Lio et al. BMC Bioinformatics 2012, 13(Suppl 14):512
http://www.biomedcentral.com/1471-2105/13/5S14/512

BMC
Bioinformatics

RESEARCH Open Access

Modelling osteomyelitis

Pietro Lid', Nicola Paoletti®’, Mohammad Ali Moni', Kathryn Atwell', Emanuela Merelli?, Marco Viceconti®

From NETTAB 2011 Workshop on Clinical Bioinformatics

Pavia, Italy. 12-14 October 2011

Abstract

progressive weakening of bone structure.

and osteomyelitis) in an effective way.

Background: This work focuses on the computational modelling of osteomyelitis, a bone pathology caused by
bacteria infection (mostly Staphylococcus aureus). The infection alters the RANK/RANKL/OPG signalling dynamics
that regulates osteoblasts and osteoclasts behaviour in bone remodelling, i.e. the resorption and mineralization
activity. The infection rapidly leads to severe bone loss, necrosis of the affected portion, and it may even spread to
other parts of the body. On the other hand, osteoporosis is not a bacterial infection but similarly is a defective
bone pathology arising due to imbalances in the RANK/RANKL/OPG molecular pathway, and due to the

Results: Since both osteoporosis and osteomyelitis cause loss of bone mass, we focused on comparing the
dynamics of these diseases by means of computational models. Firstly, we performed meta-analysis on a gene
expression data of normal, osteoporotic and osteomyelitis bone conditions. We mainly focused on RANKL/OPG
signalling, the TNF and TNF receptor superfamilies and the NF-kB pathway. Using information from the gene
expression data we estimated parameters for a novel model of osteoporosis and of osteomyelitis. Our models
could be seen as a hybrid ODE and probabilistic verification modelling framework which aims at investigating the
dynamics of the effects of the infection in bone remodelling. Finally we discuss different diagnostic estimators
defined by formal verification techniques, in order to assess different bone pathologies (osteopenia, osteoporosis

Conclusions: We present a modeling framework able to reproduce aspects of the different bone remodeling
defective dynamics of osteomyelitis and osteoporosis. We report that the verification-based estimators are
meaningful in the light of a feed forward between computational medicine and clinical bioinformatics.

Background

There are two main types of bone tissues: cortical bone,
and trabecular bone. The former is a compact tissue that
makes up the outer shell of bones. It consists of a very
hard (virtually solid) mass of bony tissue arranged in con-
centric layers called Haversian systems. Trabecular (also
known as cancellous or “spongy”) tissue is located
beneath the compact bone and consists of a meshwork of
bony bars (trabeculae) with many interconnecting spaces
containing bone marrow. Both bone tissues undergo a
continuous remodelling dynamics where old bone is
replaced by new tissue ensuring the mechanical integrity
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and the morphology of the bone [1,2]. However, patholo-
gical conditions such as cancer, infection and autoim-
mune diseases can alter the equilibrium between bone
resorption and bone formation, reducing bone density
and increasing the risk of spontaneous fractures.

Bone remodelling (BR) is a cellular process conducted
by osteoclasts, the cells responsible for bone resorption
and by osteoblasts, the cells responsible for bone forma-
tion. Osteoblasts follow osteoclasts in a highly coordi-
nated manner, forming the so-called Basic Multi-cellular
Units (BMUs). While osteoblasts and osteoclasts are
located in the fluid part of the BMU, another type of
cells, the osteocytes, are trapped in the bone matrix and
they play a relevant role in the remodelling process.
Osteocytes serve as mechanosensors: they translate
mechanical stimuli at the tissue level into biochemical
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signals that flow through the osteocytic canalicular net-
work to the BMU cells. In normal bone, the number of
BMUs, the bone resorption rate, and the bone formation
rate are all relatively constant [3].

The RANK/RANKL/OPG signalling pathway plays an
important role in bone metabolism. RANK is a protein
expressed by osteoclasts; RANK is a receptor for
RANKL, a protein produced by osteoblasts. RANK/
RANKL signalling triggers osteoclast differentiation, pro-
liferation and activation, thus it prominently affects the
resorption phase during bone remodelling. Osteoprote-
gerin (OPG) is a decoy receptor for RANKL. It is
expressed by mature osteoblasts and it binds to RANKL,
thus inhibiting the production of osteoclasts. Figure 1
shows the key steps during the bone remodelling pro-
cess, that are:

1. Origination. During normal turnover or after a
micro-crack, or as a response to mechanical stress,
the osteocytes in the bone matrix produce biochem-
ical signals showing sufferance towards the lining
cells, i.e. the surface cells around the bone. The

Page 2 of 14

lining cells pull away from the bone matrix, forming
a canopy which merges with the blood vessels.

2. Osteoclast recruitment. Stromal cells divide and
differentiate into osteoblasts precursors. Pre-osteo-
blasts start to express RANKL, inducing the differen-
tiation of and attracting pre-osteoclasts, which have
RANK receptors on their surfaces. RANKL is a
homotrimeric molecule displayed on the membrane
of osteoblasts that stimulates differentiation in osteo-
clasts and is a key induction molecule involved in
bone resorption leading to bone destruction.

