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Abstract

Background: Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid
tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of
these models use classical transport/mass conservation equations for describing the distribution of molecular species in
tumor spheroids, and the Fick’s law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the
equations for the cell movement and proliferation are first order differential equations describing the rate of change of
the velocity of the cells with respect to the spatial coordinates as a function of the nutrient’s gradient. Several
modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes
cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with
these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model
the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the
intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive
transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells
with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated
with gemcitabine is also novel.

Methods: We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the
specification formalism of he tool Redi, we recently developed for simulating reaction-diffusion systems. We also
describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is
based on a generalization of the Fick’s first diffusion law that allows to model diffusive transport in non-
homogeneous media. The diffusion coefficient is explicitly expressed as a function depending on the local
conditions of the medium, such as the concentration of molecular species, the viscosity of the medium and the
temperature. We incorporated this generalized law in a reaction-based stochastic simulation framework
implementing an efficient version of Gillespie algorithm for modeling the dynamics of the interactions between
tumor cell, nutrients and gemcitabine in a spatial domain expressing a nutrient and drug concentration gradient.

Results: Using the mathematical framework of model we simulated the spatial growth of a 2D spheroidal tumor
model in response to a treatment with gemcitabine and a dynamic gradient of oxygen and glucose. The
parameters of the model have been taken from recet literature and also inferred from real tumor shrinkage curves
measured in patients suffering from non-small cell lung cancer. The simulations qualitatively reproduce the time
evolution of the morphologies of these tumors as well as the morphological patterns follow the growth curves
observed in patients.
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Conclusions: This model is able to reproduce the observed increment/decrement of tumor size in response to the
pharmacological treatment with gemcitabine. The formal specification of the model in Redi can be easily extended
in an incremental way to include other relevant biophysical processes, such as local extracellular matrix
remodelling, active cell migration and traction, and reshaping of host tissue vasculature, in order to be even more
relevant to support the experimental investigation of cancer.

Background
As the name indicates, reaction-diffusion models consist
of two components. For systems of molecules and atoms,
the first component is a set of biochemical reactions
which produce, transform or remove chemical species.
The second component is a mathematical description of
the diffusion process. At molecular level, diffusion is due
to the motion of the molecules in a medium. If solutions
of different concentrations are brought into contact with
each other, the solute molecules tend to flow from regions
of higher concentration to regions of lower concentration,
and there is ultimately an equalization of concentration.
The conceptual framework of a micro-scale reaction-
diffusion system can be also adopted to describe the phe-
nomenology of cellular proliferation in tumor growth.
Indeed, reaction-diffusion equations based models have
been widely used in the literature for modeling the tumor
growth. A comprehensive review of reaction-diffusion
models and spatial dynamics of tumor growth can be
found in [1-4], while specific literature about different var-
iant of reaction-diffusion models of tumor growth can be
found in [2,5-13]. Recently, there have been also interest-
ing approaching to the adaptation of general reaction-
diffusion models to the specific patient [14,15].
In this application domain, the reaction-diffusion models

describe the evolution of the tumors via proliferation of
malignant cells and their infiltration into the surrounding
healthy tissue (see [16] for a review). The building block of
these models is the reaction-diffusion type partial differen-
tial equations expressing the rate of change of the tumor
cell density as sum of two terms. These terms correspond
to the two phenomena described by the model: the diffu-
sion term models, via the first Fick’s law, the migration of
tumor cells within the tissue and the reaction term, that is
polynomial in the tumor cell density, models the prolifera-
tion of tumor cells [15]. Different reaction-diffusion
models proposed in the literature mostly differ by the con-
struction of the diffusion tensor in the mathematical
expression of the Fick’s law and the form of the prolifera-
tion term [15].
In this study we present a multiscale reaction-diffusion

model linking the proliferation of malignant cells to (i)
the upshot of the interactions between the oncological
drug and the tumor cell, (ii) the availability and the rate
of uptake of nutrient by the tumor cells, (iii) and, finally
the availability and the rate of consumption of oxygen.

