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Abstract

Background: Semantic Web technologies have been developed to overcome the limitations of the current Web
and conventional data integration solutions. The Semantic Web is expected to link all the data present on the
Internet instead of linking just documents. One of the foundations of the Semantic Web technologies is the
knowledge representation language Resource Description Framework (RDF). Knowledge expressed in RDF is
typically stored in so-called triple stores (also known as RDF stores), from which it can be retrieved with SPARQL, a
language designed for querying RDF-based models. The Semantic Web technologies should allow federated
queries over multiple triple stores. In this paper we compare the efficiency of a set of biologically relevant queries
as applied to a number of different triple store implementations.

Results: Previously we developed a library of queries to guide the use of our knowledge base Cell Cycle Ontology
implemented as a triple store. We have now compared the performance of these queries on five non-commercial
triple stores: OpenLink Virtuoso (Open-Source Edition), Jena SDB, Jena TDB, SwiftOWLIM and 4Store. We examined
three performance aspects: the data uploading time, the query execution time and the scalability. The queries we
had chosen addressed diverse ontological or biological questions, and we found that individual store performance
was quite query-specific. We identified three groups of queries displaying similar behaviour across the different
stores: 1) relatively short response time queries, 2) moderate response time queries and 3) relatively long response
time queries. SwiftOWLIM proved to be a winner in the first group, 4Store in the second one and Virtuoso in the
third one.

Conclusions: Our analysis showed that some queries behaved idiosyncratically, in a triple store specific manner,
mainly with SwiftOWLIM and 4Store. Virtuoso, as expected, displayed a very balanced performance - its load time
and its response time for all the tested queries were better than average among the selected stores; it showed a
very good scalability and a reasonable run-to-run reproducibility. Jena SDB and Jena TDB were consistently slower
than the other three implementations. Our analysis demonstrated that most queries developed for Virtuoso could
be successfully used for other implementations.

Background
Semantic Web (SW) technologies [1,2] are increasingly
being adopted by the scientific community, and Life
Sciences researchers are no exception [3,4]. Our own
contribution to this emerging field has been the devel-
opment of two semantically integrated knowledge bases
- the Cell Cycle Ontology (CCO) and BioGateway [5,6].
SW technologies open a new dimension to data

integration, one of the main current challenges in biolo-
gical knowledge management [4,7,8]. These technologies
provide a sound framework to share and combine infor-
mation via standard data exchange formats. This enables
the categorization of information (using ontologies [9])
and fosters the scalability of the integrated system
(adaptability to data growth). Moreover, SW technolo-
gies provide a sophisticated means to interrogate the
originally integrated facts as well as the “hidden” bits of
information (via automated reasoning tools [10]). An
increasing number of principal biological data providers,
such as UniProt [11], have started to make their data
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available in the SW formats, first of all in the RDF lan-
guage [12]. In RDF the information is represented in the
form of triples subject-predicate-object, e.g. “BMC Bioin-
formatics -has_type- journal”. Unlike the current Web,
which utilizes just a single semantically undefined predi-
cate (the hyper-link), SW makes use of multiple predi-
cate types with clearly defined semantics.
Data in RDF format is typically stored in dedicated

database management systems called triple stores (also
known as RDF stores) which expose so-called SPARQL
endpoints. Those endpoints allow querying of the store
through SPARQL [13], a standard query language
recommended by W3C. The triples present in disparate
stores form a unified cloud of triples which is accessible
for querying from any individual endpoint. A paradig-
matic example of such cloud of triples is constituted by
the project Linked Open Data [14].

Triple stores
Currently, there are a number of solutions [15] to store
information as RDF triples and they are increasingly
becoming adopted by the biological community for the
purpose of overcoming some of the limitations (see
above) of classical storage solutions (mainly based on
relational database management systems).
The development of triple stores has flourished during

the last 5 years. Currently, there are more than 20 sys-
tems available [16]. Both the academic and private sec-
tors have been involved in developing these triple stores.
This race has created a healthy competition leading to
rapid progress in key aspects of database management
system performance – querying and loading efficiency,
scalability, and stability. The SW community has con-
tributed to this progress by promoting open contests
and providing proof-cases for SW applications [17]. It is
encouraging for the scientific community that many of
these triple stores are freely available for academic use.
Obviously, the performance of triple stores is an impor-
tant issue, especially the response time experienced with
SPARQL. The time that a user needs to wait before an
answer is returned is a simple but crucial metric that
determines the acceptance by the prospective users of
the knowledge base in question and the SW technology
as a whole. As the number of available triple store
implementations is steadily growing, it becomes increas-
ingly difficult to decide which one to use. This necessi-
tates a systematic comparison of the available triple
store implementations with respect to their performance
(known as benchmarking).