3. Resorption. The pre-osteoclasts enlarge and fuse
into mature osteoclasts. In cortical BMUs, osteo-
clasts excavate cylindrical tunnels in the predomi-
nant loading direction of the bone, while in
trabecular bone they act at the bone surface, digging
a trench rather than a tunnel. After the resorption
process has terminated, osteoclasts undergo
apoptosis.

4. Osteoblast recruitment. Pre-osteoblasts mature
into osteoblasts and start producing osteoprotegerin
(OPG). OPG inhibits the osteoclastic activity by
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Figure 1 Key steps in bone remodelling. 1) Osteocytes send signals to the fluid part, activating pre-osteoblasts (Pb) and pre-osteoclasts (Pc). 2)
Pbs express RANKL and Pcs express the RANK receptor. 3) RANK/RANKL binding induces Pcs’ proliferation. Pcs enlarge and fuse, forming mature
osteoclasts which start the bone resorption process. 4) Mature osteoblasts express the decoy receptor OPG and start the bone formation
process. RANKL/OPG binding inhibits RANKL, thus protecting bone from excessive resorption. 5) During the mineralization process, osteoids
secreted by osteoblasts calcify. 6) Finally in the resting phase, the initial situation is re-established.




Lio et al. BMC Bioinformatics 2012, 13(Suppl 14):512
http://www.biomedcentral.com/1471-2105/13/5S14/512

binding to RANKL and preventing it from binding
to RANK. When RANKL expression is high, osteo-
protegerin levels are low and vice versa.

5. Mineralization. Osteoblasts fill the cavity by
secreting layers of osteoids. Once the complete
mineralization of the renewed tissue is reached,
some osteoblasts can go apoptosis, other can turn
into lining cells, while other can remain trapped in
the bone matrix and become osteocytes.

6. Resting. Once the cavity has been filled by osteo-
blasts, the initial situation is re-established.

The bone remodelling undergoes a pathological pro-
cess, generally related to ageing, termed osteopenia and
with more severity, osteoporosis, during which an unba-
lance of the RANKL/OPG signalling equilibrium is typi-
cally observed. The osteoporosis is a skeletal disease
characterized by low Bone Mineral Density (BMD) and
structural fragility, which consequently leads to frequent
micro-damages and spontaneous fractures; it is a
chronic disease requiring long-term treatment. This dis-
ease primarily affects middle-aged women and elderly
people and at present its social and economic impact is
dramatically increasing, so much that the World Health
Organization considers it to be the second-leading
healthcare problem. While under normal circumstances,
the ratio of RANKL/OPG is carefully balanced, the
increase of RANKL plays an essential role in favouring
resorption through osteoclast formation, function, and
survival. With ageing and after a large number of remo-
delling cycles, the density of osteons increases and the
cortical porosity and architectural defects of the bone
increase as well. This leads to a vicious cycle where
microdamages and consequently remodelling occur
more and more frequently, weakening the bone struc-
ture and increasing the rate of spontaneous fractures
[4]. Moreover, recent studies suggest that plasma levels
OPG and RANKL are inversely related to bone mineral
density and contribute to the development of osteoporo-
sis in postmenopausal women [5], and thalassemia-
induced osteoporosis [6]. One of the most worrying
events is the infection of the bone which causes a dis-
ease called osteomyelitis. Similarly to osteoporosis, it is
characterized by severe and rapid bone loss and by an
unbalance at the molecular signalling level.

The aim of this work is to provide a computational
modelling framework able to reproduce and compare
the defective dynamics of osteoporosis and osteomyeli-
tis. We believe that this framework could easily be
adapted to model also other bone diseases like multiple
myelomas or Paget’s disease, and that it could help in
better understanding the disruptions of cellular and
signalling mechanisms that underlie such bone
pathologies.
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Osteomyelitis

Osteomyelitis is a bone infection mainly caused by the
aggressive pathogen S. aureus. Upon exposure to the
bone, S. aureus induces a severe inflammatory response
followed by progressive bone destruction and loss of the
vasculature and with a persistent chronic infection; this
is further complicated by the rapid emergence of resis-
tant strains of S. aureus. Lab researches have shown
that the infection prevents proliferation, induces apopto-
sis and inhibits mineralisation of cultured osteoblasts.
The action of S. aureus increases RANKL expression
and decreases OPG expression in osteoblasts in patients
with staphylococcal osteomyelitis. Recent findings sug-
gest that S. aureus SpA protein binds to osteoblasts,
possibly through an interaction with the death receptor
TNFR-1 which induces caspase 3 activation and apopto-
sis. The increase in RANKL is likely to trigger osteo-
clast-induced bone resorption and bone destruction and
may help explain why patients with osteomyelitis have
significant bone loss [7].

Although effective treatment of this disease is very dif-
ficult, one of most used drug is the fusidic acid that acts
as a bacterial protein synthesis inhibitor by preventing
the turnover of elongation factor G (EF-G) from the
ribosome. Fusidic acid inhibits bacterial replication and
does not kill the bacteria, and is therefore termed “bac-
teriostatic”. Many strains of methicillin-resistant S. aur-
eus (MRSA) remain sensitive to fusidic acid, but because
there is a low genetic barrier to drug resistance (a single
point mutation is all that is required), fusidic acid is
usually combined with other antibiotics.