Moreover, unlike the majority of the existing models of
tumor growth, our model is stochastic, i.e. the interac-
tions between tumor cells and drugs, as well as the events
of uptake and consumption of nutrients and oxygen are
stochastic Markov events. All the reaction-diffusion
events are parallel and concurrent. The probability of a
given event to be executed is proportional to the number
of substrate molecules (for biochemical reactions) or to
the number of cells (for interactions like cell proliferation
and tumor growth). Recent studies [17] support this
approach and show how the competitive intra-cellular
reactions for the uptake and consumption of nutrients
and oxygen are crucial in determining the tumor
morphology.
We developed a generalization of the Fick’s laws to

model diffusion of drugs, nutrients and oxygen in the tis-
sue, whereas we use the standard Fick’s law to model the
tumor cell proliferation and invasion following the gradi-
ent of nutrients and oxygen. Namely, the number of
tumor cells and their spatial proliferation depend on the
diffusion of nutrients, oxygen and drugs through the
space and on the results of the interaction of these cell
with the anticancer drug.
Before proceeding with a detailed explanation of our

model of reaction-diffusion system, we briefly introduce
the motivations and the guidelines of our work.
The tumor size provides a measure that is useful for

describing the time course of tumor response to the che-
motherapic treatment. However, tumor growth changes
can be observed only through repeat following-up visits
and may require sophisticated and expensive hardware
and software imaging techniques especially for monitor-
ing the size of in deep-seated tumors. Due to this reason,
the measurements of tumor progression in time and
space has yet to gain wide application as an end point for
drug effects modelling in clinical trials. The measure-
ments of tumor size are still principally used for tumor
stage categorization, whereas in the early-phase clinical
trials the measurements of changes in hematologic vari-
ables have been used as pharmacodynamic targets [18].
Therefore, a pharmacodynamic model that describes the
interactions of tumor cells with the oncological drug and
with nutrients, as well as the drug effects may have prac-
tical potential as a midterm end point for decision mak-
ing about drug administration schedule and treatment
duration. In this article, we focus on the modelling and
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simulation of the growth of non-small cell lung cancer
treated with gemcitabine. This kind of cancer and its
pharmacological treatment have been recently studied
and new experimental data concerning both the mea-
surements of the progression of tumor size [18] and the
pharmacokinetics and pharmacodynamics of the gemci-
tabine [19] are now available and enable us to use of the
computational models presented in this study.
In order to build an accurate and predictive model of

tumor growth, the physical and biochemical non-homoge-
neous environments in which the tumor arises and pro-
gresses, a generalization of the current mathematical
formalization of reaction-diffusion systems is needed both
at the micro-scale of the intra-cellular phenomena and at
the meso-scale of inter-cellular and tissue processes. A pre-
ponderance of reaction-diffusion models of intra- and
inter- cellular kinetics is usually performed on the premise
that diffusion is so fast that all concentrations are main-
tained homogeneous in space. However, recent experimen-
tal data on intra- and inter-cellular diffusion constants,
indicate that this supposition is not necessarily valid even
for small prokaryotic cells [20,21]. If the system is com-
posed of a sufficiently large number of molecules, the con-
centration, i. e. the number of molecules per unit volume,
can be represented as a continuous and differentiable vari-
able of space and time. In this limit a reaction diffusion sys-
tem can be modeled using differential equations. In an
unstructured solvent, ideally behaving solutes (i.e. solutes
for which solute-solute interaction are negligible) obey the
Fick’s law of diffusion. However in biological systems even
for purely diffusive transport phenomena classical Fickian
diffusion is, at best, a first approximation [22,23]. The intra-
and the inter-cellular media are not homogeneous mixtures
of chemical species, but highly structured environments
partitioned into compartments in which the distribution of
the biomolecules could be non-homogeneous. The descrip-
tion of diffusion processes in this environment has to start
from a model in which diffusion coefficient contains its
dependency on the local concentrations of the solutes and
solvent.
In order to tackle this problem, this paper presents a

new model of diffusion coefficient for a non-homoge-
neous non-well-stirred reaction-diffusion system. In this
model the diffusion coefficient explicitly depends on the
local concentration, frictional coefficient of the particles
of the systems, and of the temperature of the reaction
environment. In turn, the rates of diffusion of the bio-
chemical species are expressed in terms of these concen-
tration-dependent diffusion coefficients. In this study the
purely diffusive transport phenomena of non-charged
particles, and, in particular, the case in which diffusion is
driven by a chemical potential gradient in the x direction
only (the generalization to the three-dimensional case

easily ensues) are considered. The generalization of the
Fick’s law introduced in this work, consists of five main
steps: 1. calculation of the local virtual force F per mole-
cules as the spatial derivative of the chemical potential; 2.
calculation of the particles mean drift velocity in terms of
F and the local frictional coefficient f; 3. estimation of the
flux J as the product of the mean drift velocity and the
local concentration; 4. definition of diffusion coefficients
as function of local activity and frictional coefficients and
concentration; and 5. calculation of diffusion rates as the
negative first spatial derivative of the flux J.
The diffusion events are modeled as reaction events

and the spatial domain of the reaction chamber is
divided into Ns sub-volumes (or meshes) of size l, that
from now on will be called meshes. The movement of a
molecule A from box i to box j is represented by the

reaction Ai
k→Aj , where Ai denotes the molecule A in

the box i and Aj denotes the molecule A in the box j.
The reaction-diffusion system is thus modeled as a pure
reaction system in which the diffusion events are first
order reactions whose rate coefficients k are expressed
in terms of state-dependent diffusion coefficients. The
time evolution of the system is computed by a Gillespie-
like algorithm [24] that selects at each simulation step
in each mesh the fastest reaction, compares the veloci-
ties of the Ns selected reactions and finally executes the
reaction that is by far the fastest.
The paper outlines as follows. First we describe our

generalization of the Fick’s law, then we briefly describe
how it can be incorporated in a stochastic simulation
framework. Finally, we present a model of tumor growth
and the simulation results.

