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Abstract

Background: The Genia task, when it was introduced in 2009, was the first community-wide effort to address a
fine-grained, structural information extraction from biomedical literature. Arranged for the second time as one of
the main tasks of BioNLP Shared Task 2011, it aimed to measure the progress of the community since 2009, and to
evaluate generalization of the technology to full text papers. The Protein Coreference task was arranged as one of
the supporting tasks, motivated from one of the lessons of the 2009 task that the abundance of coreference
structures in natural language text hinders further improvement with the Genia task.

Results: The Genia task received final submissions from 15 teams. The results show that the community has made
a significant progress, marking 74% of the best F-score in extracting bio-molecular events of simple structure, e.g.,
gene expressions, and 45% ~ 48% in extracting those of complex structure, e.g., regulations. The Protein
Coreference task received 6 final submissions. The results show that the coreference resolution performance in
biomedical domain is lagging behind that in newswire domain, cf. 50% vs. 66% in MUC score. Particularly, in terms
of protein coreference resolution the best system achieved 34% in F-score.

Conclusions: Detailed analysis performed on the results improves our insight into the problem and suggests the
directions for further improvements.

Background
The BioNLP Shared Task (BioNLP-ST, hereafter) is a
series of efforts to promote a community-wide colla-
boration towards fine-grained information extraction
(IE) in biomedical domain. The first event, BioNLP-ST
2009, introducing a bio-molecular event (bio-event)
extraction task, attracted a wide attention, with 24
teams submitting final results [1].
To establish a community effort, the organizers pro-

vided the task definition, benchmark data, and evalua-
tions, and the participants competed in developing
systems to perform the task. Meanwhile, participants
and organizers communicated to develop a better setup
of evaluation. Some participants provided their tools

and resources for others, making it a collaborative
competition.
The final results showed that the automatic extraction

of simple events - those with unary arguments, e.g.,
gene expression - could be achieved at the performance
level of 70% in F-score, but the extraction of complex
events, e.g., binding and regulation, was a lot more chal-
lenging, having achieved 40% of performance level.
After BioNLP-ST 2009, all the resources from the

event were released to the public, to encourage continu-
ous efforts for further advancement, and the online eva-
luation service has been kept open to provide reliable
evaluation. Since then, several improvements have been
reported [2-6]. For example, Miwa et al. [2] reported a
significant improvement with binding events, achieving
50% of performance level.
The task introduced in BioNLP-ST 2009 was renamed

to Genia event (GE) task, and was hosted again in
BioNLP-ST 2011, which also hosted four other main
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tasks and three supporting tasks [7]. As the sole task
that was repeated in the two events, the GE task took
the role of connecting the results of the 2009 event to
the other main tasks of 2011. The GE task in 2011
received final submissions from 15 teams. The results
show that the community made a significant progress
with the task, and that the technology can be general-
ized to full papers at moderate cost of performance.
It is one of the lessons from BioNLP-ST that corefer-

ence structures in biomedical text substantially hinder
the progress of fine-grained IE [1]. To address the pro-
blem, the Protein Coreference (CO) task was arranged
as one of the supporting tasks of BioNLP-ST 2011.
While the task itself is not an IE task, it is expected to
be a useful component in performing the main IE tasks
more effectively. To establish a stable evaluation and to
observe the effect of the results of the task to the main
IE tasks, the CO task particularly focused on finding
anaphoric protein references. After 7 weeks of system
development phase, six teams submitted their final
results. According to our primary evaluation criteria, the
best system is evaluated to find 22.18% of anaphoric
protein references at a precision of 73.26%.
This paper presents the results of BioNLP-ST 2011,

extending the GE and CO task overview papers [8,9] in
the BioNLP-ST 2011 workshop proceedings. Particu-
larly, the paper focuses on providing more data and ana-
lyses to support the improvement and generalization
achieved with the GE task, and also to show the pro-
blems of current approaches of CO with possible future
directions.

Results and discussions
The results of BioNLP-ST 2011 are summarized to the
task definition, resources and results.

Task definitions
GE task
The GE task follows the task definition of BioNLP-ST
2009, which is briefly described in this section. For
more detail, please refer to [1,10].

Table 1 shows the event types to be addressed in the
task. For each event type, the primary and secondary
arguments to be extracted with an event are defined.
For example, a Phosphorylation event is primarily
extracted with the protein to be phosphorylated. As sec-
ondary information, the specific site to be phosphory-
lated needs to be extracted when expressed in text.
From a computational point of view, the event types

represent different levels of complexity. When only pri-
mary arguments are considered, the first five event types
in Table 1 are classified as simple event types, requiring
only unary arguments. The Binding and Regulation
types are more complex: Binding requires detection of
an arbitrary number of arguments, and Regulation
requires detection of recursive event structure.
Based on the definition of event types, the entire task

is divided to three sub-tasks addressing event extraction
at different levels of specificity:
Task 1. Core event extraction addresses the extrac-

tion of typed events together with their primary
arguments.
Task 2. Event enrichment addresses the extraction of

secondary arguments that further specify the events
extracted in Task 1.
Task 3. Negation/speculation detection addresses

the detection of negations and speculations over the
extracted events.
Task 1 serves as the backbone of the GE task and is

mandatory for all participants, while the other two are
optional.
Figure 1 shows an example of event annotation. The

event encoded in the text is represented in a standoff-
style annotation as follows:
T1Protein 15 18
T2 Localization 19 32
T3 Entity 40 46
E1 Localization:T2 Theme:T1 ToLoc:T3
M1 Negation E1
The annotation T1 identifies the entity referred to by

the string between the character offsets, 15 and 18 (p65)
to be a Protein. T2 identifies the string, translocation, to

Table 1 Event types and their arguments for the GE task.