We believe that a model of the infection could provide
a framework for a better diagnosis and understanding
the antibiotic intervention. Here we develop a hybrid
modelling framework for combining and untangling the
relationships of physiological and molecular data. We
then apply the methodology to determine disease related
abnormalities of the key osteogenesis molecular net-
work. The universality of the approach is demonstrated
by an integration of the modelling and diagnosis which
resembles medical visits with blood testing for infection
progress and bone mineralisation measurements along a
period of time. Our perspective is that this approach
would inch towards an automatized methodology for
improving disease classification and diagnosis.

Results and discussion

Meta analysis of gene expression data

Important parameter values of bone remodelling models
are based on various authors (see [8] among others); here
we also analysed more recent data, particularly available
gene expression data. Since that both osteoporosis and
osteomyelitis cause loss of bone mass, we decided to
cross-compare gene expression datasets of both diseases.
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We have compared the expression levels of genes involved
in osteomyelitis, osteoporosis patients and healthy controls
using the box plots and comparison table (Figure 2, 3 and
Table 1). We report in Table 1 the significant genes asso-
ciated with the infection of osteomyelitis and or with the
condition of osteoporosis. From the analysis of our data,
we observe that few genes, related to TNF, TNF receptor
superfamilies and to NF-kB have statistically different
levels of expression in healthy controls, osteomyelitis and
or osteoporosis. We observe that, with respect to control
cases, for the microarray platform GPL96, 22 genes related
to RANKL, RANK, OPG, NF-kB proteins, TNF and TNF
receptor superfamilies are over expressed and 13 genes are
down regulated in osteomyelitis (see Figure 2 and Table
1). There are other 47 genes that are weakly correlated
with this infection (not shown). However, in case of
GPL97 microarray platform, only 10 genes are highly
expressed; 6 genes are down expressed (other 15 genes are
weakly correlated in osteomyelitis) (see Figure 3 and Table
1). For the osteoporosis condition, using the platform
GPL96, only 10 genes are up regulated and 6 are down
regulated (see Table 1). It is notable in the platform
GPL96, only 4 genes NFKB2_1, NFKB2_2, REL_2 and
RELB are up-regulated in both types of diseases. In con-
trast, only 3 genes TNFRSF25_2, TRAF3IP3_1 and TRAF5
are down regulated in the both osteomyelitis infection and
osteoporosis. However, 5 genes NFKB1, RELA_1,
TNFRSF10B_2, TNFSF10_3 and TRAF3IP3_3 are differ-
ently regulated in osteomyelitis and osteoporosis.
Interestingly we found that, despite a very small
increase of RANKL gene expression in osteoporosis and
a larger increase in osteomyelitis, OPG gene expression
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become more deregulated in both osteomyelitis and
osteoporosis. There is the increased expression of differ-
ent isoforms of OPG which are known to have different
binding capability with RANKL and seem to be linked,
from mice experiments, to hypocalcemia [9]. Therefore
we report that gene expression in osteoporosis and
osteomyelitis could generate an unbalance between
RANKL and OPG due to the different OPG isoforms,
but also other genes, related to TNF, TNF receptor
superfamilies and to NF-kB may be involved. Although
gene expression and actual protein abundance are only
loosely correlated, taking into account the results of
gene expression data, we modified the autocrine and
paracrine parameters of the existing mathematical
model based on Komarova model [10]. We considered
more appropriate to incorporate into the model the
algebraic relationship of positive and negative regulators
(such as RANKL and OPQG) than just the RANKL
change. On the basis of this consideration we developed
new models for reproducing osteoporotic and osteomye-
litis conditions.

A computational framework for bone dynamics

In this work we present a combined computational fra-
mework for the modelling, simulation and verification of
the bone remodelling process, and of bone pathologies
like osteomyelitis and osteoporosis. Based on the meth-
ods developed in [11,12], this approach consists of the
following two building blocks:

Mathematical model

We develop a differential equation model for describing
the dynamics of bone remodelling and of bone-related
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pathologies at a multicellular level. The model describes
the continuous changes of, and the interactions between
populations of osteoclasts and osteoblast (including bac-
teria in the osteomyelitis model). Bone density is calcu-
lated as the difference between the formation activity
which is proportional to osteoblasts concentration, and
the resorption activity which is proportional to osteo-
clasts concentration. In the last twenty years, a variety
of mathematical and computational models has been
proposed in order to better understand the dynamics of
bone remodelling (reviewed in [13-15]). Three main
categories of models can be distinguished: those focus-
ing on the organ level, where bone is described as a
continuum material only characterized by its density; on
the biomechanical properties and on the microstructural
information at the tissue level; and on the cellular level
where the interactions occurring among the different
types of bone cells are concerned. The latter category
can also incorporate intracellular signalling pathways
and mechanosensing mechanisms (i.e. the process by
which mechanical stimuli are translated into cellular sig-
nals). Our cellular-level model is based on the work by
Komarova et al [10], where they developed an important
model for BR based on experimental results described
in Parfitt’s work [8] which has inspired many other simi-
lar models. In particular we extended it in order to
explicitly simulate bone pathologies: osteoporosis is
reproduced by including an ageing factor that decreases
the death rates of cells and by including a factor that
increases the RANKL expression; osteomyelitis is mod-
elled by adding a state variable for bacteria that affects
the autocrine and paracrine regulation factors of

