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Abstract

Background: Genome Wide Association Studies represent powerful approaches that aim at disentangling the
genetic and molecular mechanisms underlying complex traits. The usual “one-SNP-at-the-time” testing strategy
cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes
classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium.
Validation shows that our model reaches classification performances superior to those obtained by the standard
Naïve Bayes classifier for simulated and real datasets.

Methods: In the Hierarchical Naïve Bayes implemented, the SNPs mapping to the same region of Linkage
Disequilibrium are considered as “details” or “replicates” of the locus, each contributing to the overall effect of the
region on the phenotype. A latent variable for each block, which models the “population” of correlated SNPs, can
be then used to summarize the available information. The classification is thus performed relying on the latent
variables conditional probability distributions and on the SNPs data available.

Results: The developed methodology has been tested on simulated datasets, each composed by 300 cases, 300
controls and a variable number of SNPs. Our approach has been also applied to two real datasets on the genetic
bases of Type 1 Diabetes and Type 2 Diabetes generated by the Wellcome Trust Case Control Consortium.

Conclusions: The approach proposed in this paper, called Hierarchical Naïve Bayes, allows dealing with
classification of examples for which genetic information of structurally correlated SNPs are available. It improves the
Naïve Bayes performances by properly handling the within-loci variability.

Background
In the last few years, the advent of massive genotyping
technologies allowed researchers to define the individual
genetic characteristics on a whole-genome scale. These
advances boosted the diffusion of Genome Wide Asso-
ciation Studies (GWASs) and transformed them from
expensive instruments of investigation into relatively
affordable, popular and powerful research tools. For this
reason, they have been extensively applied to the study
of the most prevalent disorders.
As a matter of fact, most of the common diseases (e.g.

diabetes mellitus, obesity, arterial hypertension, etc.)

belong to the category of complex traits [1] which expres-
sion results from the additive contribution of a large spec-
trum of environmental determinants (exposure to external
factors), behavioural factors (diet, life-style, smoke,...) and
genetic variants (point mutations, single nucleotide poly-
morphisms - SNPs, large scale structural variations) [2].
Moreover, complex interactions among genetic variants,
environmental factors and external influences are sup-
posed to modulate not only the expression of the disease,
but also the effectiveness of pharmacological treatments
[3,4]. In this context, the identification of the molecular
mechanisms underlying a certain disease could help
researchers in forecasting the individual-level probability
of developing specific disorders and thus in defining per-
sonalized pharmacological interventions. GWASs seem
thus an interesting approach to cope with such issues by
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deepening the insight about the contribution of the
genetic make-up of an individual to the probability of
developing a certain disease or trait [2].
To date, from the statistical viewpoint, the main lim-

itations to the full exploitation of the GWAS results are
mostly represented by the lack of appropriate multivari-
ate tools, which can replace the usual univariate testing
strategies, commonly used during for the discovery
phase of a GWAS. In standard univariate analyses, rules
for defining statistically significant associations are
usually based on the application of over-conservative
significance thresholds, imposed to minimize the prob-
ability of false positive associations. The main drawback
of these approaches is that they tend to discard poten-
tially informative signals, resumed by genetic loci char-
acterized by small effects on the trait [5].
In this context, multivariate models could overcome

the limitations of the usual “one-SNP-at-a-time” testing
strategies, offering the possibility of exploring and inte-
grating the huge amount of information deriving both
from whole genome screenings and from clinical/pheno-
typic measurements.
Beside logistic regression (LR), which represents the

most common approach for building multivariate models
from SNPs data [6], several standard and alternative
machine learning approaches such Naïve Bayes (NB),
Support Vectors Machines (SVM), Random Forests (RF),
Least Absolute Shrinkage and Selection Operator
(LASSO) and model-averaged Naïve Bayes (MANB) have
been proposed and applied for dealing with GWAS data.
NB represents a machine-learning method that has been
used for over 50 years in biomedical informatics [7]. NB
is computationally inexpensive and it has often been
shown to reach optimal classification performances, even
when compared to much more advanced and complex
methods [8]. However, NB loses accuracy in presence of
large amounts of attributes to be analyzed, since it tends
to make predictions with posterior probabilities close to
0 and 1 [9]. SVMs are one of the most popular classifiers
in the field of machine learning and achieves state-of-
the-art accuracy in many computational biology applica-
tions [10]. Thanks to their performances, they have been
applied recently in the context of GWAS [11,12]. Classifi-
cation and Regression Trees (CART) represent machine
learning algorithms that allow for the identification of
predictive stratifications and functional interactions
within data [13]. In the context of CART family of algo-
rithms, RFs [14] allow analysing complex discrete traits
using dense genetic information deriving from large sets
of markers. In this context RFs are widely employed to
the analysis of candidate genes association studies and
GWAS for human binary traits [15]. Further, alternative
approaches such logistic and Bayesian LASSO have been
recently proposed and successfully applied for