Event Type Primary Argument Secondary Argument

Gene_expression Theme(Protein)

Transcription Theme(Protein)

Protein_catabolism Theme(Protein)

Phosphorylation Theme(Protein) Site(Entity)

Localization Theme(Protein) AtLoc(Entity), ToLoc(Entity)

Binding Theme(Protein)+ Site(Entity)+

Regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)

Positive_regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)

Negative_regulation Theme(Protein/Event), Cause(Protein/Event) Site(Entity), CSite(Entity)

The type of each filler entity is specified in parenthesis. Arguments that may be filled more than once per event are marked with “+”.
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refer to a Localization event. Entities other than proteins
or event type references are classified into a default class
Entity, as in T3. E1 then represents the event type and
the arguments, as defined in Table 1. Note that for Task
1, the entity, T3, does not need to be identified, and the
event, E1, may be identified without specification of the
secondary argument, ToLoc:T3:
E1’ Localization:T2 Theme:T1
Finding the full representation of E1 is the goal of

Task 2. In the example, the localization event, E1, is
negated as expressed in the failure of. Finding the nega-
tion, M1, is the goal of Task 3.
CO task
The CO task is newly defined in BioNLP-ST 2011. Fig-
ure 2 shows an example text that is segmented into four
sentences, S2 - S5, where anaphoric coreferences are
illustrated with colored extends and arrows. In the fig-
ure, protein names are highlighted in purple, T4 - T10,
and anaphoric protein references, e.g., pronouns and
definite noun phrases, are highlighted in red, T27, T29,
T30, T32, of which the antecedents are indicated by
arrows if found in the text. In the example, the definite
noun phrase (NP), this transcription factor (T32), is a
coreference to p65 (T10). Without knowing the corefer-
ence structure, it becomes hard to capture the informa-
tion written in the phrase, nuclear exclusion of this
transcription factor, which is localization of p65 (out of
nucleus) according to the framework of BioNLP-ST.
A standard approach would include a step to find can-

didate anaphoric expressions that may refer to proteins.
In this task, pronouns, e.g., it or they, and definite NPs
that may refer to proteins, e.g., the transcription factor

or the inhibitor are regarded as candidates of anaphoric
protein references. This step corresponds to the mark-
able detection and the anaphoricity determination steps
in the jargon of MUC [11]. The next step would be to
find the antecedents of the anaphoric expressions. This
step corresponds to the anaphora resolution step.
The protein annotation to the example text in Figure

2 is as follows:
T4 Protein 275 278 p65
T5 Protein 294 297 p50
T6 Protein 367 372 v-rel
T7 Protein 406 409 p65
T8 Protein 597 600 p50
T9 Protein 843 848 MAD-3
T10 Protein 879 882 p65
The first line indicates that there is a protein refer-

ence, T4, in the span that begins at 275’th and ends
before 278’th character, of which the text is p65.
The coreference annotation is made by three types of

annotations. The first type is the annotations for ana-
phoric protein references. For example, those in red in
Figure 2 are anaphoric protein references:
T27 Exp 179 222 the N. . 215 222 complex
T29 Exp 307 312 which
T30 Exp 459 471 this . . 464 471 complex
T32 Exp 1022 1047 this . . 1027 1047 tra. .
The first line indicates that there is an anaphoric pro-

tein reference in the specified span, of which the text is
the NF-kappa B transcription factor complex (here trun-
cated to five characters due to limit of space), and that
its minimal expression is complex. The second type is
the annotations for the noun phrases that are antece-
dents of the anaphoric references. For example, T28 and
T31 (highlighted in blue) are antecedents of T29 and
T32, respectively:
T28 Exp 264 297 NF-ka. .
T31 Exp 868 882 NF-ka. .
The last type is the annotations to link the anaphoric

expressions to their their antecedents:
R1 Coref Ana:T29 Ant:T28 [T5, T4]
R2 Coref Ana:T30 Ant:T27
R3 Coref Ana:T32 Ant:T31 [T10]
Note that due to limit of space, argument names are

abbreviated, e.g., “Ana” for “Anaphora”, and “Ant” for
“Antecedent”. The first line indicates that there is a cor-
eference relation, R1, of which the anaphor is T29 and
the antecedent is T28, and that the antecedent contains
two protein names, T5 and T4.
Note that, sometimes, an anaphoric expression, e.g.,

which (T29), is connected to more than one protein
names, e.g., p65 (T4) and p50 (T5). Sometimes, corefer-
ence structures do not involve any specific protein
name, e.g., T30 and T27. In order to establish a stable
evaluation, our primary evaluation will focus only on

Figure 1 Event annotation example.

Figure 2 Protein coreference annotation.
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coreference structures that involve specific protein
names, e.g., T29 and T28, and T32 and T31. Among the
three, only two, R1 and R3, involve specific protein
references, T4 and T5, and T10. Thus, finding of R2
will be ignored in the primary evaluation. However,
those not involving specific protein references are also
provided in the training data to help system develop-
ment, and will be considered in the secondary evalua-
tion mode.