osteoblasts and osteoclasts, similarly to Ayati’s model on
bone myeloma [16]. Although several efforts have been
made in developing mathematical model for osteomyeli-
tis and osteoporosis, molecular data has been rarely con-
sidered so far, regardless the availability of different gene
expression microarray data related to osteomyelitis and
osteoporosis and based on only single microarray data-
base. So, we have developed mathematical model and
showed the comparative study of gene expression data
from different databases of similar platform to find out
the genes expression level related to the RANKL,
RANK, OPG and NF-kB proteins, which are strongly
related to the osteomyelitis and osteoporosis.

Model verification

We define a stochastic model for bone remodelling from
the ODE specification, that allows us to analyse the ran-
dom fluctuations and the discrete changes of bone den-
sity and bone cells. Given that randomness is an inherent
feature of biological systems, whose components are
naturally discrete, the stochastic approach could give use-
ful insights on the bone remodelling process. Indeed, sto-
chasticity plays a key role in bone remodelling, e.g. the
fluctuations in molecular concentrations of RANKL and
OPG produce changes in the chemotaxis (the process by
which cells move toward attractant molecules) of osteo-
clasts and osteoblasts. This may affect for example the
cell differentiation, number and arrival time, and conse-
quently the whole remodelling process. Besides achieving
a good fitting between the ODE model and the stochastic
one, we employ probabilistic model checking techniques
for deriving three different clinical estimators that enable
to assess the expected bone density, the density change
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Table 1 Comparative representation of gene expression level for osteomyelitis and osteoporosis.
Regulation for Osteomyelitis Gene ID Regulation for Osteomyelitis Gene ID Regulation for Osteoporosis Gene ID
(GPL96) (GPL97) (GPL96)
Up regulated NFKB2_1 Up regulated NFKB2_1 Up regulated NFKB1
NFKB2_2 NFKBIZ_1 NFKB2_1
NFKBIA NFKBIZ_2 NFKB2_2
NFKBIE RELL1 REL_2
REL_2 RELT RELA_1
RELB TNFSF13B_1 RELA_2
TNFRSF10B_2 TNFSF13B_2 RELB
TNFRSF10C_2 TRAF7_1 TNFRSF17
TNFRSF10C TRAF7_3 TNFSF10_2
3
TNFRSF10C_4 TRAFD1_2 TRAF3_1
TNFRSF1A Down regulated TNFRSF10A  Down regulated TNFRSF10B_2
TNFRSF1B TNFRSF18_2 TNFRSF25_2
TNFSF10_1 TRAF1 TNFSF10_3
TNFSF10_2 TRAF3IP1 TRAF3IP3_1
TNFSF10_3 TRAF3IP3_1 TRAF3IP3_3
TNFSF12_3 TRAF3IP3_2 TRAF5
TNFSF12_4
TNFSF12_2
TNFSF13
TRAF3IP3_2
TRAF3IP3_3
TRAFD1_2
Down regulated IKBKG 2
NFKB1
RELA_1
TNFRSF14
TNFRSF25_1
TNFRSF25_2
TNFRSF25_3
TNFRSF25_4
TNFRSF25_6
TRAF1
TRAF3IP2_2
TRAF3IP3_1
TRAF5

rate, and the variance of bone density. Model checking is
a static technique for automatically search for a property
(specified as a logical formula) to hold or not over a defi-
nite set of states, and relies on qualitative properties:
given a model and a property to verify, it returns an affir-
mative or a negative answer, i.e. the property holds or
not. Differently, probabilistic model checking is equipped
with quantitative information, and given a stochastic
model and a property to verify, it returns the probability
of the formula being satisfied. We believe that this kind
of quantitative, formal and automated analysis may
represent a step ahead in the understanding of bone dis-
eases like osteomyelitis and osteoporosis, by shifting the
attention from an informative, but empirical, analysis of

the graphs produced by simulations towards more pre-
cise quantitative interpretations.

Modelling bone remodelling pathologies

The ODE model for bone remodelling is mainly inspired
from the work by Komarova et al [10], and describes the
dynamics of osteoblasts’ (Ob) and osteoclasts’ (Oc)
population in a BMU, and calculates the bone density as
a function of Ob and Oc with the following equations:

do

dt
do,

dt

¢ =08 OF" — 8,0,
b 12 22
= w0808 — B0y,
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The model describes the autocrine and paracrine rela-
tionships between osteoclasts and osteoblasts. Autocrine
signalling usually occurs by a secreted chemical interact-
ing with receptors on the surface of the same cell. In
the paracrine process a chemical signals that diffuse out-
side the emitting cell and interacts with receptors on
nearby cells. Here the parameters g; describe the effec-
tiveness of autocrine and paracrine regulation, s.t. g1;
describes the osteoclast autocrine regulation, g,, the
osteoblast autocrine regulation, g,; is the osteoblast-
derived paracrine regulation, and gi, is the osteoclast
paracrine regulation. The nonlinearities of these equa-
tions are approximations for the interactions of the
osteoclast and osteoblast populations in the proliferation
terms of the equations. The autocrine signalling has a
positive feedback on osteoclast production (g;; >0), and
paracrine signalling has a negative feedback on osteo-
clast production (g,; <0). The autocrine signalling has a
positive feedback on osteoblast production (g, >0), and
paracrine signalling has a positive feedback on osteoblast
production (g5 >0).