performing multivariate features selection in a genome-
wide context [16-18], offering an appealing alternative to
the standard univariate SNPs ranking and selection
strategies.
Recently, Lee et al. [19] and Yang et al. [5] proposed

two multivariate approaches based on the simultaneous
fitting of a genome wide set of SNPs. In particular, Yang
et al. [5] showed that about 45% of variance of the
human height could be explained by considering simulta-
neously a whole - genome set of SNPs instead of focusing
on a small fraction of highly significant hits. In a Bayesian
framework, Wei et al. [20] proposed a model-averaged
Naïve Bayes (MANB) to predict late onset Alzheimer’s
disease using about 310,000 polymorphic markers. These
observations suggest that the genetic signature of an indi-
vidual is represented by the information contained in its
whole genome sequence more than in candidate loci.
Multivariate models, however, can be hardly learned

from GWASs data due to the so-called “small-n large-p
problem”: the number of variables in the model, i.e. the
genotype loci, is much larger than the number of available
individuals. This may cause major problems in model
selection and model parameters fitting, instability and
overfitting.
Bayesian methods, and in particular Bayesian Hierarchi-

cal Models (BHMs), represent a promising framework for
deriving information from large sets of variables by
exploiting available prior knowledge.
In our paper, we will exploit the capability of such mod-

els to use the knowledge about the correlation structure of
such variables. Chromosome regions, represented by
sequences of nearby SNPs, are often characterized by
strong pairwise correlation, making the information avail-
able redundant and thus difficult to be analyzed. Hierarch-
ical models (multilevel models) provide a way of pooling
the information of correlated variables without assuming
that they can be modelled as a unique variable [21]. Data
coming from the same population are split in homoge-
neous subgroups, to which individual-level parameters are
associated. The link/correlation among different individual
parameters is expressed by population level parameters -
or hyper-parameters. In this way it is possible to take into
account for both within-group heterogeneity (thanks to
the presence of individual level parameters) and between-
groups variability (thanks to the presence of the popula-
tion parameters).
BHMs have been already applied in a variety of biome-

dical contexts. They have been proposed as a fundamen-
tal tool to analyze next generation genomics data [22].
Moreover, Demichelis et al. applied such methods to tis-
sue microarray data coming from tumor biopsies [21].
In the context of GWASs, we propose a Hierarchical

Naïve Bayes (HNB) classification model that allows cap-
turing the uncertainty of the information deriving from
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a set of genetic markers that are functionally/structurally
correlated and to use this information to classify new
examples. SNPs that do not fall within such regions as
well as clinically relevant variables (e.g.: gender, smoke,
therapies, candidate markers) can be also included in
the model (Figure 1).
The following sections describe the main methodolo-

gical aspects of the algorithm implemented as well as
the results obtained on both simulated datasets and two
real GWASs on the genetic bases of Type 1 Diabetes
(T1D) and Type 2 Diabetes (T2D) by the Wellcome
Trust Case Control Consortium (WTCCC) [23].

Methods
The Hierarchical Naïve Bayes classifier (HBN) is an
extension of the well-known Naïve Bayes classifiers (NB).
NB assumes that, given a class variable C that we aim at
predicting (say disease yes/disease no) on the basis of a
set of nf features X = {x1,..., xnf}, the posterior probability
of the class given the data P(C|X) is proportional to the
product of the prior probability of the class and the con-

ditional probability, P(X|C) =
∏nf

f =1 P(Xf |C), i.e. that the
features are independent among each other given the
class. NB is a simple and robust classifier, which may be
conveniently used also in the context of large number of
features, due to its strong bias.
HBN assumes that the measurements are stochastic

variables with a hierarchical structure in terms of their

probability distributions. We suppose that we can collect a
number nrep of observations, or replicates on each exam-
ple, and that an example belongs to one of a set of given
classes. Let us suppose that is a stochastic variable repre-
senting the replicates, whose probability distribution is
dependent on a vector of parameters θ, which corresponds
to the single example, and may represent, for example, the
mean and variance of the probability distribution of repli-
cates; if we consider the i-th example, with i in 1,..., N, the
probability distribution of the vector of the replicates is
given by p(Xi|θi) , with, Xi = {xi1, . . . , xij, . . . , xinrep}, while
the probability distribution of the individual parameters is
p(θi|ξck ), where ξCk is a set of population hyper-parameters
that depends on the class Ck in the set C = {C1,... Ch} to
which the example belongs, and is thus the same for all
the examples of the same class. Figure 2 shows the repre-
sentation of the problems though a graphical model with
plates [21].
In a Bayesian framework, the classification step is

therefore performed by finding the class with the
highest posterior probability distribution. Thanks to
the conditional independence assumptions of the hier-
archical model described above, we can write
P(Ck|X) ∝ P(X|ξCk)P(ξCk |Ck)P(Ck) . Since the population

parameters ξCk are determined by the knowledge of
the class Ck with probability one, the equation can be

simplified as P(Ck|X) ∝ P(X|ξCk)P(Ck) . The posterior is

Figure 1 Graphical representation of a genome region.
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thus dependent on the so-called marginal like-

lihood,P(X|ξCk) , which can be calculated by integrating
out the vector of parameters θ.
Many replicates are available for each example. The

examples are characterized by an individual vector of
parameters θ; moreover, the examples belonging to the
same class have a common set of parameters ξ.