Task resources
In order to guide and promote the development of the
systems to perform the GE and CO tasks, benchmark
data sets were developed and provided to the
participants
The benchmark data for the GE task was initially pre-

pared for the first BioNLP Shared Task in 2009. At that
time, the data included only titles and abstracts of
papers from Medline. For BioNLP-ST 2011, full papers
have been added, and the benchmark data now consist
of two collections. The abstract collection is the same as
the data for BioNLP-ST 2009, and is meant to be used
to measure the progress of the community. The full text
collection contains full papers which are newly anno-
tated, and is meant to be used to measure the generali-
zation of the technology to full papers. The whole data
sets include annotations for events as defined in Table
1. The abstract collection also include annotations for
coreferences, becoming the benchmark data set for the
CO task.
The whole data set is divided into three sub-sets for

the purpose of training, tuning and testing. The training
and tuning sets are provided to the shared task partici-
pants, with the full annotations. However, with the test
set, only the protein annotations are provided, and the
participants are expected to produce the remaining
annotations. Table 2 shows basic statistics of the anno-
tations in the benchmark data sets. The number of
words shows there are much more training data from
abstracts than from full papers. The number of anno-
tated coreferences are shown in classification, indicating
that relative pronouns, pronouns, and definite noun
phrases are the three major types of anaphora expres-
sion in the data set. The number of event annotations
shows that Gene_expression, Binding and Regulation
(including its subtypes) are the most frequent event
types in the data sets.
As the full paper collection is a newly added portion

for BioNLP-ST 2011, the statistics are examined in
more detail across different sections of full papers. As
different sections of scientific papers, e.g., title, abstract,
introduction, results, conclusions, and so on, are written
with different purposes, the type information expected
to be found in those sections would be different. Table

3 shows detailed statistics of annotated entities in differ-
ent sections. For the examination, the sections are
roughly classified into TIAB (titles and abstracts), Intro.
(introduction and background), R/D/C (results, discus-
sions and conclusions),
Methods (methods and experimental procedures), and

Caption (captions of figures and tables). An observation
at the statistics says that the Methods and Caption sec-
tions mention the events defined in Table 1 much less
frequently than the other sections: on average, only one
and four events are mentioned in 100 words of Methods
and Caption sections respectively, while 5 ~ 8 events in
the other sections. It is also observed that in the two
sections, events are mentioned in more coordinated
structure: on average, 1.46 and 1.61 events are coordi-
nated in Methods and Caption sections respectively,
while 1.23 ~ 1.37 events are in the other sections. It
may agree with the intuition that the two sections
usually describe things in a concrete way with much
more details than other sections, enumerating relevant
entities as exact as possible. Therefor it is expected that

Table 2 Statistics of the benchmark data sets for the GE
and CO tasks.

Training Tuning Test

Item Abs. Full Abs. Full Abs. Full

Articles 800 5 150 5 260 4

Words 176146 29583 33827 30305 57256 21791

Proteins 9300 2325 2080 2610 3589 1712

Coreferences 2247 - 463 - 714 -

Relative pronouns 1193 - 254 - 349 -

Pronouns 738 - 149 - 269 -

Definite NPs 296 - 58 - 91 -

Appositions 9 - 1 - 3 -

Others 11 - 1 - 2 -

Events 8615 1695 1795 1455 3193 1294

Gene_expression 1738 527 356 393 722 280

Transcription 576 91 82 76 137 37

Protein_catabolism 110 0 21 2 14 1

Phosphorylation 169 23 47 64 139 50

(with Site) (67) (0) (27) (12) (81) (15)

Localization 265 16 53 14 174 17

(with Loc) (116) (12) (32) (10) (111) (2)

Binding 887 101 249 126 349 153

(with Site) (138) (34) (50) (114) (24) (79)

Regulation 961 152 173 123 292 96

(with Site) (57) (8) (39) (17) (11) (3)

Positive_regulation 2847 538 618 382 987 466

(with Site) (175) (7) (75) (47) (37) (7)

Negative_regulation 1062 247 196 275 379 194

(with Site) (27) (9) (6) (18) (10) (7)

The events and the coreferences annotations are used for the GE and CO tasks,
respectively.
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the IE from the two sections will benefit from an
improved processing of coordinated linguistic structures.
The distribution of annotated events across the five

different sections is illustrated in Figure 3. It is notable
that the TIAB, Intro. and R/D/C sections show similar
distribution of annotated events, but the Methods and
Caption sections show significantly different distribu-
tions. Particularly, the ratio of Gene_expression is

significantly high in the latter two sections, and the ratio
of Negative_regulation is quite high in the Methods sec-
tion. An intuition which may explain the observation is
that the Methods sections often describe experimental
procedures that are designed to cause negative regula-
tory effects, e.g., mutation, addition of inhibitor proteins,
and so on, and that the results of molecular biology
experiments are often observed at the gene expression
level. This observation suggests a different event annota-
tion scheme, or a different event extraction strategy
would be required for Methods and Caption sections.

Task results
The participants to the GE and CO tasks were given three
months and seven weeks respectively for system develop-
ment. After that, 19 teams submitted their final results: 13
to the GE, 4 to the CO, and 2 to both tasks. Table 4
describes the teams who participated in the tasks, except
three who wanted to remain anonymous. Table 5 shows
brief profiles of the systems. This section presents the final
results and analyses on them. The performance is reported
in recall, precision, and f-score, based on the Approximate
recursive matching and the Protein coreference evaluation
for the GE and CO tasks, respectively. Readers are referred
to the Methods section, for more detail.
GE Task 1 results
Among the sub-tasks of the GE task, Task 1 was man-
datory and 15 teams made their final submissions to the
task. Table 6 shows the evaluation results of Task 1. For

Table 3 Statistics of annotations in different sections of text

Item Abstract Full paper

All TIAB Intro. R/D/C Methods Caption

Words 267229 80962 3538 7878 43420 19406 6720

Proteins 14969 6580 336 597 3980 916 751

(Density: P/W) (5.60%) (8.13%) (9.50%) (7.58%) (9.17%) (4.72%) (11.18%)

Event triggers 11057 3280 216 312 2659 136 173

Events 13603 4436 272 427 3234 198 278

(Density: E/W) (5.09%) (5.48%) (7.69%) (5.42%) (7.51%) (1.02%) (4.14%)