Methods
We summarize here the main passages of the generali-
zation of the Fick’s first law. We refer the reader to
Lecca et al. [25] for a more comprehensive description
of the mathematical structures and passages.

A generalization of Fick’s law for modeling diffusion
In a chemical system the driving force for diffusion of
each species is the gradient of chemical potential µ of
this species. The chemical potential of any particular
chemical species i is

μi = μ0
i + RT ln ai, (1)

where μ0
i is the standard chemical potential of the

species i (i.e. the Gibbs energy of 1 mol of species i at a
pressure of 1 bar), R = 8.314 J · K-1 · mol-1 is the ideal
gas constant, and T the absolute temperature.
The quantity ai is called chemical activity of compo-

nent i, and it is given by
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ai =
γici
c0

(2)

where gi is the activity coefficient, and c0 a reference
concentration, which, for example, could be set equal to
the initial concentration. The activity coefficients
express the deviation of a solution from ideal thermody-
namic behavior and, in general, they may depend on the
concentration of all the solutes in the system. For an
ideal solution, the limit of gi, which is recovered experi-
mentally at high dilutions is gi = 1. If the concentration
of species i varies from point to point in space, then so
does the chemical potential. For simplicity, here the case
in which there is only a chemical potential gradient in
the x direction is taken into account. Chemical potential
is the free energy per mole of substance, free energy is
the negative of the work, W, which a system can per-
form, and work is connected to force F acting on the
molecules by dW = Fdx. Therefore an inhomogeneous
chemical potential is related to a virtual force per mole-
cule of

Fi = − 1
NA

dμi

dx
= −kBTc0

γici

∑
j

∂ai
∂cj

∂cj
∂x (3)

where NA = 6.022 × 1023 mol-1 is Avogadro’s number,
kB = 1.381 × 10-23 J · K-1 is the Boltzmann constant, and
the sum is taken over all species in the system other
than the solvent. This force is balanced by the drag
force experienced by the solute (Fdrag, i) as it moves
through the solvent. Drag forces are proportional to
speed. If the speed of the solute is not too high in such
a way that the solvent does not exhibit turbulence, the
drag force can be written as follows

Fdrag,i = fivi, (4)

where fi a ci is the frictional coefficient, and vi is the
mean drift speed.
Moreover, if the solvent is not turbulent, the flux,

defined as the number of moles of solute which pass
through a small surface per unit time per unit area, can
be approximated as in the following

Ji = civi, (5)

i.e. the number of molecules per unit volume multi-
plied by the linear distance traveled per unit time.
Since the virtual force on the solute is balanced by the

drag force (i. e. Fdrag,i = -Fi), the following expression
for the mean drift velocity is obtained

vi =
Fi
fi
,

so that Eq. (5) becomes

Ji = −kBT
γifi

∑
j

∂ai
∂cj

∂cj
∂x

= −
∑
j

Dij
∂cj
∂x

, (6)

where

Dij =
kBTc0

γifi

∂ai
∂cj

, (7)

are the diffusion coefficients. The Eq. (7) states that, in
general, the flux of one species depends on the gradients
of all the others, and not only on its own gradient.
However, here it is supposed that the chemical activity
ai depends only weakly on the concentrations of the
other solutes, i.e. it is assumed that Dij ≈ 0 for i ≠ j and
that Fick’s laws still holds [26]. Let Di denote Dii. It is
still generally the case that Di depends on ci in suffi-
ciently concentrated solutions since gi (and thus ai) has
a non trivial dependence on ci [26]. There is only one
very special case, namely that of an ideal solution with
gi = 1, in which the diffusion coefficient, Di = kBT/fi, is
constant. In order to find an analytic expression for the
diffusion coefficient, Di, in terms of the concentration,
ci, let us consider that the rate of change of concentra-
tion of the substance i due to diffusion is given by

Di = −∂Ji
∂x

, (8)

Substituting Eq. (7) into Eq. (6), and then substituting
the obtained expression for Ji into Eq. (8), give

Di = − ∂

∂x

(
−Di(ci)

∂ci
∂x

)
,

so that

Di =
(

∂Di(ci)
∂x

)
∂ci
∂x

+Di(ci)
∂2ci
∂x2

=
∂Di(ci)

∂cj

∂cj
∂x

∂ci
∂x

+Di(ci)
∂2ci
∂x2

.