Benchmarking efforts
Much of the benchmarking done previously on triple
stores was based on computationally generated sets of
triples that could at best only mimic an actual domain

specific knowledge base. Among the “standard” sets
used are: the Lehigh University Benchmark (LUBM
[18]) and the Berlin SPARQL Benchmark (BSBM [19]),
which respectively emulate an organization and e-com-
merce knowledge bases. In the life sciences domain, stu-
dies performed by UniProt [11], demonstrated the
current limitations of some triple stores [20]. In this
paper we present the ‘NTNU SPARQL benchmark’,
which is based on a Life Science use case, and we report
the outcome of the benchmarking of five popular triple
store implementations. We tested two additional stores
(SwiftOWLIM and 4Store) not included in the previous
benchmark experiments [21] and instead of (artificial)
computationally generated data, we used biologically
relevant real life data from our knowledge base CCO
[5], as well as queries which evolved from the direct
interaction with the user community.
Our benchmark fills the need for an empirical testing

of the performance of triple stores with respect to
queries and data whose characteristics are representative
of Life Sciences information.

Results
The NTNU dataset
The dataset used in our analysis consists of ten RDF
graphs constituting the Cell Cycle Ontology (CCO) [5]
(a total of 11.315.866 triples). There are four taxon-spe-
cific graphs (for H. sapiens, A. thaliana, S. cerevisiae, S.
pombe) and an integrated graph. All of them share a
core set of triples (ontologies) and a set of taxon-specific
triples. The integrated graph contains additional orthol-
ogy relations for proteins. Each of the five graphs has a
counterpart graph augmented with pre-computed transi-
tive and reflexive closures.
More details on the characteristics of this dataset can

be found in Table 1.

The set of queries
In our analysis we used 24 queries which were defined
to answer real life questions identified in close colla-
boration with the end users of CCO (Additional file 1).
Our query set encompasses a broad range of SPARQL
features and combinations thereof, as summarised in
Table 2. As shown in this table, queries used in our ana-
lysis ensure a comprehensive assessment of the perfor-
mance of the triple stores with respect to a real Life
Science use case.

Overall performance
A summary of the results of our analysis on the five
selected triple stores is reported in Table 3, which sum-
marize loading times and query answering.
First of all, we compared the loading performance of

the five selected stores. Loading performance is of
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paramount importance in the Life Sciences domain, as
primary data sources are frequently updated and the
content of triple stores needs to be maintained up-to-
date. In this respect 4Store shows an exceptionally good
performance, followed by SwiftOWLIM.
In order to get a bird’s-eye view on the querying per-

formance of the selected stores, we aggregated the

averaged response times (ART, see Methods) into a sin-
gle cumulative total response time and estimated the
average relative standard errors for each of the stores.
(Note that the version of SwiftOWLIM used in our
experiment did not support the COUNT operator,
therefore the values for this store do not include data
for queries Q17, Q19, Q20 and Q21). The total query

Table 1 Characteristics of the NTNU dataset.

Graph # triples # classes Max # sup Avg # sup # relations # relation types

cco 2503040 89526 33 7.72 461946 30

cco_tc 3170556 89526 33 7.72 1129462 30

cco_A_thaliana 356903 12578 34 9.11 22132 30

cco_A_thaliana_tc 469484 12578 34 9.11 134713 30

cco_S_cerevisae 842344 35004 34 7.99 171825 30

cco_S_cerevisae_tc 1120545 35004 34 7.99 450026 30

cco_S_pombe 406131 14584 34 8.86 39997 30

cco_S_pombe_tc 533481 14584 34 8.86 167347 30

cco_H_sapiens 836622 29187 34 8.29 121383 30

cco_H_sapience_tc 1076760 29187 34 8.29 361521 30

A list is shown of the characteristics of the 10 graphs constituting the NTNU dataset. Reported in this table are, for each graph: the number of triples, the
number of classes (the basic units in CCO), the maximum number of super classes for a class in the graph (Max #sup), the number of super classes averaged
over all the classes (Avg #sup), the number of relations (predicates between two classes) and the number of distinct relation types. For technical reasons the
analysis of the super class statistics was performed on random selections of 10000 classes.

Table 2 Overview of the query features.