(Density: E/P) (90.87%) (67.42%) (80.95%) (71.52%) (81.93%) (21.62%) (37.02%)

(Avg. Coord.: E/T) (1.23) (1.27) (1.26) (1.37) (1.23) (1.46) (1.61)

Gene expression 2816 1193 62 98 841 80 112

Transcription 795 204 7 7 140 30 20

Protein catabolism 145 3 0 0 3 0 0

Phosphorylation 355 137 12 12 101 10 2

Localization 492 47 3 15 22 7 0

Binding 1485 380 16 74 266 6 18

Regulation 1426 371 35 30 281 4 21

Positive_regulation 4452 1385 98 131 1087 15 54

Negative_regulation 1637 716 39 60 520 46 51

The Abstract column shows the statistics of the abstraction collection (1210 titles and abstracts), and the following columns show that of the full paper collection
(14 full papers). TIAB = title and abstract, Intro. = introduction and background, R/D/C = results, discussions, and conclusions, Methods = methods, materials, and
experimental procedures. Some minor sections, supporting information, supplementary material, and synopsis, are ignored. Density = relative density of
annotation (P/W = Proteins/Words, E/W = Events/Words, and E/P = Events/Proteins). Avg. Coord = average number of coordinated events (E/T = Events/Triggers).

Figure 3 Event distribution in different sections. The interval of
the contour lines is 5%. For example, in the Methods and Caption
sections, 40% of the events are of Gene_expression.
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the evaluation results of the individual simple-type
events, e.g. Gene_expression, please refer to the GE task
overview paper of the BioNLP-ST 2011 workshop [8].
For reference, the reported performance of the two pre-
vious systems, UTurku09 and Miwa10 is shown at the
top. UTurku09 was the winning system of Task 1 in

2009 shared task [12], and Miwa10 was the best system
reported after BioNLP-ST 2009 [2].
The best overall performance on Task 1 (56.04%) in

BioNLP-ST 2011 was achieved by the FAUST system,
which adopted a combination model of UMass and
Stanford. In terms of improvement, the performance of
FAUST on the abstract collection (57.46%) demonstrates
a significant improvement of the community on the GE
task, when compared to the performance of UTurku09
(51.95%) and Miwa10 (53.29%). The biggest improve-
ment was made to the Regulation events (from 40.11%
and 40.60% to 46.97%) of which the extraction requires
a complex modeling of recursive event structure - an
event may become an argument of another event. In
terms of generalization, the performance of UMass on
the full paper collection (53.14%) suggests that the tech-
nology which began with only abstracts can be general-
ized to full papers without a big loss of accuracy. Note
that however this observation contrasts to the recent
report about a substantial performance drop of protein
mention detection in full papers [13], and that the per-
formance reported in this paper is obtained when the
gold protein annotation is given. Therefore, the perfor-
mance of event extraction in a full automatic system
needs to be investigated and discussed more carefully.
The ConcordU system is notable as it is the sole rule-

based system that is ranked above the average. The per-
formance of the system demonstrates both pros and

Table 4 Teams who participated in the GE and CO tasks

Team ’09 Task Background reference

FAUST √ 12- - 3C [18]

UMASS √ 12- - 1C [19]

UTurku √ 123 C 1BI [20]

MSR-NLP √ 1– - 4C [21]

ConcordU 1-3 C 2C [22]

UWMadison √ 1– - 2C [23]

Stanford √ 1– - 3C+1.5L [24]

BMI@ASU 12- - 3C [25]

CCP-BTMG √ 1– - 3BI [26]

TM-SCS 1– - 1C [27]

XABioNLP 1– - 4C [28]

HCMUS 1– - 6L [29]

UUtah — C 1C [30]

UZurich — C 1C [31]

USzeged — C 2C -

UCD — C 4C -

The ‘09 column indicates whether at least one team member participated in
BioNLP-ST 2009. In Background column, C=Computer Scientist,
BI=Bioinformatician, B=Biologist, L=Linguist

Table 5 System profiles

Team NLP GE. task CO. task

Lexical Proc. Syntactic Proc. Trig. Arg. group Mark. Coref.

FAUST SnowBall, CNLP McCCJ+SD Stacking (UMASS + Stanford) -

UMASS SnowBall, CNLP McCCJ+SD Joint infer., Dual Decomposition -

UTurku Porter McCCJ+SD SVM SVM SVM SVM SVM

MSR-NLP Porter McCCJ+SD, Enju SVM MaxEnt rules -

ConcordU - McCCJ+SD dic rules rules rules rules

UWMadison Morpha, Porter McCCJ+SD Joint infer., SEARN -

Stanford Morpha, CNLP McCCJ+SD MaxEnt MSTParser -

BMI@ASU Porter, WordNet Stanford+SD SVM SVM UTurku -

CCP-BTMG Porter, WordNet Stanford+SD Subgraph Isomorphism -

TM-SCS Stanford Stanford dic rules rules -

XABioNLP KAF - rules -

HCMUS OpenNLP - dic, rules rules -

UUtah GTag Enju - SVM Reconcile

UZurich LingPipe Pro3Gres - rules rules

USzeged CTag, Morpha McCCJ - rules SVM

UCD GTag, LingPipe - - rules SVM

Proc.=Processing, Trig.=Trigger detection, Arg.=Argument linking, group=Argument grouping, Mark.=Markable detection, Coref.=Coreference linking,
SnowBall=SnowBall Stemmer, CNLP=Stanford CoreNLP (tokenization), CTag=CNC Tagger, GTag=Genia Tagger, KAF=Kyoto Annotation Format McCCJ=McClosky-
Charniak-Johnson Parser, Stanford=Stanford Parser, SD=Stanford Dependency Conversion.
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cons of a typical rule-based approach. It showed the best
precision in extracting simple-type events, but was not
very successful with complex-type events, suggesting
that when the problem is simple, rules may be

developed effectively, but it may become difficult as the
problem gets complex. The performance of the system
on the two collections shows that the rules of ConcordU
system well generalize to full papers.