P(X|Ck, ξ) =
∫

�θ

P(X|Ck,θ)P(θ |Ck,ξ)dθ (1)

where Ωθ is the support of θ.
The learning problem will therefore consist in estimat-

ing the population parameters ξCk for each class, while
the classification problem is mainly related to the calcu-
lation of the marginal likelihood. To deal with multivari-
ate problems, we resort to the Naïve Bayes algorithm
(NB), which assumes that each attribute is conditionally
independent from the others given the class.

P(X|Ck) =
nf∏
f=1

P(Xf |Ck) (2)

From the computational viewpoint, this will allow us
to compute separately the marginal likelihood for each

variable to perform classification and to learn a collec-
tion of independent univariate models. In the following
we will show how HNB deals with the classification and
learning problems when the variables are discrete with
multinomial distribution.

Hierarchical Naïve Bayes for discrete variables
In a SNPs based case-control GWAS, the individual-
level information is represented by genotype configura-
tions (aa/aA/AA). For sake of readability we have
omitted the dependence of the vectors to the class k.
We assume that the vector of the occurrences (counts)
of the i-th example is Xi = {xi1, . . . , xij, . . . , xiS} , where
xij is the number of occurrences of the j-th discrete
value, or state, of the i-th example and S is the number
of states of the variable x. The number of replicates of
each example is given by nrepi =

∑S
j xij .

We also assume that the relationship between the data
Xi and the example parameters θi is expressed by a mul-
tinomial distribution:

Xi ∼ Multin(nrepi , θi1, . . . , θij, . . . , θiS) (3)

Therefore θi is an S-dimensional vector, where θij repre-
sents the probability of the occurrence of the j-th event in
the example i. The parameters θi, for i = 1, 2,..., NCk , are
characterized by the same prior Dirichlet distribution:

θi ∼ Dirichlet(αξ1, αξ2, . . . , αξS) (4)

with probability density:

P(θi|α, ξ) =
�(α)∏s

j=1 �(αξj)

s∏
j=1

θ
αξj−1
ij (5)

where 0 < a < ∞, ξj < 1 ∀j = 1,..., S and
∑s

j=1
ξ j = 1 .

Following the hierarchical model reported in the pre-
vious section, the individual example parameters θi, are
independent from each other given ξ = {ξ1,...,ξS} and a.
In the following we will assume that the parameter a
will be fixed, and it will be thus treated as a design para-
meters of the algorithm. a represents the prior assump-
tion on the degree of similarity of all examples
belonging to the same class. A proper setting of the
parameter a allows finding a compromise between a
pooling strategy, where all replicates are assumed to
belong to the same example and a full hierarchical strat-
egy where all examples are assumed to be different.

Classification
As described in the previous section, the classification
problem requires the computation of the marginal likeli-
hood (1). We assume that an estimate of the population
parameters ξ is available and that a, b and g are known.
Given an example with counts distributed on different

Figure 2 The hierarchical structure of the data represented
with plates notation.
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states X = {x1,..., xS}, where nrep =
∑s

j=1
xj , we must

compute:

P(X|Ck, ξ) =
∫

�θ

P(X|θ)P(θ |ξCk)dθ (6)

where θ = {θ1,..., θS} is the vector of the individual
example parameters, with

∑s

j=1
θ j = 1 and Ωθ the sup-

port of θ. This integral can be solved by noting that it
contains the product of a Multinomial and a Dirichlet
distribution.
The marginal likelihood can be thus computed as:

P(X|Ck, ξ) =
nrep!�(

∑
j αξj)

�(
∑

j (xj + αξj))

∏
j

�(xj + αξj)

xj!�(αξj)
(7)

The NB approach allows to exploit this equation for
each variable in the problem at hand, and then to apply
the equation (2) to perform the classification. The mar-
ginal likelihood however requires the estimate of the
population parameters ξ from the data.