Let ci,k denote the concentration of a substance i at
coordinate xk, and l = xk - xk-1 the distance between
adjacent mesh points. The derivative of ci with respect
to x calculated at xk−1

2
is

∂ci
∂x

∣∣∣∣
x
k−1

2

≈ ci,k − ci,k−1

l
. (9)

By using Eq. (9) into Eq. (6) the diffusive flux of spe-

cies i midway between the mesh points, J
i,k− 1

2
is

obtained:

J
i,k− 1

2
= −D

i,k− 1
2

ci,k − ci,k−1

l
, (10)
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where D
i,k− 1

2
is the diffusion coefficient midway

between the mesh points.
The rate of diffusion of substance i at mesh point k is

Dik = −
J
i,k+ 12

− J
i,k−1

2

l
,

and thence

Dik =
D

i,k− 1
2

l2
(ci,k−1 − ci,k),−

D
i,k+ 12

l2
(ci,k+1 − ci,k) (11)

To determine completely the right-hand side of Eq.
(11) is now necessary to find an expression for the activ-
ity coefficient, gi, and the frictional coefficient, fi, con-
tained in the expression of the diffusion coefficient. In
fact, by substituting Eq. (2) into Eq. (7) we obtain the
diffusion coefficient in terms of activity coefficients gi:

Dii =
kBT
fi

(
1 +

ci
γi

∂γi

∂ci

)
(12)

where the frictional coefficient is assumed to be line-
arly dependent on the concentration of the solute like in
sedimentation processes, i.e. in a mesh k, fi, k is

fi,k = kf ci,k (13)

where kf is an empirical constant, whose value can be
derived from the ratio R = kf/[h ]: Accordingly to the
Mark-Houwink equation [27], [h ] = kMa is the intrinsic
viscosity coefficient, a is related to the shape of the
molecules of the solvent, and M is the molecular mass
of the solute. If the molecules are spherical, the intrinsic
viscosity is independent of the size of the molecules, so
that a = 0. All globular proteins, regardless of their size,
have essentially the same [h ]. If a protein is elongated,
its molecules are more effective in increasing the viscos-
ity and [h ] is larger. Values of 1.3 or higher are fre-
quently obtained for molecules that exist in solution as
extended chains. Long-chain molecules that are coiled
in solution give intermediate values of is a, frequently in
the range from 0.6 to 0.75 [27]. For globular macromo-
lecules, R has a value in the range of 1.4 - 1.7, with
lower values for more asymmetric particles [28].
Although Eq. (13) is a simplified linear model of the

frictional forces, it works quite well in many case studies
and can be easily extended to treat more complex fric-
tional effects (see [25,29]).
Let us focus now on calculation of the activity coeffi-

cients: a way to estimate the frictional coefficients will
be presented in the next subsection. By using the sub-
script ‘1’ to denote the solvent and ‘2’ to denote the
solute, it can be written that

μ2 = μ0
2 + RT ln

(γ2c2
c0

)
, (14)

where g2 is the activity coefficient of the solute and c2
is the concentration of the solute. Differentiating with
respect to c2 gives

∂μ2

∂c2
= RT

(
1
c2

+
1
γ2

∂γ2

∂c2

)
. (15)

The chemical potential of the solvent is related to the
osmotic pressure (II) by

μ1 = μ0
1 − �V1, (16)

where V1 is the partial molar volume of the solvent
and μ0

1its standard chemical potential. Assuming V1 to
be constant [30] and Differentiating μ1 with respect to
c2 yield

∂μ1

∂c2
= −V1

∂�

∂c2
(17)

Now, from the Gibbs-Duhem relation [31], the deriva-
tive of the chemical potential of the solute with respect
to the solute concentration is

∂μ2

∂c2
= −M(1 − c2v̄)

V1c2

∂μ1

∂c2
=
M(1 − c2v̄)

c2

∂�

∂c2
, (18)

where M is molecular mass of the solute and v̄ is the
partial molar volume of the solute divided by its mole-
cular mass. The concentration dependence of osmotic
pressure is usually written as

�

c2
=
RT

M

[
1 + BMc2 +O(c22)

]
. (19)

where B is the second virial coefficient, and thence the
derivative of II with respect to the solute concentration
is

∂�

∂c2
=
RT
M

+ 2RTBc2 +O(c22). (20)

Introducing Eq. (20) into Eq. (18) gives

∂μ2

∂c2
= RT(1 − c2v̄)

(
1
c2

+ 2BM
)
. (21)

From Eq. (15) and Eq. (21) it can be obtained that

1
γ2

∂γ2

∂c2
=

1
c2

[
(1 − c2v̄)(1 + 2BMc2) − 1

]
,
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so that

∫ γ ′
2

1

dγ2
γ2

=
∫ c′2

c0

1
c2

[
(1 − c2v̄)(1 + 2BMc2) − 1

]
dc2.