Table 6 Evaluation results of Task 1 on the (W)hole, (A)bstract, and (F)ull paper collections

Team Part Simple Event Binding Regulation All

UTurku09 A 64.21/77.45/70.21 40.06/49.82/44.41 35.63/45.87/40.11 46.73/58.48/51.95

Miwa10 A 70.44 52.62 40.60 48.62/58.96/53.29

W 68.47/80.25/73.90 44.20/53.71/48.49 38.02/54.94/44.94 49.41/64.75/56.04

FAUST A 66.16/81.04/72.85 45.53/58.09/51.05 39.38/58.18/46.97 50.00/67.53/57.46

F 75.58/78.23/76.88 40.97/44.70/42.75 34.99/48.24/40.56 47.92/58.47/52.67

FA 66.16/81.04/72.85 45.53/58.09/51.05 39.38/58.18/46.97 50.00/67.53/57.46

FI 77.36/71.93/74.55 29.63/36.36/32.65 41.77/50.77/45.83 51.57/56.94/54.13

FR 76.34/80.00/78.13 39.00/43.82/41.27 32.66/45.64/38.07 45.98/57.20/50.98

FM 48.00/75.00/58.54 100.0/50.00/66.67 20.00/50.00/28.57 46.88/68.18/55.56

W 67.01/81.40/73.50 42.97/56.42/48.79 37.52/52.67/43.82 48.49/64.08/55.20

UMass A 64.21/80.74/71.54 43.52/60.89/50.76 38.78/55.07/45.51 48.74/65.94/56.05

F 75.58/83.14/79.18 41.67/47.62/44.44 34.72/47.51/40.12 47.84/59.76/53.14

FA 64.21/80.74/71.54 43.52/60.89/50.76 38.78/55.07/45.51 48.74/65.94/56.05

FI 79.25/82.35/80.77 44.44/48.00/46.15 35.44/56.00/43.41 51.57/65.08/57.54

FR 75.95/83.97/79.76 34.00/40.96/37.16 32.29/42.89/36.85 45.09/56.04/49.98

FM 48.00/85.71/61.54 100.0/100.0/100.0 20.00/33.33/25.00 46.88/78.95/58.82

W 68.22/76.47/72.11 42.97/43.60/43.28 38.72/47.64/42.72 49.56/57.65/53.30

UTurku A 64.97/76.72/70.36 45.24/50.00/47.50 40.41/49.01/44.30 50.06/59.48/54.37

F 78.18/75.82/76.98 37.50/31.76/34.39 34.99/44.46/39.16 48.31/53.38/50.72

FA 64.97/76.72/70.36 45.24/50.00/47.50 40.41/49.01/44.30 50.06/59.48/54.37

FI 84.91/67.16/75.00 25.93/30.43/28.00 30.38/30.77/30.57 47.80/45.24/46.48

FR 77.48/78.99/78.23 36.00/30.51/33.03 34.68/45.54/39.38 47.19/54.18/50.44

FM 60.00/75.00/66.67 100.0/20.00/33.33 40.00/25.00/30.77 59.38/50.00/54.29

W 68.99/74.30/71.54 42.36/40.47/41.39 36.64/44.08/40.02 48.64/54.71/51.50

MSR-NLP A 65.99/74.71/70.08 43.23/44.51/43.86 37.14/45.38/40.85 48.52/56.47/52.20

F 78.18/73.24/75.63 40.28/32.77/36.14 35.52/41.34/38.21 48.94/50.77/49.84

FA 65.99/74.71/70.08 43.23/44.51/43.86 37.14/45.38/40.85 48.52/56.47/52.20

FI 83.02/57.89/68.22 40.74/25.00/30.99 35.44/53.85/42.75 52.20/48.26/50.15

FR 78.24/76.49/77.36 37.00/35.24/36.10 35.78/40.21/37.86 48.18/50.93/49.52

FM 60.00/75.00/66.67 100.0/50.00/66.67 60.00/50.00/54.55 62.50/66.67/64.52

W 59.99/85.53 /70.52 29.33/49.66/36.88 35.72/45.85/40.16 43.55/59.58/50.32

ConcordU A 56.51/84.56 /67.75 29.97/49.76/37.41 36.24/47.09/40.96 43.09/60.37/50.28