Learning with collapsing
The task of learning the population parameters can be
performed by resorting to approximated techniques.
Herein we will describe a strategy previously presented
by [24] and [25].
We suppose that a data set X = {X1,..., XN} is available

for each class where Xi = {xi1,..., xis} and N is the num-
ber of examples within each class (the number of exam-
ples can differ between the classes). Such vector is
transformed into a new vector X*where the i-th element
X∗
i = {τixi1, . . . , τixij, . . . , τixis} with:

τi =
1 + α

nrepi + α
(8)

τi is a suitable weight that allows to take into account
the prior assumptions on the heterogeneity of the exam-
ple belonging to the class. The hierarchical model is
then collapsed into a new model, where the vector of
the measurements X∗

i is assumed to have a multinomial
distribution with parameters ξ and.τixinrepi .
Such assumption can be justified by the calculation of

the first and second moment of P(X*|ξ) which is com-
puted by approximating the distribution of the para-
meters θ given ξ with its average value [25].
The Maximum Likelihood (ML) estimate of the para-

meters ξ can be thus obtained for each state of the dis-
crete variable as:

ξJ =

∑N
i=1 τixij∑N

i=1 τinrepi
(9)

Within this framework we can also provide a Bayesian
estimate of the population parameters ξ. We assume
that ξ is a stochastic vector with a Dirichlet prior distri-
bution: ξ ~ Dirichlet(bg1,...., bgS), where 0 < b < ∞, gj < 1

∀ j = 1,..., S and
∑s

j=1 γj = 1 .

After collapsing, we may derive the posterior distribu-
tion of ξ is still a Dirichlet with expected value of the
probability of the j-th state of the discrete variable:

ξJ =

∑N
i=1 τixij + βγj∑N
i=1 τinrepi + β

(10)

In this setting, the parameter vector g and b assume
the same meaning of the parameters usually specified in
the Bayesian learning strategies applied in many
Machine Learning algorithms. In particular, if we
assume g = 1/S and b = 1 we obtain an estimate which
is close to the Laplace estimate, while different choices
of g and b lead to estimates which are similar to the m-
estimate, where b plays the role of m.

Building the model
The HBN machinery can be conveniently exploited to
build a multivariate model for SNPs coming from a
GWAS. In presence of regions in which non-random asso-
ciation of alleles at two or more loci or Linkage Disequili-
brium (LD) is observed [26], a new variable X is generated,
and all the SNPs belonging to the same block are consid-
ered as replicate of the same variable (see Figure 1). On
the contrary, if the SNPs are not in LD, they are treated as
independent variables in equation (2). For this reason, the
model needs a convenient pre-processing step, in which
blocks of SNPs characterized by LD are identified and the
variables extracted.
Figure 3 reports a graphical representation of how

SNPs data can be mapped using the plates notation.
According to this representation, each individual is
characterized by a vector (or individual parameter θ)
reporting the genotypes corresponding to set of SNPs
mapping to the same LD region. The set of individual
parameters are then employed to estimate a latent vari-
able ξ: each latent variable resumes the individual level
information deriving from a different LD region. Thus,
the complete set of latent variables (along with poten-
tially informative covariates) is used in turns to estimate
the probability of being affected or healthy by the Bayes’
theorem.

Results
Datasets simulation
A total number of 9 independent datasets each com-
posed by 300 cases, 300 controls and approximately
34,000 SNPs (representing the whole chromosome 22)
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have been simulated by the by the Hapgen software [23],
according to the patterns of LD that characterize the
HapMap CEU b36 reference population (http://hapmap.
ncbi.nlm.nih.gov/). Three simulation scenarios have
been evaluated, by imposing different genotype relative
risk for causative loci:

• Scenario 1: heterozygote relative risk = 1.5, homo-
zygote relative risk = 3.0
• Scenario 2: heterozygote relative risk = 2.0, homo-
zygote relative risk = 4.0
• Scenario 3: heterozygote relative risk = 3.0, homo-
zygote relative risk = 6.0

Three simulated datasets have been generated accord-
ing to each scenario, by imposing Minor Allele Fre-
quency (MAF) ≥ 0.05.

Experimental datasets
The experimental case control datasets were represented
by two genome-wide scans on T1D and T2D generated

by the WTCCC consortium [23]. Individual-level geno-
types determination has been performed with the Affy-
metrix GeneChip 500 K Mapping Array Set (www.
affymetrix.com), which comprises 500,568 SNPs, while
genotypes have been estimated from raw intensity sig-
nals by the Chiamo software tool [23].
Genotyped samples underwent a preliminary phase of

data quality control (QC) which comprised the removal
of cases and controls showing: i) missing data fraction >
3%;
ii) heterozygote genotypes fraction > 0.3 OR heterozy-

gote genotypes fraction < 0.225;
iii) discordances or lack in terms of phenotype vs.