On the grounds that c2v̄ � 1 [32], solving the integral
yields

γ ′
2 = exp[2BM(c′2 − c0)] (22)

The molecular mass Mi,k of the species i in the mesh
k can be expressed as the ratio between the mass, mi,k,
of the species i in that mesh and the Avogadro number
Mi,k = mi,k /NA. If pi is the mass of a molecule of species
i and ci,k · l is the number of molecules of species i in
the mesh k, then the molecular mass of the solute of
species i in the mesh k is given by

Mi,k =
pi l
NA

ci,k. (23)

Substituting the expression in Eq. (22) gives, for the
activity coefficient of the solute of species i in the mesh
k (gi;k), the following equation

γi,k = exp
(
2B

pi l
NA

c2i,k

)
. (24)

Therefore, substituting Eq. (13) and Eq. (24) into Eq.
(12), we obtain the following expression for a time- and
space-dependent diffusion coefficient

Dii =
kBT
kf ci

(
1 +

4Bpi l
NA

ci

)
(25)

We finally estimated in the following way the second
virial coefficient B. The statistical mechanics definition
of the second virial coefficient is as follows

B = −2πNA

∫ ∞

0
r2 exp

[
−u(r)
kBT

]
dr (26)

where u(r), which is given in Eq. (27), is the interac-
tion free energy between two molecules, r is the inter-
molecular center-center distance, kB is the Boltzman
constant, and T the temperature. In this work, it is
assumed that u(r) is the Lennard-Jones pair (12,6)-
potential (Eq. 27), that captures the attractive nature of
the Van der Waals interactions and the very short-range
Born repulsion due to the overlap of the electron clouds:

u(r) = 4

[(
1
r

)12

−
(
1
r

)6
]
. (27)

By expanding the term exp
(

4
kBT

1
r6

)
into an infinite

series, the Eq. (26) becomes

B = −2πNA

∞∑
j=0

1
j!
(T∗)j

∫ ∞

0
r2−6j exp

[
−T∗ 1

r2

]
dr,

where T* ≡ 4/(kBT ) and thus

B = −πNA

6

∞∑
j=0

1
!j
4j(kBT)

−1
4 + 1

2 j�

(
−1
4
+
1
2
j
)

(28)

An estimate of B is given by truncating the infinite
series of functions to j = 4, since simulation results not
shown here prove that taking into account the addi-
tional terms, obtained for j > 4, does not significantly
influence the simulation results [25].

Modelling the stochasticity
Both diffusion and reactions are modelled as reaction
events whose dynamics is driven by the First Reaction
Method of the Gillespie algorithm.
In particular, the diffusion events are modeled as first-

order reactions. namely, the movement of a molecule A
from box i to box j is represented by the reaction

Ai
k→Aj , where Ai denotes the molecule A in the mesh i

and Aj denotes the molecule A in the mesh j. In this
way, the reaction-diffusion system is modeled as a pure
reaction system.
The space domain of the system is divided into a

number Ns of squared meshes of size l. The time evolu-
tion of the system is computed by the First reaction
Method of Gillespie [24] that at each simulation step
selects in each mesh the fastest reaction, compares the
velocities of the Ns selected reactions and finally exe-
cutes the reaction that is by far the fastest. The fastest
reaction is defined as the reaction whose waiting time is
the smallest.
The time at which each event is expected to occur is a

random variable extracted by an exponential distribution
[24]. Let Ri be the i-th reaction channel expressed as

Ri : li1Sp(i,1) + li2Sp(i,2) + · · · + liLiSp(i,Li)
ri→ . . .

where lij is the stoichiometric coefficient of reactant Sp
(i,j), p(i, j) is the index that selects the species that parti-
cipates in Ri, Li is the number of reactants in Ri, and ri
is the rate constant. If the fundamental hypothesis of
stochastic chemical kinetics [24] holds within a box,
both diffusion and reaction events waiting times are dis-
tributed according to a negative exponential distribution,
so that a typical time step has size

tr ≈ 1
R

(
R∑

ν=1

aν

)−1

=
1
R

⎛
⎝Rdiff∑

i=1

a(diff )i +
Rreact∑
i=1

a(react)i

⎞
⎠ (29)
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where R is the number of events. It is given by R =
Rdiff + Rreact, where Rdiff is the number of possible diffu-
sion events and Rreact is the number of reaction events
[33]. The diffusion and reaction propensities are given
by the following expressions, respectively

a(diff )i = r(diff )i

∏M(diff)
i

j=1 ([Sp(i,j))
lij

∏L(diff)i
j=1 lij!