F 70.65/88.03 /78.39 27.78/49.38/35.56 34.58/43.22/38.42 44.71/57.75/50.40

FA 56.51/84.56 /67.75 29.97/49.76/37.41 36.24/47.09/40.96 43.09/60.37/50.28

FI 58.49/86.11 /69.66 22.22/50.00/30.77 31.65/40.98/35.71 38.99/56.88/46.27

FR 71.37/89.05 /79.24 28.00/53.85/36.84 33.76/44.12/38.25 43.99/58.76/50.32

FM 72.00/94.74/81.82 50.00/20.00/28.57 40.00/11.76/18.18 65.62/51.22/57.53

W 57.33/71.34/63.57 34.01/44.77/38.66 16.39/25.37/19.91 32.73/45.84/38.19

TM-SCS A 53.65/71.66/61.36 36.02/49.41/41.67 18.29/27.07/21.83 33.36/47.09/39.06

F 68.57/70.59/69.57 29.17/35.00/31.82 12.20/21.02/15.44 31.14/42.83/36.06

FA 53.65/71.66/61.36 36.02/49.41/41.67 18.29/27.07/21.83 33.36/47.09/39.06

FI 71.70/67.86/69.72 18.52/31.25/23.26 12.66/27.78/17.39 33.33/49.07/39.70

FR 66.03/69.76/67.84 32.00/37.65/34.59 11.38/19.68/14.42 29.44/41.20/34.34

FM 72.00/72.00/72.00 50.00/50.00/50.00 20.00/12.50/15.38 62.50/57.14/59.70

The full paper collection is further classified to titles/abstracts (FA), introductions (FI), results/dicussions/conclusions (FR), and methods (FM). Evaluated performance
is reported in recall/precision/f-score. Some notable figures are underlined.
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The generalization of performance can be further
investigated by observing the performance on different
sections. As noted in the previous section, the Methods
sections of full papers are significantly different from
other sections, while the Intro. and R/D/C as well as
TIAB are relatively similar to the abstract collection. It
is thus expected that generalization to the Methods sec-
tions be more difficult than to other sections.
At a glance, the overall performance reported in Table

6 does not seem worse on the Methods sections than on
other sections. However, it needs to be considered that
the Methods sections do not include as many complex
type events as other sections. In fact, in the Methods
sections of the test data set, the numbers of Binding and
Regulation events are both less than 10, which prevents
a reliable analysis and that is the reason that the perfor-
mance figures are italicized in the table. In the Methods
sections, simple type events take almost 80% of the
whole event, thus the overall performance is dominated
by the performance extracting simple-type events. In
such a case, it is more reasonable to refer to the simple
event performance than to the overall performance. The
simple event performance reported in Table 6 supports
the hypothesis that the performance be harder to gener-
alize to the Methods sections.
The two rule-based systems, ConcordU and TM-SCS,

however seem free from the hypothesis, showing the
best performances (81.82% and 72.00%) on the Methods
sections. We find the reason of their good performance
on the sections from the fact that rule-based approaches
are in general not aggressive as much as machine learn-
ing approaches in optimizing to the training data. Note
that there is usually a trade-off between optimization
and generalization.
This time, three teams achieved better results than

Miwa10, which indicates some role of focused efforts

like BioNLP-ST. The comparison between the perfor-
mance on abstract and full paper collections shows that
generalization to full papers is feasible with very modest
loss in performance.
GE Task 2 results
Task 2 of the GE task was optional and 4 teams sub-
mitted their final results. Table 7 shows the final evalua-
tion results. For reference, the reported performance of
the task-winning system in 2009, UT+DBCLS09 [14], is
shown at the top. The top two systems on Task 1,
FAUST and UMass, marked the best performances on
Task 2, too. The performances of the two systems on
the abstract collection demonstrate a significant
improvement of the technology in two years (from
44.52% to 52.77% and 52.12%).
In detail, a significant improvement was made for

Location arguments (36.59%®50.00%) by the top two
systems. The performance of site argument extraction
was also improved significantly. A breakdown of the
evaluation results of site argument extraction, shown in
table 8, indicates that for Phosphorylation events the
performance of finding the site arguments is approach-
ing a level of practical use (82.93% by UTurku). As for
Regulation, the performance was significantly improved
(41.03% by FAUST), while the performance improve-
ment for Binding was only marginal (13.33% by
BMI@ASU).
The performance on the full paper collection shown in

Table 7 seems to tell the extraction of secondary argu-
ments in full text is much more challenging, but Table
8 shows there is no particular performance degradation
on the full paper collection, except with the Regulation
events. The reason of the the low overall performance
figures on the full paper collection in Table 7 is
explained by referencing Table 2. In the full paper por-
tion of the test set, there were extraordinary number of

Table 7 Evaluation results of Task 2 on the (W)hole, (A)bstract, and (F)ull paper collections

Team Sites (222) Locations (66) All (288)

UT+DBCLS09 A 23.08/88.24/36.59 32.14/72.41/44.52

W 32.88/70.87/44.92 36.36/75.00/48.98 33.68/71.85/45.86

FAUST A 43.51/71.25/54.03 36.92/77.42/50.00 41.33/72.97/52.77

F 17.58/69.57/28.07 - 17.39/66.67/27.59

W 31.98/71.00/44.10 36.36/77.42/49.48 32.99/72.52/45.35

UMass A 42.75/70.00/53.08 36.92/77.42/50.00 40.82/72.07/52.12

F 16.48/75.00/27.03 - 16.30/75.00/26.79

W 32.88/62.93/43.20 22.73/83.33/35.71 30.56/65.67/41.71

BMI@ASU A 37.40/67.12/48.04 23.08/83.33/36.14 32.65/70.33/44.60

F 26.37/55.81/35.82 - 26.09/55.81/35.56

W 40.09/65.44/49.72 00.00/00.00/00.00 30.90/65.44/41.98

UTurku A 48.09/69.23/56.76 00.00/00.00/00.00 32.14/69.23/43.90

F 28.57/57.78/38.24 - 28.26/57.78/37.96

Evaluated performance is reported in recall/precision/f-score. Some notable figures are underlined.
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Binding events with site arguments (70%), which domi-
nated the overall performance figures. Note that it can-
cels the conclusion made by [10] that extraction of
secondary arguments from full papers might be much
more challenging than from abstracts.
GE Task 3 results
Table 9 shows final evaluation results of Task 3. For
reference, the reported performance of the task-winning
system in 2009, ConcordU09 [15], is shown at the top.
Among the two teams participated in the task, UTurku
showed a better performance in extracting negated
events, while ConcordU showed a better performance in
extracting speculated events. Both demonstrate signifi-
cant improvements over the ConcordU09 system, but
the performances are still far from a level of practical
use. It seems generalization to the full papers is a bit
more challenging with the speculation extraction.
CO task results
Table 10 shows the evaluated performance of the six
systems who participated in the CO task. The UUtah
team, who already had an experience of developing a
coreference resolution system for the newswire domain,
marked the best performance (34.05%). The authors