Overall the regulatory circuit should lead to a positive
mineralisation balance (z) which could be described by
the expression Zf = —k,0; + kO, where k; and k, are
the resorption and formation rates, respectively. More
precisely, the bone density is determined by the differ-
ence between the actual resorption and formation activ-
ity when osteoclasts and osteoblasts exceed their steady
levels. Therefore bone density is calculated as follows:

dz

gt —kymax(O, — 0., 0) + kymax(Op — Oy, 0),

where O, and O, denote the steady states of O, and
Oy, resp. For the spongy type bone we consider the vari-
able z as the localized trabecular mass beneath a point
on the bone surface.

In order to reproduce the defective dynamics (i.e.
bone negative balance) characterizing osteoporosis, we
assumed an increased death rate for osteoclasts and
osteoblasts, motivated by the fact that the occurrence of
defective bone pathologies in elderly patients is partly
attributable to the reduced cellular activity typical of
those patients. Therefore we introduced the parameter
Zageing aS a factor multiplying the death rates 3;.

On the other hand, we modified the regulation factors
in order to model an increased RANKL expression by
osteoblasts, which results both from the analysis per-
formed on gene expression data and from experimental
evidences [6]. In our model g,; is the result of all the
factors produced by osteoblasts that activates osteoclasts
and as explained in [10], g,; = RANKL OPG where
RANKL is the effectiveness of RANKL signalling while
OPG is the effectiveness of OPG signalling. Therefore a
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further parameter g,,, has been included as a factor
incrementing g,;, in order to incorporate the changes in
the system RANKL, OPG associated to osteoporosis.
The resulting equations for osteoclasts and osteoblasts
are:

do, 11 ~321 +8por

dtc = alo§ Ob2 P — gageingﬁlocr
Aoy 1

d = 0[20§ 20‘522 - gageingﬁzob'

Osteomyelitis effects on bone remodelling

Starting from the above model of bone remodelling, we
consider the progressing of osteomyelitis induced by the
S. aureus (variable B). Since several evidences show that
the dynamics of the bacterial population follows a Gom-
pertz curve, we consider an equation of the form

dB s
= 2B -1 )
P Og(B)

where yp is the growth rate of bacteria, and s is the
carrying capacity, i.e. the maximum population size.
Additionally, we introduced four parameters f;; used to
model the effects of the infection on the autocrine and
paracrine regulation factors gj; The resulting equations
are:

do 1 +-llB 11 lB

dtc =Ollo§ (1+f S)Oé;z(l fa () — B,0,
dOb 812(1+f12B) gzszzzB)

dt = (XQOC $ Ob ST — ﬁzOb,
dB s

= (o= V)B-10g),

This model has been inspired from Ayati’s work on
multiple myeloma bone disease [16] and the key differ-
ence with respect to Komarova’s model [10] is the addi-
tion of the terms f;;B/s that couple the bacterial density
and its maximum size to the power laws for the osteo-
clast/osteoblast interactions. The bacterial parameters
fiv fizs fo1, fo2 are all nonnegative. The S. aureus-induced
infection affects the normal remodelling activity by:

- reducing osteoblasts’ growth rate: in fact, the
paracrine promotion of osteoblasts is reduced
(812/(1 +f12%) < g12, sinceg1, > 0), and the auto-
crine promotion of osteoblasts is reduced as well
(822 —](22]53 < 822);

+ increasing RANKL and decreasing OPG expression:
as previously stated, the paracrine inhibition of osteo-
clasts is a negative exponent resulting from the differ-
ence between the effectiveness of OPG signalling and
that of RANKL signalling. Since g51(1 — f %) > g1,
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the infection causes an increase in RANKL expression
and therefore a decrease in OPG expression.

In addition the infection increases the autocrine pro-
motion of osteoclasts (since g;; >0). We have taken vz to
be independent of bone loss. The parameter V describes
the effectiveness of the antibiotic treatment as a factor
decreasing the growth rate yp of bacteria. Two different
kinds of treatment can be distinguished: bacteriostatic
treatments that stop bacteria proliferation (V = y); and
bacteriocide treatments which kill bacteria (V > yg).

Parameters for the three different models (control,
osteoporosis and osteomyelitis) are given in Table 2.
Simulation results for bone density, osteoblasts and
osteoblasts under the three different scenarios are com-
pared in Figure 4. The plots show that both osteoporosis
and osteomyelitis are characterized by a negative remo-
delling balance, but in the latter case the bone loss
becomes much more critical after 600 days. In the
osteoporotic case, the remodelling period is shorter than
in the control case, mimicking the fact that in older
patients microfractures and consequently remodelling
occur more frequently, in a vicious cycle that progres-
sively weakens the structure and density of the bone [4].
On the other hand, the regular cycles of the normal
bone model above are perturbed by the presence of the
infection (chronic), and we observe longer and unstable
remodelling periods.

