with a
common indication; The topic model consistently outperformed the random chance. The red dots represent the recall of drugs with one
and three indications, respectively.

Bisgin et al. BMC Bioinformatics 2012, 13(Suppl 15):S6
http://www.biomedcentral.com/1471-2105/13/S15/S6

Page 6 of 9



documents is preserved via these topics. In this study, a
drug is characterized by its label and the similarity
between drugs is determined by the similarity in topics
contained by the three sections of the labels dealing
with side effects. For every drug label, the similarities
captured by the topic distribution suggested a nearest
neighbor. This implies that even when the content of
the drug labels is not exactly the same, the topics may
well be very close to each other. We compared the com-
mon indications of all closest drug pairs suggested by
our model with that of random drug pairs. This analysis
showed that the proposed method identified at least
three times as many repositioning candidates than
would be expected by chance alone The recall of this
method was over 69%, while there is only a 19% chance
that two randomly selected drugs will share a common
indication. The difference not only demonstrates the
potential success of the proposed approach, but also
invites the investigation of the remaining 31% of drug
pairs. For example, atomoxetine and theophylline do not

appear to share a common indication given the informa-
tion reported in the drug label. However, after searching
the literature, we found that theophylline may also be a
useful drug to treat Attention-Deficit/Hyperactivity Dis-
order (ADHD), as is atomoxetine [33]. Similarly imipra-
min and buproprion do not have any indications in
common, but Jacobs et al. [34] reported that a trial of
imipramin was undertaken and that it was found to be
effective for smoking cessation, a new indication for
buproprion, but not at a desirable level.
We also observed that some therapeutic groups

appeared more frequently in the successful pairs. When
those frequencies were normalized by the total frequen-
cies for all pairs, certain ATC categories contained signif-
icantly more successful pairs than what would be
expected by chance alone. This finding indicates that
some therapeutic groups are more prone to have drugs
with common indications, which implies that the chance
of finding repositioning candidates among these drugs is
high. Furthermore, the findings also suggest that drug

Figure 4 The percentage of the drugs that might be repositioned and the corresponding p values for 14 therapeutic categories. Two
therapeutic groups (M = Musculo-skeletal system and J = Anti-infective for systemic use, labeled with asterisk) where over 80% of the drugs
have a potential replacement.
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repositioning opportunities might exist not only within
the same category, but also among the higher-level
groups as well.
While repositioning opportunities are being explored,

safety issues cannot be neglected. In ideal circumstances,
drugs with minimum risk and maximum efficacy should
be the first choice for repositioning. In this regard, our
approach draws attention to drug pairs that suggest a safer
alternative for the same disease. The proposed approach
offers a way of identifying a drug without a BW to substi-
tute for a drug with a BW. As an example, auranofin is
used to treat rheumatoid arthritis but has a BW. Our sys-
tem identified a drug (meclofenamate, which does not
have a BW) already known to be safer for this indication.
Drug efficacy and safety are among the most critical

and challenging issues facing government agencies,
pharmaceutical companies, and academic researchers.
Since FDA-approved drug labels are the most compre-
hensive and reliable source for therapeutic and safety
information about currently marketed drugs, they are
critical for the development of a novel in silico drug
repositioning method. As new drugs are approved, new
labels are created. Additionally, after years of clinical use
of drugs, updates to their drug labels may be made
because knowledge about the drug may change. The
dynamic nature of the drug labels also requires an
appropriate text mining approach so that the temporal
pattern in the drug labels can be utilized for a more
powerful drug repositioning system. Although the cur-
rent study only considered the most recent drug labels,
drug labels can also be mined at varying time points by
using a dynamic topic modeling approach. In addition
to predicting repositioning opportunities, the dynamic
approach may also enable the development of an alert
system for pharmacovigilance purposes.

Conclusions
This study investigated drug repositioning opportunities
with an additional focus on safety analysis by perform-
ing topic modeling on FDA drug labels and measuring
drug similarity by the number of discovered topics
representing side effects. Our results demonstrated that
drugs considered to be similar by this method may
often be effective for the same disease. There are several
benefits of this proposed approach: it may offer oppor-
tunities to reposition drugs without a BW to replace the
drugs with BW; it may successfully identify therapeutic
groups with the highest chance for drug repositioning,
and the proposed method could offer a promising
approach for pharmacovigilance.
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