laboratory information; iv) not-European ancestry; v)
1st/2nd degree relatives; vi) duplicated samples. Analo-
gously, SNPs QC consisted in removing markers charac-
terized by: i) study-wise missing data proportion > 5%
OR study-wise minor allele frequency < 5% AND study-
wise missing data proportion > 1%; ii) statistically signif-
icant deviations from the Hardy-Weinberg Equilibrium
within controls (p-HWE < 5.7 × 10-7); iii) 1 df Trend

Figure 3 The hierarchical structure of the data represented with the plates notation using SNPs data.
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Test/2 df General test p-value < 5.7 × 10-7 comparing
allele and genotype frequencies between control groups;
iv) bad clustering quality.
For a more detailed description of samples selection,

genotyping procedures and quality control filters
applied, the reader may refer to [23].
T1D dataset. The final dataset was composed by 1,963

patients affected by T1D, 1,458 control individuals from
the UK Blood Service and 458,868 autosomal SNPs
(mapping to chromosomes 1- 22) passing the quality
control procedures.
T2D dataset. The final dataset was composed by 1,924

patients affected by T2D, 1,458 control individuals from
the UK Blood Service and 458,868 autosomal SNPs
(mapping to chromosomes 1- 22) passing the quality
control procedures.

Data pre-processing
Both simulated and experimental datasets underwent a
preliminary phase of features selection and variables fil-
tering aimed at i) reducing the space of the hypotheses
to be tested and ii) isolating chromosome regions char-
acterized by strong LD.
The main steps of the datasets preparation are

reported below:

1. The whole datasets have been split randomly into
screening (representing 70% of the whole dataset) and
replication sets (the remaining 30% of the whole data-
set). The sampling procedure has been performed with
stratification, so that each fold was represented by the
same proportion of cases and controls.
2. On each screening set:

a. Selected the top 500 most significant markers,
based on the results from univariate Pearson c2
tests with 2 degrees of freedom (df), comparing
genotypes distributions between cases and controls.
b. Define chromosome regions characterized by
the presence of nearby SNPs showing pairwise r2

≥ x, where x represents arbitrary cut-off values
corresponding to r2 = 0.6 (SNPs in moderate-to-
strong LD) and 0.8 (SNPs in strong LD)
respectively.

i. Group markers localized within the same
LD -block and build latent-variables.
ii. Use the remaining SNPs falling outside the
LD-blocks as covariates.

c. Split the whole screening set into 10 folds of
equal sample size and characterized by cases/
controls ratio = 1 according to the 10 Folds
Cross Validation procedure (10 Folds CV) [27].

3. Apply the LD-based SNPs grouping schema learnt
on the screening set to the corresponding replication
set.

Both screening and replication sets have been
employed for evaluating the generalization performances
obtained by the HNB algorithm and to compare them
with those obtained by the standard NB classifier on the
same datasets.

Results from simulated datasets
The HNB algorithm has been validated on simulated
datasets, which underwent the pre-processing phases
described in the previous sections.
Descriptive analyses of the simulated datasets revealed

that the number of blocks to be analyzed increased pro-
portionally to the stringency of the r2 imposed for defin-
ing regions of correlation, while the median number of
SNPs characterizing each block decreased. This is due to
the fact that SNPs linked by strong correlation (r2 ≥ 8),
are generally confined to small and fragmented regions
due to structural recombination events. Table 1 resumes
the characteristics of the nine simulated datasets.
The generalization performances of the two algo-

rithms have been evaluated by comparing the Classifica-
tion Accuracy (CA) and the Area Under the Curve
(AUC) of the two models estimated by 10 Folds CV
procedures and by testing the models learnt on single
screening set on the corresponding independent replica-
tion set [27,28]. Results are reported in Table 2 and
show that the HNB reaches higher or equal generaliza-
tion performances with respect to the standard NB
when chromosome regions characterized by SNPs show-
ing moderate-to-strong (r2 > 0.6) or strong (r2 > 0.8)
pairwise LD are analyzed.
No significant variations in terms of CA and AUC

have been observed as function of the different genotype
relative risks imposed for data simulations (p > 0.05),
thus CA and AUC estimated from different simulations
have been pooled and used for evaluating the differences

Table 1 Characteristics of the simulated datasets.

LD thr.: r2 ≥ .0.60 LD thr.: r2 ≥ 0.80

sim GRR B SNPs/B r2 B SNPs/B r2

1 1.5/3.0 43 5.0 [6.50] 0.94 [0.13] 63 3 [5.50] 0.97 [0.06]

2 1.5/3.0 36 6.5 [11.50] 0.95 [0.08] 55 4 [6.00] 0.98 [0.05]

3 1.5/3.0 58 3.5 [5.00] 0.97 [0.07] 76 3 [3.00] 0.98 [0.06]

4 2.0/4.0 24 8.5 [29.50] 0.97 [0.07] 67 4 [4.00] 0.98 [0.06]

5 2.0/4.0 34 4.5 [14.00] 0.95 [0.17] 61 3 [6.00] 0.98 [0.09]