reported a performance degradation (from 66.38% to
49.64% in MUC score) by the change of the domain.
For a more detailed analysis, the performance was evalu-
ated for different types of anaphoric expressions. As
shown in the table, the three top-ranked teams, UUtah,
UZurich and ConcordU, marked the best performances
in finding coreferences of definite noun phrases (10.8%),
pronouns (26.7%) and relative pronouns (66.2%), respec-
tively. It is not surprising that the coreference resolution
for relative pronouns marked the highest accuracy as in
many cases relative pronouns immediately follow their
antecedents. Coreference resolution of definite noun
phrases marked very low accuracy even by the top-
ranked system. The reason may be found in the fact
that most systems relied on syntactic features, e.g., part-
of-speech or syntactic parse, for coreference resolution
without differentiating the type of coreferences. How-
ever, in many cases there is only semantic connection
between a definite noun phrase and its antecedent. The
UUtah system does incorporate some semantic features
which are originally designed for newswire domain, but
it was once reported that semantic features are not
domain portable while syntactic features are [16]. So, it

Table 8 Evaluation results of Site extraction for different event types

Team Phospho. (67) Binding (84) Reg. (71)

UT+DBCLS09 A 71.43/71.43/71.43 04.76/50.00/08.70 12.96/58.33/21.21

W 71.64/84.21/77.42 05.95/38.46/10.31 28.17/60.61/38.46

FAUST A 71.43/81.63/76.19 04.76/14.29/07.14 29.63/66.67/41.03

F 72.73/100.0/84.21 06.35/66.67/11.59 23.53/44.44/30.77

W 76.12/79.69/77.86 04.76/36.36/08.42 22.54/64.00/33.33

UMass A 76.79/76.79/76.79 04.76/14.29/07.14 22.22/70.59/33.80

F 72.73/100.0/84.21 04.76/75.00/08.96 23.53/50.00/32.00

W 52.24/97.22/67.96 20.24/53.12/29.31 29.58/43.75/35.29

BMI@ASU A 53.57/96.77/68.97 09.52/22.22/13.33 31.48/51.52/39.08

F 45.45/100.0/62.50 23.81/65.22/34.88 23.53/26.67/25.00

W 76.12/91.07/82.93 21.43/51.43/30.25 28.17/44.44/34.48

UTurku A 78.57/89.80/83.81 09.52/18.18/12.50 31.48/54.84/40.00

F 63.64/100.0/77.78 25.40/66.67/36.78 17.65/21.43/19.35

Evaluated performance is reported in recall/precision/f-score. Some notable figures are underlined.

Table 9 Evaluation results of Task 3 on the (W)hole, (A)bstract, and (F)ull paper collections

Team Negation Speculation All

ConcordU09 A 14.98/50.75/23.13 16.83/50.72/25.27 15.86/50.74/24.17

W 22.87/48.85/31.15 17.86/32.54/23.06 20.30/39.67/26.86

UTurku A 22.03/49.02/30.40 19.23/38.46/25.64 20.69/43.69/28.08

F 25.76/48.28/33.59 15.00/23.08/18.18 19.28/30.85/23.73

W 18.77/44.26/26.36 21.10/38.46/27.25 19.97/40.89/26.83

ConcordU A 18.06/46.59/26.03 23.08/40.00/29.27 20.46/42.79/27.68

F 21.21/38.24/27.29 17.00/34.69/22.82 18.67/36.14/24.63

Evaluated performance is reported in recall/precision/f-score. Some notable figures are underlined.
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seems there is much room for improvement especially
for definite noun phrases by developing effective seman-
tic features for the biomedical domain.

Conclusions
The Genia event task which was repeatedly arranged for
BioNLP-ST 2009 and 2011 took a role of measuring the
progress of the community and generalization of IE tech-
nology to full papers. The results from 15 teams who
made their final submissions to the task show a clear pro-
gress of the community in terms of the performance on a
focused domain and also generalization to full papers.
The coreference resolution supporting task of BioNLP

Shared Task 2011 has drawn attention from researchers
of different interests. Although the overall results are
not good enough to be helpful for the main shared tasks
as expected, the analysis results show the problems to
be solved and directions for improvements.

Methods
GE task evaluation
The shared task requires participants to predict event
annotation for the test data. The evaluation is carried
out by comparing the predicted annotation to the gold
annotation. For the comparison, equality of annotations
is first defined at various levels as follows:
(1) Event equality

holds between any two events when
(1-1) the event types are the same,
(1-2) the event triggers are the same, and
(1-3) the arguments are fully matched.

(2) Argument equality

holds between any two arguments when
(2-1) the role types are the same, and
(2-2-1) both are text entities in equality, or
(2-2-2) both are events in equality.

(3) Text entity equality

holds between any two text entities when

(3-1) the entity types are the same, and
(3-2) the spans are the same.
In the condition (1-3), a full matching of arguments
between two events means there is a perfect one-to-
one mapping between the two sets of argument, while
the equality of individual arguments is defined by the
Argument Equality. Due to the condition (2-2-2),
event equality is defined recursively for events refer-
ring to events. Any two text spans (beg1, end1) and
(beg2, end2), are the same iff beg1 = beg2 and end1 =
end2. Note that the event triggers are also text entities
thus their equality is defined by the text entity equality.
Various evaluation modes can be defined by varying
the condition of equality. In the following, we describe
five fundamental variants applied in the evaluation.