, (30)

a(react)i = r(react)i

∏M(react)
i

j=1 ([Sp(i,j))
lij

∏L(react)i
j=1 lij!

, (31)

where M(diff )
i

and M(react)
i

are the number of chemical
species that diffuse and the number of those the
undergo to reactions, respectively. In general

M �= M(diff )
i + M(react)

i
, since some species both diffuse

and react. In Eq. (30), ri
(diff) is the kinetic rate associated

to the jumps between neighboring subvolumes, whereas
in Eq. (31), ri

(react) is the stochastic rate constants of the
i-th reaction.
From Eq. (11), the rate coefficient of the first order

reaction representing a diffusion event is recognized to
be as follows

r(diff )i =
Dii

l2
. (32)

Results
Here we describe the model of tumor growth imple-
mented with the toll Redi. Redi is a software prototype
Redi [25] that has been recently developed by Lecca
et al. [25,34] to simulate the mathematical model of sto-
chastic reaction-diffusion system that we have described
in the previous section. We refer the reader to the refer-
ences [25,34-36] for technical details about the imple-
mentation and for a user manual of this software.

Model of tumor growth
The reaction-diffusion system modelling tumor growth
involves four components: (i) the drug, gemcitabine, (ii)
the tumor cell, (iii) oxygen, and (iv) glucose. The reac-
tion events we modeled are the following:
R1. gemcitabine injection;
R2. gemcitabine diffusion;
R3. gemcitabine degradation (rate parameter k1);
R4. effective interaction of gemcitabine and death of

tumor cell (rate parameter k2);
R5. ineffective interaction of gemcitabine: the tumor

cell survives to the drug (rate parameter k3);
R6. tumor growth (rate parameter k4);

R7. glucose uptake (rate parameter k5);
R8. oxygen uptake (rate parameter k6);
R9. glucose diffusion;
R10. oxygen diffusion;
R11. tumor turnover (rate parameter k7).
With regard to the dosage schedule of gemcitabine

(event R1), we simulated the administration regime pro-
posed by Tham et al. [18] and Soo et al. [37], i.e. gemci-
tabine was infused at a fixed dose rate of 1,000 mg/m2

over 30 min on day 1 and 8 every three weeks. The dif-
fusion coefficient of gemcitabine is automatically calcu-
lated by Redi as a function of space and time according
to the formula (25). The efficacy of the gemcitabine (k2),
the rate constant for resistance appearance (k3), and the
tumor growth rate (k4) have been inferred with KInfer
(a maximum likelihood parameter estimator recently
developed by Lecca et al. [38,39]) from the tumor size
shrinkage curves observed in 56 patients treated with
gemcitabine [18]. The 56 patients have been categorized
by their age, sex and smoke history, and in our simula-
tions we considered the average values of k2, k3, and k4
(see in Tables 1 and 2 the average values and the stan-
dard deviations of these three parameters).
Finally, the parameters of reactions R7 (k5) and R8 (k6)

have been taken from [40,41] and [42,43], respectively.
According to reactions R9 and R10, tissues receive

glucose and oxygen perfusing through the vessel wall
and diffusing in the extracellular space.
Finally, the event R11 (tumor turnover) refers to the

replacement of old tumor cells with newly generated
ones from the existing ones. Tumor turnover is mea-
sured in units of sec · mm, and its value (k7) for non-
small lung cancer cell has been measured by Tham
et al. [18].
We simulated the morphological changes of an irregu-

lar 2D spheroidal tumor having an initial diameter of 3
mm. The size of the computational space is 40 × 40
squared meshes each of which represents a squared por-
tion of tissue having a side of 1 mm. If we assume that
the cells have a diameter of 50 μm, a mesh of 1 mm2 is
approximately occupied by 2457 cells.
We assumed that the initial spatial distribution of

gemcitabine exhibits a gradient pointing outside the
tumor. Furthermore we assumed that the tumor as well
as the surrounding healthy tissue are crossed by a vascu-
lar network of capillaries separated by a distance of
80 μm each from the other (see Figure 1). The glucose
and oxygen are supplied by the capillaries and they dif-
fuse through the tumor tissue with a rate of diffusion
defined by Eq. (11). Their diffusion coefficients are cal-
culated with the formula (25).
All the events R1-R11 are modelled as reaction-events

as in the following
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R1. gemcitabine injection: zeroth-order reaction ∅ ®
gemcitabine
R2. gemcitabine diffusion: first order reaction model-

ling the movement of gemcitabine molecules from mesh

k to the mesh k’: gemcitabinek r(diff)gemcitabine−−−−−→ gemcitabinek’,

where r(diff )gemcitabine defined by Eq. (32);