Simple
Filters

More than 8 triple
patterns

OPTIONAL
operator

LIMIT
modifier

ORDER BY
modifier

DISTINCT
modifier

REGEX
operator

UNION
operator

COUNT
operator

Q1 x

Q2 x

Q3 x x x x x

Q4

Q5

Q6

Q7 x x

Q8 x

Q9 x

Q10 x x x x

Q11

Q12 x

Q13 x x x x

Q14 x

Q15

Q16

Q17 x x

Q18 x x x x x

Q19 x x x

Q20 x x

Q21 x x

Q22

Q23

Q24 x x x

The selected 24 queries (Q1 through Q24) were used to evaluate the triple stores’ responsiveness with respect to various query features. The table shows the full
set of queries and the features used therein.
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execution time varied in a very broad range over the tri-
ple stores (Table 3).
Load times have been found consistent across test-

runs, whereas query answering times have presented
some significant variation (most notably 4Store and
SwiftOWLIM), even though individual test runs were
performed in equivalent conditions (see Methods).
Variability could be explained by the different environ-
ment of the operating system during different runs.
On the basis of these data, Virtuoso emerges as an

overall winner, however, the picture changes signifi-
cantly when we look into the query-specific behaviour.

Query-specific performance
Table 4 makes clear that all the stores behave in a
query-specific manner. A highly query-specific beha-
viour has also been observed by Bizer and Schultz [22].
Nevertheless, a couple of common trends are discern-
ible. SwiftOWLIM is by far the best performer with the
relatively short ART queries; 4Store shows the best per-
formance with the moderate ART queries; and Virtuoso
is doing best of all with the long ART queries. Jena SDB
is consistently the slowest store with all the short and
moderate ART queries. Virtuoso is the only store whose
ARTs are better than average for all the 24 queries.
The three slowest queries, Q14, Q3 and Q18, display

extremely idiosyncratic behaviour and defy any gener-
alization. Two of them affect specifically the perfor-
mance of SwiftOWLIM - Q14 (mildly) and Q3, the
only two cases where SwiftOWLIM shows the slowest
response of all the stores. The impact of Q18 is more
severe and it affects the performance of Jena TDB,
SwiftOWLIM and 4Store in the order of magnitude. In
the case of 4Store the ART for Q18 is 9141 (sic !)
times longer than the ART of this store averaged over
all the other 23 queries. Both Q14 and Q18 include
the ORDER BY modifier, not used by any other query,
which might suggest that the implementation of this
feature is suboptimal in the affected stores. However,
this proposition is in conflict with the response of
4Store to these two queries (17859 fold difference in

the ARTs). On the other hand, Q3 does not make use
of any unique features; instead it includes a rather
wide range of features found as well in other queries.
At present it is not possible to determine whether any
particular combination of these features is responsible
for the long execution time.

Scalability
Finally, we wanted to see how well the ARTs scale up
with respect to the graph sizes. The ARTs were summed
over all the queries (except for the queries Q17, Q19,
Q20. Q21 for SwiftOWLIM) and plotted against the
total number of triples (Figure 1). The figure shows that
SwiftOWLIM scales up exceptionally well, followed by
Virtuoso. In contrast, 4Store demonstrated the poorest
performance with respect to scalability. However, as
pointed out earlier, the behaviour of SwiftOWLIM and
4Store is strongly affected by a few outliers. Therefore,
to eliminate the impact of the outliers we excluded the
three slowest queries Q3, Q14 and Q18 from the plot
(Figure 2). Although the mutual arrangement of the
individual graphs on the plot changed in favour of Swif-
tOWLIM and 4Store, the conclusion about the scalabil-
ity drawn above did not change. It should be noted that

Table 3 Overall performance.

Store Load time Query time RSE

Virtuoso 527 204 0.053

Jena SDB 2005 730 0.020

Jena TDB 833 1446 0.235

Owlim 230 14258 0.156

4Stroe 128 47567 0.097

AVG 745 12841 0.112

Load time - the total load time in seconds for the 10 graphs averaged over
the three replicates. Query time - ARTs in seconds summed over all the data
points (24 queries and 10 graphs). RSE - the relative standard errors averaged
over all the data points (24 queries and 10 graphs).

Table 4 Query-specific performance.