6 2.0/4.0 39 5.0 [6.50] 0.97 [0.19] 70 4 [3.75] 0.99 [0.05]

7 3.0/6.0 22 9.0 [28.25] 0.96 [0.07] 49 5 [6.00] 0.98 [0.07]

8 3.0/6.0 45 5.0 [10.00] 0.98 [0.10] 80 3 [3.00] 0.98 [0.06]

9 3.0/6.0 34 8.5 [14.50] 0.93 [0.11] 72 3 [4.00] 0.96 [0.09]

GRR, heterozygote/homozygote Genotype Relative Risk (GRR); B, number of
blocks; SNPs/B, median number [Interquartile Range (IQR)] of SNPs within
each block; r2, median [Interquartile Range (IQR)] pairwise r2 within each
block. The described parameters are reported for blocks defined using
thresholds of LD corresponding to r2 ≥ 0.6 and 0.8 respectively.
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in terms of classification performances between HNB
and NB.
Results show that the median CA and AUC obtained

by the HNB over the single results are higher to those
reached by the standard NB for both LD thresholds that
have been evaluated. The one-tailed Wilcoxon signed
rank test [29] has been used for testing the hypotheses
that the CA and AUC obtained by the HNB were

significantly higher than those estimated by the standard
NB and by the majority classifier [30].
Results from the Wilcoxon signed rank test showed

that:

• The distribution of the AUC values estimated by the
HNB over the complete set of simulations was signifi-
cantly higher than the corresponding distribution of