R3. gemcitabine degradation (rate parameter k1);
R4. effective interaction of gemcitabine and death of

tumor cell (rate parameter k2);
R5. ineffective interaction of gemcitabine: the tumor

cell survives to the drug (rate parameter k3);
R6. tumor growth (rate parameter k4);
R7. glucose uptake (rate parameter k5): zeroth-order

reaction ∅ k5→ glucose;
R8. oxygen uptake (rate parameter k6): : zeroth-order

reaction ; ∅ k5→ oxygen;
R9. glucose diffusion: first order reaction modelling

the movement of gemcitabine molecules from mesh k to

the mesh k’: glucose k
r
(diff)
glucose−−−→ glucosek’, where r(diff) is

defined by Eq. (32);
R10. oxygen diffusion: first order reaction modelling

the movement of gemcitabine molecules from mesh k to

Table 1 values of parameters and variables in the three models.

Variable Model 1 Model 2 Model 3

Nr. of tumor cell per mesh 2547 100 2457

Amount of gemcitabine per mesh 1 μg 1 μg 10 μg *

Amount of glucose per mesh 792 μg - -

Amount of oxygen per mesh 3 μg - -

Parameter Model 1 Model 2 Model 3

Gemcitabine infusion rate (k0) 0.56 pg/sec - -

Gemcitabine degradation (k1) 2.78 × 10-5 sec-1 - -

Gemcitabine efficacy (k2) 8.33 × 10-7 (mm · sec) -1 - -

Rate constant of resistance appearance (k3) 2.78 × 10-8 - -

Tumor growth rate (k4) 5.56 × 10-5 mm/sec - -

Glucose uptake rate constant(k5) 10.4 pg/sec 0.0104 pg/sec 10.4 pg/sec

Oxygen uptake rate constant (k6) 0.16 pg/sec - -

Tumor turnover (k7) 218 mm · week - -

Molecular weight of gemcitabine 0.29966 kD - -

Molecular weight of gslucose 0.18016 kD - -

Molecular weight of oxygen 0.01801528 kD - -

k0, k1, k5, k6, and k7 have been reported from the literature, whereas k2 and k3 has been estimated with KInfer [38] from the tumor growth curve of 56 patients
provided by the experiments of Tham et al. [18].

The estimate of k2 and k3 is an average of 56 estimates, and is affected by a standard deviation of 6.23 × 10-7 (mm · sec)-1. The symbol “- “ means that the value
of the parameter or variable is unchanged.
* This dose correspond to 10,600 mg body concentration of drug (optimal dose estimated in [18].

Table 2 categorization of patients and average values of
gemcitabine efficacy.

Category of patient Median value of efficacy

Male 0.03817219 (cm · hours)-1

Female 0.03815441 (cm · hours)-1

Smoker 0.02937583 (cm · hours)-1

Ex-smoker 0.07753538 (cm · hours)-1

Non-Smoker 0.03815441 (cm · hours)-1
Figure 1 A simple model of the vascular network innervating
the tumor. The distance between capillaries is 80 μm.
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the mesh k’: oxygenk
r
(diff)
oxygen−−−→ oxygenk ’, where r(diff) is

defined by Eq. (32);
R11. tumor turnover (rate parameter k7): a zeroth-

order reaction describes the generation of new tumor
cells from the existing ones; a subsequent first order
reaction specifies the replacement of old tumor cells
with newly generated ones.
We developed three models, by changing the values of

the glucose uptake, the dose of gemcitabine and the
number of tumor cell per mesh. In vivo and in vitro
experiments carried on in the last decade highlight the
crucial role of these variables in governing the dynamics
of tumor growth. Some reference experimental studies
in this regards are reported in [44-47]. Table 1 reports
the initial values of the variables as well as the values of
the parameters in the three models. The Model 1 is the
reference model whose parameter have physiological
values and the dose of gemcitabine is the one usually
administered in vivo and in vitro clinical trials. In
Model 2 we decreased the number of tumor cells per
mesh and the rate of glucose uptake (100 cells per mesh
instead of 2547 cells per mesh). In Model 3, we
increased the dose of gemcitabine (10 μg instead of 1
μg). The orders of magnitude of changes of the para-
meter values in Model 2 and Model 3 are those that
cause a significant change in the tumor growth
progression.
The average of 100 simulations for each model (Model