Query Virtuoso Jena
SDB

Jena
TDB

4Store OWLIM Avg

Q5 2.639 13.446 11.000 1.526 0.408 5.804

Q23 5.630 13.343 10.454 1.343 0.009 6.156

Q11 5.343 13.339 10.703 1.419 0.011 6.163

Q16 5.617 13.345 10.825 1.346 0.009 6.228

Q15 6.163 13.342 10.544 1.390 0.018 6.291

Q22 5.170 13.709 10.981 1.428 0.173 6.292

Q4 5.916 13.348 10.773 1.539 0.017 6.319

Q8 7.094 13.336 10.449 1.577 0.049 6.501

Q12 7.198 13.373 10.731 1.400 0.030 6.546

Q2 7.281 13.337 10.768 1.438 0.052 6.575

Q6 4.054 14.523 10.573 1.779 2.020 6.590

Q19 2.065 13.390 9.795 1.326 6.644

Q9 5.820 13.711 10.699 2.133 1.067 6.686

Q21 3.379 13.335 9.818 1.316 6.962

Q10 4.679 13.757 11.676 2.529 4.664 7.461

Q17 5.648 13.390 10.119 1.350 7.627

Q20 6.110 13.387 10.686 1.315 7.875

Q1 1.897 18.064 14.258 1.647 8.024 8.778

Q13 1.658 52.545 14.156 1.569 0.034 13.992

Q24 2.813 24.719 38.619 14.366 27.242 21.552

Q7 2.617 26.519 39.248 14.110 28.996 22.298

Q14 5.775 13.338 46.433 1.401 91.894 31.768

Q3 3.358 30.476 27.049 3.654 1121.702 237.248

Q18 22.840 76.013 493.596 24999.569 8325.734 6783.550

The ARTs in seconds summed over the 10 graphs. The queries are sorted in
the order of the response time averaged over the 5 stores (Avg).
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the fact that queries were developed using Virtuoso
should not have any impact on the scalability.

Discussion
Our benchmark is intended to represent a realistic usage
of triple stores in the Life Sciences context. It is

designed to measure loading and query answering times,
which are key parameters in the choice of a triple store.
However, there are other considerations to be made
when selecting a triple store for a specific use case.
One of these considerations is the architecture for

which a triple store is designed, and in particular

Figure 1 The scalability of the five stores. The ARTs were summed over all the 24 queries (except for the queries Q17, Q19, Q20, Q21 for
SwiftOWLIM) and plotted against the total number of triples in the graphs (Y axis is logarithmic).

Figure 2 The scalability of the five stores in the absence of outliers. Cumulative ARTs are shown, plotted against the total number of triples
in the graphs. This figure is similar to Fig. 1 but omitting the queries Q3, Q14 and Q18.
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whether this can be deployed on a cluster-based archi-
tecture. Some of the systems we have benchmarked
(4Store, Virtuoso) can be deployed on a cluster making
an efficient use of this affordable parallel architecture,
which promises better scalability for very large datasets.
As a note, SwiftOWLIM, which we have tested, is
designed for optimal performance for datasets below
100M triples, whereas BigOWLIM is designed for large
datasets and offers improved performance on a cluster-
based architecture.
Triple stores vary also in the programmatic access

they offer and in the features they support. As an exam-
ple, the big difference in performance between TDB and
SDB (which are both from the same software suite) are
compensated by the different functionalities they offer.
SDB performs less well in queries, but provides transac-
tional support and concurrent access, which are not
offered by TDB.
It should also be noted that the query performance of

triple stores is dependent on the efficiency of their
query optimization engines. The relevance of such opti-
mization depends on the usage conditions of triple
stores. Where a few queries are routinely executed, opti-
mization can be performed by users at design time and
the lack of an optimizer is not penalizing. TDB is a
peculiar case in that it offers an optimizer which is sta-
tistics based, and which needs to be updated after a
change in the data content.
Query performance may also depend on the character-

istics of datasets in ways which can be difficult to detect.
For example, we have observed that 4Store loading
times scale well with respect to the total number of tri-
ples, while the number of different properties in the
dataset could be a limiting factor.
It should be noted that as our queries have evolved

from real use cases on the CCO ontology, which has
been mostly accessed via a Virtuoso-based SPARQL
endpoint. It is not possible to rule out that queries dis-
playing idiosyncratic behaviour towards Virtuoso were
naturally avoided or optimized. For this reason, we have
provided figures which don’t take such outliers in con-
sideration. At the same time, it should be noted that
neither SDB nor TDB show any particular outlier beha-
viour even though our queries were not optimised for
these stores. We hope that the identification of such
idiosyncratic behaviour will anyway be useful for the
respective development communities.
Finally, we did not include in our testing any element

directly related to reasoning performance, which is a
relevant issue in the Life Sciences, where simple chains
of transitive properties are common in biomedical ter-
minologies. Testing reasoning features would have intro-
duced an additional layer of complexity in the

interpretation of results and we have preferred to focus
on testing basic query-answering performance. For this
reason, we have simulated transitive properties via a
materialization of inferred triples (see section Methods).