Furthermore we simulate the dosage of a bacterio-
static treatment (V' = 0.005 = y) and of a bacteriocide
treatment (V = 0.007 >vg) for S. Aureus at different

Table 2 Model parameters.
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dosage times f;..,, = 200, 400 and 600 days. Figure 5
shows that when applying the bacteriostatic drug (e.g.
fusidic acid), the severe bone loss characterizing osteo-
myelitis can be limited only if the treatment is adminis-
tered at t = 200 days. With later dosages the normal
remodelling activity cannot be re-established, even if
the situation is considerably better w.r.t. an untreated
infection. Conversely, the bacteriocide treatment looks
more effective than the bacteriostatic one, and the
bone activity is able to recover regardless the dosage
time. However the recovery time becomes longer as
tirear increases. Therefore in both antibiotic treatments
timeliness is a crucial factor in order to effectively
operate against the infection.

Stochastic model for the verification of bone pathologies

Following and extending the work in [11], we define a
stochastic model for bone remodelling and perform for-
mal analysis by means of probabilistic verification tech-
niques, which allow to assess the probability of a
particular configuration of the biological system (usually
expressed as a logical formula) being reached. In our
settings we derive a Continuous Time Markov Chain
(CTMC) from the mathematical model described above
and we use the model checker PRISM [17].

We follow a population-based approach where a state
of the system is determined by the discrete density of
the different cell populations involved. Osteoclasts,
osteoblasts and bacteria populations are specified as
PRISM modules, consisting of a random state variable
modelling the number of individuals; and with a list of

Parameter Description Value
(o1, o)) O and O, growth rates (3, 4) day’!
B+, B1) O and O, death rates 0.2, 0.02) day'1
(911, 912, 922, G21)  Effectiveness of autocrine/paracrine regulation (1.1,1,0,-05)
(kq, k;) Resorption and formation rates (0.0748, 0.0006395) day'1
Qageing Ageing factor 2
Jpor  RANKL factor 0.1
vs S. aureus growth rate 0.005 day’
s S. aureus carrying capacity 100

V' Effectiveness of antibiotic treatment
tyea: DOSage time
(fi1, fr2, B2, £51)

(OC, Ob) Steady levels of O, and O,

(Ocor Opo, Bo)  Initial states

Effect of infection on regulation factors

(0.005, 0.007) day

(200, 400, 600) days

(0.005, 0, 0.2, 0.005) day
Control: (1.16, 231.72)
Osteoporosis: (1.78, 177.91)
Osteomyelitis: (5, 316)
Control: (11.16, 231.72, 1)
Osteoporosis: (11.78, 177.91, 1)
Osteomyelitis: (15, 316, 1)

Values have been adapted from literature (mainly [10,16]). Some parameters are specific to a particular scenario: gageing and gpor are relative to the osteoporosis
model, while parameters yg, s, V, tieqr and (f11, f12, f22, f21) are specific to the osteomyelitis model.
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Figure 4 Simulation results of the ODE model. Bone density (first row), number of osteoblasts (second row), and number of osteoclasts (third
row) compared between control and osteoporotic (first column); control and osteomyelitis (second column); osteoporotic and osteomyelitis
(third column). Red lines mark the steady states for the variables considered. Results show a negative remodelling balance in the osteoporotic
case and much more critical in the osteomyelitis case. While we observe a higher (but constant) remodelling rate in the osteoporotic
configuration, in the osteomyelitis scenario the remodelling period is unstable and longer.
stochastic transitions in a guarded-command syntax of where label is an optional transition label; guard is a
the form predicate over the state variables determining whether a

transition is enabled or not; in the CTMC settings, rate

[label] guard — rate : update is the speed/propensity of the action, giving rise to an



Lio et al. BMC Bioinformatics 2012, 13(Suppl 14):512
http://www.biomedcentral.com/1471-2105/13/5S14/512

Page 10 of 14

STAPHYLOCOCCUS AUREUS BONE DENSITY

(=] (=]

® —— 200 da 8
— 400da¥: o
600 days g | ] p=3
2 1 - L ] _| O
& [ [=} m _|
.@ 0\5 ® m m
g N > X
5 ¥ g e — 6

€ 3 =
z g m E|)
] * =z >
5 —
—— 200days —
—— 400 days —
o4 o 4 600 days (@]
T T T T I . E— T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time [days] Time [days]
STAPHYLOCOCCUS AUREUS BONE DENSITY
8 —— 200 days g4
—— 400 days

600 days g L] /—V—\/ vy
g 1 = ® — >
o o | 0
2 = ° m -
_IE o Z o > m
5% e 43
Q pliy
: ¢ =0
z N m O
&1 =z =
8 — O
m

T T
0 500 1000 1500 2500

Time [days]

2000

t = 400 days.