Strict matching
The strict matching mode requires exact equality, as
defined in previous section. As some of its requirements
may be viewed as unnecessarily precise, practically moti-
vated relaxed variants, described in the following, are
also applied.
Approximate span matching
The approximate span matching mode is defined by relax-
ing the requirement for text span matching for text enti-
ties. Specifically, a given span is equivalent to a gold span
if it is entirely contained within an extension of the gold
span by one word both to the left and to the right, that is,
beg1 ≥ ebeg2 and end1 ≤ eend2, where (beg1, end1) is the
given span and (ebeg2, eend2) is the extended gold span.
Approximate recursive matching
In strict matching, for a regulation event to be correct,
the events it refers to as theme or cause must also be be
strictly correct. The approximate recursive matching
mode is defined by relaxing the requirement for recur-
sive event matching, so that an event can match even if
the events it refers to are only partially correct. Specifi-
cally, for partial matching, only Theme arguments are
considered: events can match even if referred events dif-
fer in non-Theme arguments.
Event decomposition mode
Many events are expressed with more than one argu-
ment, e.g., binding of multiple proteins or regulation
with a theme and a cause. Such events are inherently

Table 10 Evaluation results of the CO task

Team Relative pronoun Pronoun DNP All

UUtah 56.0/71.2/62.7 12.0/79.0/20.8 05.5/66.7/10.1 22.2/73.3/34.1

UZurich 46.7/71.4/56.5 17.9/62.9/27.5 04.1/12.5/06.2 21.5/55.5/31.0

ConcordU 68.0/64.6/66.2 - - 19.4/63.2/29.7

UTurku 29.3/73.3/41.9 12.8/72.7/21.8 01.4/14.3/02.5 14.4/67.2/23.8

USzeged - - - 03.2/03.5/03.3

UCD - - - 00.7/00.3/00.4

Evaluated performance is reported in recall/precision/f-score. DNP = definite noun phrase. Some notable figures are underlined.
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more difficult to extract than events with a single argu-
ment. In the Event decomposion mode, events with mul-
tiple arguments are decomposed into multiple single-
argument events. Specifically, in this mode, each multi-
argument event
trigger, arg1-type:arg1-value, arg2-type:arg2-value, . . .
is decomposed into single-argument events
trigger, arg1-type:arg1-value
trigger, arg2-type:arg2-value
. . .
The resulting single-argument events are treated as

separate events in evaluation, thus allowing recognition
of partially correct events and awarding the recognition
of complex events more highly. Note that the Event
decomposition mode is used in combination with other
matching modes.

CO task evaluation
The coreference resolution performance is evaluated in
two modes.
The Surface coreference mode evaluates the perfor-

mance of finding anaphoric protein references and their
antecedents, regardless whether the antecedents actually
embed protein names or not. In other words, it evalu-
ates the ability to predict the coreference relations as
provided in the gold coreference annotation file, which
we call surface coreference links.
The protein coreference mode evaluates the perfor-

mance of finding anaphoric protein references with their
links to actual protein names (protein coreference links).
In the implementation of the evaluation, the chain of sur-
face coreference links is traced until an antecedent
embedding a protein name is found. If a protein-name-
embedding antecedent is connected to an anaphora
through only one surface link, we call the antecedent a
direct protein antecedent. If a protein-name-embedding
antecedent is connected to an anaphora through more
than one surface link, we call it an indirect protein ante-
cedent, and the antecedents in the middle of the chain
intermediate antecedents. The performance evaluated in
this mode may be directly connected to the potential per-
formance in main IE tasks: the more the (anaphoric) pro-
tein references are found, the more the protein-related
events may be found. For this reason, the protein corefer-
ence mode is chosen as the primary evaluation mode.
Evaluation results for both evaluation modes are given

in standard recall, precision and f-score.
Surface coreference
Surface coreference links are links between target ana-
phors and their antecedents or intermediate antecedents.
Note that the shared task development and training data
include not only the target protein coreference links but
also other pronoun and definite noun phrase corefer-
ence links.

A response expression is matched with a gold one fol-
lowing partial match criterion. In particular, a response
expression is considered correct when it covers the
minimal boundary, and is included in the maximal
boundary of expression. Note that maximal boundary is
the span of expression annotation, and minimal bound-
ary is the head of expression, as defined in MUC anno-
tation schemes [17]. A response link is correct when its
two argument expressions are correctly matched with
those of a gold link.
Protein coreference
This is the primary evaluation perspective of the protein
coreference task. In this mode, we ignore coreference
links that do not reference to proteins. Intermediate
antecedents are also ignored.
Protein coreference links are generated from the sur-

face coreference links. A protein coreference link is
composed of an anaphoric expression and a protein
reference that appears in its direct or indirect antece-
dent. Below is an example.
Example:
R1 Coref Ana:T29 Ant:T28 [T5, T4]
R2 Coref Ana:T30 Ant:T27
R3 Coref Ana:T32 Ant:T31 [T10]
R4 Coref Ana:T33 Ant:T32
In this example, supposing that there are four surface

links in the coreference annotation file (T29,T28), (T30,
T27), (T32,T31), and (T33, T32), in which T28 contains
two protein mentions T5, T4, and T31 contains one
protein mention T10; thus, the protein coreference links
generated from these surface links are (T29,T4), (T29,
T5), (T32,T10), and (T33, T10). Note that that T33 is
connected with T10 through the intermediate expres-
sion T32.
Response expressions and generated response result

links are matched with gold expressions and links corre-
spondingly in a way similar to the surface coreference
evaluation mode.
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