Conclusions
We have compared the performance of a set of biologi-
cally relevant queries in five popular triple stores, Open-
Link Virtuoso (Open-Source Edition), Jena SDB, Jena
TDB, SwiftOWLIM and 4Store. We have used a dataset
and a set of queries which are representative of a real
life sciences application case. We have focused in our
analysis on loading time, query time and its reproduci-
bility, under “common” deployment and usage
conditions.
In general, the performance proved to be quite query-

specific. Nevertheless, it was possible to identify three
groups of queries displaying similar behaviour with
respect to the different stores:

queries with relatively short ART,
queries with moderate ART,
queries with relatively long ART.

SwiftOWLIM proved to be a winner in the first group,
4store in the second one and Virtuoso in the third one.
Virtuoso emerged from our analysis as a very balanced
performer in our application case - its upload time and
response time for all the 24 queries were better than
average among the tested stores and it showed a very
good scalability. Even though in our study we used only
moderately large triple stores (~11 M triples), others
demonstrated that Virtuoso excels when confronted
with much larger stores, up to 100-200 M triples
[19,22]. From our experience we conclude that Virtuoso
is well suited for managing large volumes of biological
data as is the case of our BioGateway project where it
gracefully supports querying over ~1.8 billion triples
[23].

Note added in proof
After the completion of this work Berlin Benchmark v.3
has been released. A line-up comparable to the one in
our work (Virtuoso, Jena TDB, 4store, BigData, and
BigOWLIM) was used for benchmarking and the con-
clusions reached are similar to ours [24].

Methods
Software
The set of triple store implementations included Vir-
tuoso OpenSource 6.0.0, SwiftOWLIM 2.9.1, 4Store
1.0.2, Jena SDB 1.3.1, Jena TDB 0.8.2. The stores were
run under CentOS 5.5 operating system.
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Configuration
Default configurations were used except the parameters
listed below.

Virtuoso
FileExtend = 100000
MaxCheckpointRemap = 1048576
ServerThreads = 100
CheckpointInterval = 600
O_DIRECT = 1
NumberOfBuffers = 500000
MaxDirtyBuffers = 18000
MaxStaticCursorRows = 50000
TransactionAfterImageLimit = 50000000
FreeTextBatchSize = 10000000
[Striping]
Segment1 = 1536M, db-seg1-1.db, db-seg1-

3.db, db-seg1-2.db
...
Segment32 = 1536M, db-seg32-1.db, db-

seg32-3.db, db-seg32-2.db
MaxQueryCostEstimationTime = 84400
MaxQueryExecutionTime = 7200

Swift Owlim
owlim_control.sh:
$JAVA_HOME/bin/java -Xmx4096m -cp

“$CP_TESTS:$EXT_LIBS”
owlim.properties:
num.threads.run: 10
query.language: sparql
preload.format: rdfxmls
owlim.ttl:
owlim:entity-index-size “200000”
owlim:jobsize “200”

Jena SDB
sdb:layout "layout2/index”

Hardware
The analysis was performed on a Dell R900 machine
with 24 Intel(R) Xeon(R) CPUs (2.66GHz). The machine
was equipped with 132G main memory and 14x500GB
15K SAS hard drives.

Testing procedure
Outline
for each triplestore {

repeat 3 times {
delete db files
switch on triplestore
load data
run all queries (in exactly the

same order)
switch off triplestore

}
}
The ten RDF graphs constituting the CCO [5] were

used for the analysis (11.315.866 triples in total, Table 1
for more details).
The graphs were queried with the 24 SPARQL queries

from the library of queries on the CCO web site [25],
(see Additional File 2). The queries were executed on
each of the graphs consecutively from query Q1 through
Q24. The experiments were replicated three times. Prior
to each experiment the contents of the stores were com-
pletely cleared and uploaded anew.

Data analysis
The average response times and the corresponding stan-
dard errors for these three observations were computed
for all the data points (24 queries and 10 graphs, avail-
able at [23]) and used to aggregate the data for Tables 3
and 4 and Figures 1 and 2. The relative standard errors
(RSE) were produced by dividing standard errors by the
corresponding ART. Also, the total data load times (10
graphs) were averaged over the three replicates and pre-
sented in Table 3.

Data availability
The RDF files used for uploading the triple stores are
downloadable from the CCO web site [26], the queries
used in our analysis are avaiable as Additional File 2.

Additional material

Additional file 1: benchmarking results. This file contains the raw and
derived data values. There is one sheet with the upload data and one
separate sheet for each of the stores with the query response times.
Additionally there is a sheet with the aggregated data which were used
to generate the tables and figures in the manuscript.

Additional file 2: SPARQL queries. This file contains the SPARQL code
of the 24 queries used for testing the stores.
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ART: averaged response time; CCO: Cell Cycle Ontology; RDF: Resource
Description Framework; RSE: Relative Standard Error; SW: Semantic Web;
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