Table 2 Results from the analysis of simulated datasets

10 Folds CV Independent Test

sim GRR LD thr. Model CA AUC CA AUC

1 1.5/3.0 r2 ≥ 0.6. HNB 0.85 [0.81-0.87] 0.92 [0.91-0.95] 0.64 0.66

NB 0.80 [0.78-0.82] 0.90 [0.89-0.90] 0.69 0.70

r2 ≥ 0.8. HNB 0.85 [0.81-0.89] 0.93 [0.90-0.95] 0.63 0.68

NB 0.80 [0.78-0.82] 0.90 [0.89-0.90] 0.69 0.70

2 1.5/3.0 r2 ≥ 0.6. HNB 0.87 [0.83-0.93] 0.94 [0.89-0.98] 0.63 0.68

NB 0.83 [0.80-0.83] 0.87 [0.84-0.90] 0.59 0.63

r2 ≥ 0.8. HNB 0.85 [0.80-0.87] 0.92 [0.88-0.94] 0.65 0.70

NB 0.83 [0.80-0.83] 0.87 [0.84-0.90] 0.59 0.63

3 1.5/3.0 r2 ≥ 0.6 HNB 0.73 [0.70-0.77] 0.82 [0.76-0.85] 0.65 0.72

NB 0.78 [0.69-0.80] 0.86 [0.77-0.94] 0.68 0.75

r2 ≥ 0.8 HNB 0.77 [0.70-0.80] 0.85 [0.80-0.88] 0.71 0.75

NB 0.78 [0.69-0.80] 0.86 [0.77-0.94] 0.68 0.75

4 2.0/4.0 r2 ≥ 0.6 HNB 0.78 [0.72-0.84] 0.85 [0.80-0.89] 0.74 0.80

NB 0.72 [0.64-0.81] 0.76 [0.72-0.86] 0.71 0.75

r2 ≥ 0.8 HNB 0.72 [0.64-0.81] 0.77 [0.71-0.88] 0.70 0.76

NB 0.72 [0.64-0.81] 0.76 [0.72-0.86] 0.71 0.75

5 2.0/4.0 r2 ≥ 0.6 HNB 0.82 [0.77-0.83] 0.89 [0.83-0.92] 0.73 0.80

NB 0.78 [0.73-0.80] 0.84 [0.77-0.85] 0.76 0.83

r2 ≥ 0.8 HNB 0.82 [0.78-0.83] 0.88 [0.84-0.90] 0.76 0.86

NB 0.78 [0.73-0.80] 0.84 [0.77-0.85] 0.76 0.83

6 2.0/4.0 r2 ≥ 0.6 HNB 0.77 [0.73-0.80] 0.85 [0.83-0.87] 0.71 0.79

NB 0.75 [0.68-0.77] 0.80 [0.76-0.82] 0.66 0.71

r2 ≥ 0.8 HNB 0.73 [0.67-0.77] 0.80 [0.79-0.82] 0.65 0.72

NB 0.75 [0.68-0.77] 0.79 [0.76-0.82] 0.66 0.71

7 3.0/6.0 r2 ≥ 0.6 HNB 0.83 [0.81-0.83] 0.91 [0.87-0.93] 0.76 0.84

NB 0.80 [0.77-0.83] 0.85 [0.83-0.88] 0.81 0.87

r2 ≥ 0.8 HNB 0.83 [0.80-0.86] 0.94 [0.93-0.94] 0.82 0.91

NB 0.80 [0.77-0.83] 0.85 [0.83-0.88] 0.81 0.87

8 3.0/6.0 r2 ≥ 0.6 HNB 0.83 [0.78-0.87] 0.91 [0.89-0.94] 0.78 0.83

NB 0.82 [0.80-0.86] 0.87 [0.82-0.94] 0.81 0.85

r2 ≥ 0.8 HNB 0.82 [0.77-0.86] 0.90 [0.85-0.94] 0.78 0.86

NB 0.82 [0.78-0.86] 0.87 [0.82-0.94] 0.81 0.85

9 3.0/6.0 r2 ≥ 0.6 HNB 0.92 [0.87-0.93] 0.96 [0.94-0.98] 0.86 0.92

NB 0.83 [0.83-0.87] 0.92 [0.92-0.95] 0.84 0.86

r2 ≥ 0.8 HNB 0.87 [0.87-0.92] 0.96 [0.93-0.97] 0.89 0.92

NB 0.83 [0.83-0.87] 0.92 [0.92-0.95] 0.84 0.86

CA, Median Classification Accuracy and 25% - 75% of the distribution; AUC, Median Area Under the Curve and 25% - 75% of the distribution. The 25% - 75% of
the distribution are reported for results deriving from 10 Folds CV.

Majority Classifier CA and AUC for 10 Folds CV and Independent test sets: 0.50
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AUC estimated by the standard NB when r2 ≥ 0.8 was
imposed as threshold for defining LD-regions (AUC
from 10 Folds CV: p < 0.05; AUC from independent
replication set: p < 0.05).
• The HNB algorithm reached CA and AUC esti-
mates significantly higher than those obtained by the
majority classifier:

○ by comparing the distribution of CA and AUC
obtained by the HNB with those generated by the
majority classifier on the corresponding folds (maj.
CA = 0.50, maj. AUC = 0.50) for each screening
set according to both LD thresholds (p < 0.01);
○ by comparing the distribution of CA and AUC
estimated by the HNB over the 9 independent test
sets with the corresponding distribution of CA and
AUC obtained by the majority classifier (maj. CA =
0.50, maj. AUC = 0.50) on the corresponding test
set according to both LD thresholds (p < 0.01).

Hierarchical Naïve Bayes for Type 1 and Type 2 Diabetes
prediction
The HNB algorithm has been evaluated on two real
genome-wide datasets aimed at identifying the genetic
bases of T1D and T2D respectively. The analyzed data-
sets have been generated by the WTCCC [23] and they
are publicly available. The final datasets were each com-
posed by 1,400 cases and 1,400 controls sampled ran-
domly from the complete set of individuals passing the
quality control filters as reported in the previous section.
Thus, each final dataset has been split into a fist set of
2,100 individuals (1,050 cases and 1,050 controls) repre-
senting the screening cohort, while the replication set
was composed by the remaining 350 cases and 350 con-
trols. The preliminary phases of features selection and
LD-regions definition (using r2 ≥ 0.8 as threshold) have
been performed as reported in methods section, SNPs
that did not fall within conserved regions have been
used as covariates.
The generalization performances of the proposed

approach and of the NB have been estimated by i) 10
Folds CV performed on the each screening set and ii)
by learning the models on the whole screening set and
then testing the CA and AUC on the two corresponding
replication cohorts.
Results are reported in Table 3 and confirm that the

HNB algorithm is able to reach the highest generaliza-
tion performances on both datasets, according to both
10 Folds CV and by testing the model learnt on the
whole screening set on the corresponding independent
replication cohort. Further, results from the Wilcoxon
Signed Rank test evidenced that the distribution of CA
and AUC obtained by the HNB by 10 Folds CV was sig-
nificantly higher than the corresponding distributions

obtained by the majority classifier on the same folds
(p < 0.05).

Discussion
The approach proposed, called Hierarchical Naïve Bayes,
represents an innovative strategy aimed at exploiting
correlated information from genome wide datasets. The
human genome is typically characterized by local pat-
terns of strong LD that define blocks of SNPs showing
low recombination rates. In this scenario, the HNB
represents a suitable way of deriving genetic information
with respect to standard multivariate models, since it is
able to take into account for structural correlations
existing between markers. These characteristics allow
HNB to overcome the limitations of the standard NB
algorithm, which over-simplistic assumptions of inde-
pendence between attributes are rarely respected in the
context of GWAS data. The results obtained by the
HNB on both simulated and real datasets show that the
proposed approach is able to achieve classification per-
formances that are generally higher or equal to those
obtained by multivariate models based on standard NB.
In particular, the HNB represents a suitable alternative
to the standard NB when analyzing genome regions
characterized by strong LD, a typical condition in which
the assumptions of independency between variables of
the HNB are dramatically violated.
To be noted, even if the results obtained by the 10