1, 2 and 3) is showed in Figures 2, 3, and 4 respectively.
Each sub-figure is a screenshot of the state of the tumor
size recorded each 10 weeks. Blue regions corresponds
to areas occupied by more that 2000 tumor cells, yellow
regions corresponds to areas of tissue with a number of
tumor cell between 100 and 2000, and orange regions
are those occupied by less that 100 tumor cells. The
simulation of Model 1 in Figure 2 shows a progressive
quasi-linear growth of the tumor size at a rate of about
0.5 mm per week. The simulation of Model 2 shows
that with a lower rate of glucose uptake the growth of
the tumor is slowed down and the borders of the tumor
ellipsoid are strongly irregular. Moreover, groups of cells
originally belonging to the borders of the tumor prolif-
erate in filaments in healthy parts of the tissue. The
action of gemcitabine breaks these filaments but some
tumor cells of the filaments still persist in isolated
groups infiltrated into the healthy tissue.
Figure 3 shows the simulation of Model 3, where we

increased the dose of gemcitabine by a factor 10 to
explore the behavior of the tumor mass for the extreme
limit of an unrealistic dosage configuration. The rate of
glucose uptake is the same as in Model 1. We observed
a behavior similar to the one observed in the simulation
of Model 1.

As expected, from these simulations we deduced that
the effect of gemcitabine is stronger (i) at the early stage
of the tumor (i.e. when the number of tumor cells is
still low) and the rate of glucose uptake is also low
(Model 2), or (ii) if the dose if greater them 1,000 mg.
At the best of our knowledge our study is the first

attempt to model and simulate the tumor growth of
non-small cell lung cancer in space and time. We vali-
dated our models by comparing the time behavior of
the longitudinal size of the tumor ellipsoid with the the-
oretical and experimental results of Tham et al. [18]: we
found a good agreement between the experimental data
and the predictions of Model 2 and Model 3, such as
the dosage of body gemcitabine necessary to slow down
and arrest the growth of tumor (about 10 μg of body
dose as in [18]), and the rate of tumor growth in the
case of an insufficient amount of drug (between 0.5 an 1
mm per week as in the graph reported in [18]). More-
over these models confirm the correlation between glu-
cose uptake and pharmacological treatment as reported
by Duhaylongsod et al. in [44]. Namely, comparing the
results of Model 2 and Model 3 with those of Model 1
we confirmed the necessity of a higher dose of gemcita-
bine or conversely of the reduction of the glucose
uptake [18,48] for obtaining a significant increment of
tumor shrinkage.

Figure 2 Simulation of Model 1. The time unit is the week. The
time separating a screenshot from the previous one is 10 weeks.
The parameters of the model are listed in Table 1. The longitudinal
initial size of the tumor spheroid is 3 mm. Screenshot number “0” is
the state of the tumor after 10 weeks of treatment. In the spatial
domain of tumor lesion each mesh host only tumor cells. Blue
regions are those occupied by more that 2000 tumor cells, yellow
regions corresponds to areas of tissue with a number of tumor cells
between 100 and 2000, and orange regions are those occupied by
less that 100 tumor cells. The extension of the tumor increases
linearly in time.
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Conclusions
We have presented a computational framework for
modeling and simulating the spatial dynamics of the dif-
fusion of biological entities at micro- and meso-scale in
a non-homogeneous medium. We use these mathemati-
cal and computational structure to model and simulate
a non-small cell lung cancer treated with gemcitabine.
The drug efficacy and the rate constant of resistance
appearance have been estimated from real tumor growth
curves recorded in 56 patients. The other parameters
have been obtained from the literature reporting the in
vitro experiments of the last decade. We explored the
behavior of the model under different conditions con-
cerning the rate of glucose uptake, the number of tumor
cells and the dose of gemcitabine. The proposed models
reproduce the expected tumor growth rate at the opti-
mal body concentration of gemcitabine and confirm the
correlation between glucose uptake and the response to
the chemotherapy. At the best of our knowledge, this
study is the first attempt to build a reaction-diffusion
model of non-small cell lung cancer by integrating data
from in vivo experiments and by inferring kinetic para-
meters from the tumor shrinkage curves of patients

with the purpose to provide in silico-generated dynami-
cal images of the morphology of this kind of tumor.
Nonlinear models of cancer growth are needed to

understand the phenomenon of realistic cancer growth.
Simulations of such models conducted to determine the
patterns of cancer growth and cancer response to drug
and nutrient supply could support the design of the
administration schedule and the duration of the therapy.
Moreover, a computational model of a reaction-diffusion
system taking into account the stochasticity of the inter-
action between drugs and tumor cells as well as the
non-homogeneity of the intra- and inter-cellular med-
ium may be a contribution toward this direction.
Further extensions of this study are in progress and con-
sider the opportunity to include immunological and
angiogenic factors and interactions to make the current
models more accurate, realistic and of greater medical
interest.
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