Figure 5 Simulation of a bacteriostatic (V = 0.005 = ;) and a bacteriocide (V = 0.007 >Yg) treatment for S. Aureus at different dosage
times (200, 400 and 600 days). Dots on the plots mark the points when treatment is given. As regards the bacteriostatic drug, the bone
density is not subject to critical drops if the treatment is administered at t = 200 days; in the other cases, the normal remodelling activity cannot
be re-established, even if the bone loss is less critical w.rt. the untreated infection. On the other hand, the bacteriocide treatment looks more
effective than the bacteriostatic one, although recovering the normal density becomes much more difficult if the drug is administered later than

T
1000 1500
Time [days]

500 2000 2500

exponentially distributed duration of the transition with
mean 1/rate (faster action have a higher probability of
being taken than slower one); and update optionally sets
new values to state variables. The ODE model is trans-
lated into a set of PRISM guarded commands by apply-
ing the following method [18]. Consider a simple ODE
population model of the form % = — . The corre-

dt
sponding PRISM transitions would be:

X <Xpax > ¥ :Xx=x+1

X <Xpin—> Bix=x—1

where x,,,, and x,,;, are the maximum and the mini-
mum x, resp. In other words, growth rates in the ODE
model become the stochastic rates in a transition incre-
menting the population size, while death rates are
involved in the transitions decrementing the population
size.

Table 3 summarizes the transitions of osteoclasts,
osteoblasts and bacteria in the PRISM model. Moreover,
in order to reduce the state-space of the stochastic
model, bone density has not been implemented as a

state variable, but by means of transition rewards, i.e.
positive costs associated to transitions. We implement a
couple (boneFormed, boneResorbed) of rewards asso-
ciated to osteoblasts’ and osteoclasts’ transitions where
their stochastic rate is the formation rate (k,O,) and the
resorption rate (k;0,), respectively (see Table 3).

Potentialities in clinical bioinformatics and conclusions
Osteomyelitis and osteoporosis are assessed through the
verification of quantitative properties over the defined
stochastic model.

Let assume that the simulation of the PRISM imple-
mentation of the model is run in parallel with the deter-
mination of clinical parameters during the periodic
medical visits of a patient. These medical visits provide
a mean of fine tuning a personalised model of the dis-
ease and a measure of how a therapy is effective. Differ-
ent diseases, when monitored in a continuous way, may
produce different alterations in local mineral density.
We could extend the statistical estimators of a disease
to: 1) the BMD (measured as z-score, the number of
standard deviations above or below the mean for the
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Table 3 Transitions in the stochastic model for bone remodelling.

(a) Osteoclasts

211 (1+n f) 21 (12 f)

0 0<0O; <0, AOp>0— a, 0 o) Oc=0+1
I Oc >0 - gagcmgBWO( OC = OC -1
[resorb) O.>0— kO, : true
(b) Osteoblasts

- B - B

0 0<Op <0 A0 >0— (14fu {) gz {) 0p= 0+
max az c b
I Op>0— Jageing BZOD 10y =0p -1
[form] Op,>0—> kO : true
(c) Bacteria
i 0 <B <Byuy A treat = 0 — vBB - log(3) ‘B=B+1
1

il treat = 0 — s treat =1

ttreat
0 0 <B <Bpgx Atreat =1 AV < yz— (v8 — V)B-log(}) ‘B=B+1
0 B>O0Atreat=1AV>7y;— (V. — v8)B-log(3) B=B-1

(d) Bone resorbed reward

(e) Bone formed reward

[resorb] true: 1

[form] true: 1

We consider the model with bacterial infection, being equivalent to the model with no infection when f; = 0. Guard predicates are set in order to avoid out-of-
range updates and 0O-valued transition rates. Maximum values for state variables have been estimated from the continuous model. The variable treat is used as a
switch for the beginning of treatment firing with rate 1/tyeq, therefore with an exponentially distributed delay having mean treatTime. Bacteriocide (V >yg) and
non-bacteriocide (V <yg) dynamics is considered separately. Bone density is calculated by subtracting the bone resorbed reward (d) from the bone formed
reward (e). Resorption and formation rates in the ODE model, i.e. k;O. and k,O, respectively, become the stochastic rates of transitions incrementing the bone

resorbed/formed reward.

patients age, sex and ethnicity; or as t-score, i.e. the
number of standard deviations above or below the mean
for a healthy 30 year old adult of the same sex and eth-
nicity as the patient); 2) The rate of change of BMD.
This estimator tells us the emergence of defects of the
bone metabolism in terms of signaling networks of
RANK/RANKL and decrease of pre-osteoblast number;
3) The variance, skewness and curtosis of the the local
small scale intermittency of the signal. For example
osteomyelitis and osteoporosis show slightly confound-
ing pattern of BMD decrease; we could also think at the
confounding patterns of IRIS in HAART therapy, co-
morbidity of osteopetrosis and osteoporosis, multiple
myelomas, breast cancer, diabetes and metabolic syn-
dromes, etc. The variance could perhaps help in discri-
minating among bone-related diseases. From a technical
viewpoint, properties to verify have been formulated in
CSL (Continuous Stochastic Logic) [19], and they give
rise to three clinical estimators that we evaluate over
1200 days (about four years), which is enough to assess
the presence of bone diseases:

+ Bone density estimator. It is calculated as the dif-
ference between the cumulative (C=') expected
rewards (£ ) for bone formation and bone
resorption, with the formula

f80(£) * Rirbone Formedr} =2[C="] = Rinbone Resorbedry =?[C=], t =0, 10, ..., 1200

+ Density change rate. It allows to assess rapid
negative and positive changes in bone density. This
estimator could be particularly helpful in detecting
the insurgence of osteomyelitis before critical values
of bone density are reached, since osteomyelitis is
typically characterized by a higher negative change
rate than osteoporosis. In particular the estimator is
defined as the difference quotient of BMD over a
time interval of months, e.g. 50 days. The formula
obtained is

Jop(t+ 80 =folt) ', _ 4 10, 1200,
At

+ Density variance. While the first estimator com-

putes the expected value of bone density, here we

calculate the variance of BMD taking into account

the whole state space and the actual bone density at

each state.