Folds CV procedures are prone to overfitting for both
simulated and real datasets, since the preliminary filter-
ing phase heavily exploits the screening set for features
selection and blocks determination, the results obtained
on the replication sets are free from these limitations.
These observations confirm how taking into account for
structural correlation between markers offers substantial
gain in terms of generalization capability with respect to
the standard NB approach that does not consider the
human genome structure.
Many research groups used the publicly available

WTCCC datasets and private case/control cohorts on

Table 3 Results obtained on the T1D and T2D datasets

10 Folds CV Independent Test

Study Model CA AUC CA AUC

T1D HNB 0.70 [0.67-0.73] 0.80 [0.78-0.82] 0.71 0.79

NB 0.70 [0.67-0.72] 0.79 [0.76-0.81] 0.68 0.78

T2D HNB 0.83 [0.81-0.85] 0.92 [0.89-0.93] 0.57 0.57

NB 0.81 [0.80-0.84] 0.90 [0.89-0.92] 0.55 0.56

CA, Median Classification Accuracy and 25% - 75% of the distribution; AUC,
Median Area Under the Curve and 25% - 75% of the distribution. The 25% -
75% of the distribution are reported for results deriving from 10 Folds CV. The
described parameters are reported for blocks defined using thresholds of LD
corresponding to r2 ≥ 0.8

Majority Classifier CA and AUC for 10 Folds CV and Independent test sets:
0.50.
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T1D and T2D for testing the predictive performances of
several machine learning algorithms. As an example, Wei
et al., explored an approach based on SVM for building
risk models using SNPs data and tested their approach
on different case/control datasets on T1D [11]. The
authors reported AUC ranging from 0.86 to 0.89 by 5
Folds CV, using different SNPs inclusion thresholds on
the WTCCC cohort, while AUC corresponding to 0.84
and 0.83 by training the algorithm on WTCCC data and
testing the performances on CHOP/Montreal-T1D and
GoKinD-T1D datasets respectively, representing inde-
pendent cohorts of cases and controls. When the algo-
rithm was trained on the CHOP/Montreal-T1D and
tested on the WTCCC and GoKinD-T1D data, the algo-
rithm reached comparable AUC estimates, corresponding
to 0.84 and 0.82 respectively. Roshan et al. [31] studied
the number of causal variants and associated regions
identified by top SNPs in rankings given by the 1 df chi-
squared statistic, SVM and RF on real datasets on T1D
from the WTCCC and GoKinD studies. SVM achieved
the highest AUC of 0.83 with 21 SNPs followed by ran-
dom forest and chi-square AUCs of 0.81 each with 29
and 17 SNPs, respectively. Clayton [32] discussed the
impact of including interaction terms for predicting the
probability of T1D and reported AUC estimated corre-
sponding to 0.74 using pairwise interaction terms in
logistic regression and 0.73 when no interaction were
considered. These observations suggest how interaction
between SNPs does not add substantial additional infor-
mation to the correct classification of T1D subjects.
Lower CA and AUC estimates are generally obtained

from the T2D datasets. As an example, van Hoek et al.
investigated 18 polymorphisms from recent GWAS on
T2D by logistic and Cox regression models in the Rot-
terdam Study cohort, reaching AUC corresponding to
0.60 [33]. Hyo-Jeong Ban et al. [12] analyzed a Korean
population of T2D patients and controls, reporting CA
corresponding to 0.65 using a combination of 14 SNPs
in 12 genes mapping to T2D related pathways by using
the radial basis function (RBF)-kernel SVM.
The performances obtained by the HNB on the inde-

pendent test sets are generally comparable to those
reported by other research groups for both T1D and
T2D reported in this section. However, a direct compar-
ison of the performances obtained by the HNB on the
real datasets with those obtained by other previously
published approaches on the same WTCCC cohorts can
be hardly interpreted due to differences in terms of
sample size of the control population (the analyzed
dataset does not include the 1958 British Birth Cohort
of controls, generated by the WTCCC and commonly
used as reference population along with the UK Blood
Service cohort). Further, the lack of covariates regarding
T1D and T2D cases and controls (e.g., BMI, smoking

history,.., etc.) limited the possibility to integrate genetic
and clinical information, a key step for a deeper com-
prehension of complex trait diseases. Thus, the availabil-
ity of GWAS datasets complete of detailed phenotype
and clinical information will allow testing the HNB in a
more realistic scenario. Beside these considerations, the
proposed approach can be further improved to take into
account also functional correlations, by using, for exam-
ple, the Tree Augmented Naïve Bayes (TAN) approach
on the latent variables, thus combining the two strate-
gies [34].
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