Figure 6 and Figure 7 describe bone mineral density,
standard deviation and density change rate functions for
the control (a), osteoporosis (b) and osteomyelitis (c)
cases, respectively. Clearly the osteomyelitis case shows
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Figure 6 Bone mineral density function and its standard deviation for the control (left, a), osteoporosis (middle, b) and osteomyelitis

(right, c) simulations.

quicker decrease than control and osteoporosis cases.
They provide an example of how the diagnostic estima-
tors could be derived. Therefore our work is meaningful
in perspective of a clinical bioinformatics characterized
by a close coupling between clinical measures and mod-
elling prediction.

Here we report that the genetic complexity and the
gene expression data meta analysis shows that the
underlying “mystery” of bone remodelling is much
greater than handled by the current mathematical mod-
els. In other words we are not able to use all our gene
expression results in a full model of BR diseases.
Although our model of osteomyelitis and the compari-
son with the osteoporosis is not able to consider all this
complexity, nevertheless it makes a partial use of the
results of the analysis of the experimental data and pro-
duces a realistic description of the pathology. From a

methodological point of view the combination of mathe-
matical and formal method approach has led to the pro-
posal of considering additional estimators (first
derivatives and variance) of the bone pathologies as
diagnostic tool. That could also inspire the ideal situa-
tion in which a personalised model is generated from
(personalised) data and the comparison between clinical
data obtained during periodic medical check-up is com-
pared with the computer predictions.

Methods

Data analysis

We found that there are no comprehensive analysis on
osteomyelitis; most studies focus on specific conditions.
We have collected a large ensemble of gene expression
data related to osteomyelitis and osteoporosis. For this
reason, we have considered 6 microarray data sets of the
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same platform GPL96 from the Gene Expression Omni-
bus (http://www.ncbi.nlm.nih.gov/geo/), accession num-
bers are GSE16129, GSE6269, GSE11907, GSE11908,
GSE13850 and GSE7429 [20-23]. We observe that
RANKL, RANK, OPG and NF-kB proteins impact more
on the bone remodelling for osteomyelitis and osteo-
porosis [7,20-22]. For this reason to understand the
effect osteomyelitis and osteoporosis on bone remodel-
ling, we have considered the genes related to the pro-
teins RANKL, RANK, OPG, NF-kB proteins, TNF and
TNF receptor superfamilies. We observed that there are
82 genes are related with these proteins. So, we filtered
the required 82 genes related data. We have selected
samples for 48 infected and 27 healthy controls for
osteomyelitis and 30 infected and 30 healthy controls
for osteoporosis. The datasets contain data from people
of different age and sex.

For more evidence about osteomyelitis, we have con-
sidered more gene expression data related to osteomye-
litis on different platform GPL97. For this reason, we
have considered additional 3 microarray data sets from
the Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/), accession numbers are GSE6269,
GSE11907 and GSE11908 [21,22]. To understand the
effect of osteomyelitis on the bone remodelling, we have
considered the genes related to the proteins RANKL,
RANK, OPG, NF-kB proteins, TNF and TNF receptor
superfamilies like previous analysis. We observed that in
the platform GPL97, there are 31 genes are related to
these proteins and superfamilies. So, we filtered the
required genes related data. We have selected samples
for 43 infected and 17 healthy controls. Standard anova
and Box plots representation were used to analyse and
visualise the expression levels of these genes for the
infection of osteomyelitis and osteoporosis condition.
We output in Table 1 the groups of over expressed and
under expressed categories.

ODE and probabilistic model checking models

We have implemented the ODE model based on
Komarova et al [10] in R, and using the FME package
[24] to analyse parameter sensitivity and robustness. We
have used Mathematica and MATLAB for steady states
and ODE calculation using state of art numerical rou-
tines. Scripts and functions for the models could be
made available upon request to the first author. For the
specification of the stochastic model and for performing
probabilistic verification we have adopted the open-
source PRISM probabilistic model checker [17], one of
the reference existing model checkers for the analysis of
systems which exhibits random or probabilistic beha-
viour. Since model checking is based on graph-theoreti-
cal techniques for exploring the whole state space of the
model, this task becomes computationally infeasible for
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non-trivial models, due to the combinatorial explosion
of the state space. For this reason, verification has been
performed by means of approximate probabilistic model
checking techniques that calculate the probability of a
given property on a statistical basis, i.e. by sampling on
a number of simulations of the model. In this work we
have taken 20 samples for each verified property, that
were enough to reproduce outputs similar to the non-
approximate verification. PRISM models could be made
available upon request to the second author.
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