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Abstract

Background: Functional genomics technologies that measure genome expression at a global scale are
accelerating biological knowledge discovery. Generating these high throughput datasets is relatively easy
compared to the downstream functional modelling necessary for elucidating the molecular mechanisms that
govern the biology under investigation. A number of publicly available ‘discovery-based’ computational tools use
the computationally amenable Gene Ontology (GO) for hypothesis generation. However, there are few tools that
support hypothesis-based testing using the GO and none that support testing with user defined hypothesis terms.
Here, we present GOModeler, a tool that enables researchers to conduct hypothesis-based testing of high through-
put datasets using the GO. GOModeler summarizes the overall effect of a user defined gene/protein differential
expression dataset on specific GO hypothesis terms selected by the user to describe a biological experiment. The
design of the tool allows the user to complement the functional information in the GO with his/her domain speci-
fic expertise for comprehensive hypothesis testing.

Results: GOModeler tests the relevance of the hypothesis terms chosen by the user for the input gene dataset by
providing the individual effects of the genes on the hypothesis terms and the overall effect of the entire dataset
on each of the hypothesis terms. It matches the GO identifiers (ids) of the genes with the GO ids of the hypothesis
terms and parses the names of those ids that match to assign effects. We demonstrate the capabilities of
GOModeler with a dataset of nine differentially expressed cytokine genes and compare the results to those
obtained through manual analysis of the dataset by an immunologist. The direction of overall effects on all
hypothesis terms except one was consistent with the results obtained by manual analysis. The tool’s editing
capability enables the user to augment the information extracted. GOModeler is available as a part of the AgBase
tool suite (http://www.agbase.msstate.edu).

Conclusions: GOModeler allows hypothesis driven analysis of high throughput datasets using the GO. Using this
tool, researchers can quickly evaluate the overall effect of quantitative expression changes of gene set on specific
biological processes of interest. The results are provided in both tabular and graphical formats.

Background
As a result of the “genomic revolution”, high-throughput
(HT) functional genomics experiments that measure the
thousands of gene products (transcripts or proteins) in
cells have become ubiquitous [1]. DNA sequencing

technologies are commoditizing and democratizing tran-
scriptome analysis by sequencing [2], further increasing
the volume of transcriptome data. While getting the
data is becoming less onerous, turning these massive
datasets into knowledge, however, requires computa-
tional systems biology modelling approaches and is still
challenging. One approach for modelling functional
genomics datasets is to use canonical networks or path-
ways such as those provided by Ingenuity [3] and
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Ariadne [4]. A complementary approach is to take
advantage of the Gene Ontology [5]. The GO has
become the de facto standard for describing the molecu-
lar functions, biological processes, and cellular locations
of gene products and is based on a structured, con-
trolled vocabulary [5] that is computationally compliant.
In such a context, the GO may be used to identify

which classes of gene products are represented, or over-
represented, in functional genomics datasets. This has
been done in one of three main ways: by “GO-Slim-
ming”, by enrichment analysis or, less commonly, by
hypothesis-testing. The GO Consortium provides pre-
defined “GO Slim sets”, which are reduced representa-
tions of the three GO ontologies (biological process;
molecular function; cell component) [5]. Use of GO
Slims forces the analysis to be conducted at a pre-deter-
mined and very shallow conceptual level and thus does
not make use of the full power of the GO.
At the time of writing there were at least 68 computa-

tional tools for GO enrichment analysis (GOEA) and
these can be classified as belonging to one of three
classes based on the algorithms used by each tool: sin-
gular enrichment analysis, gene set enrichment analysis,
and modular enrichment analysis [6]. Regardless of their
enrichment analysis classification, all GO enrichment
analysis tools primarily focus on giving the user high
level functional categories of GO terms significantly
represented in the input gene set. Although useful to
identify functional profiles of differentially-expressed
gene products, neither GO Slims nor GO enrichment
analyses methods support hypothesis-testing, especially
based on user-specified hypothesis terms. While discov-
ery-based approaches open up new areas and stimulate
new hypotheses, HT functional genomics data should
not be limited to discovery-based science. HT functional
genomics data can be used, equally well as reductionist
data, to test hypotheses.
The GO is ideal for hypothesis testing as it is designed

to capture the explicit experimental data in the pub-
lished literature in a computationally-amenable way.
Initial tool development to support hypothesis testing
using the GO include the Gene Class Expression tool [7]
and eGOn [8]. The broad approach for these tools is to
statistically determine if GO terms are differentially
expressed between different gene data sets.
The adoption of GO-based functional genomics analy-

sis tools has been slow because many assume a level of
GO annotation of gene products that does not exist for
many species, datasets or, microarray platforms, and/or
require computer programming skills. Furthermore
when the GO has been used for analyzing microarray
data to find under- or over-represented GO terms asso-
ciated with a dataset [5,9-13], these analyses are not
based on the microarray quantitative values but rather

on counts of GO terms. The results do not represent
the true proportions of genes negatively- or positively-
affecting a particular process or function.
Here we describe, GOModeler, a computational tool

that does not compare gene lists against each other but
rather is based on the hypotheses chosen by the user at
the beginning of an experiment. GOModeler uses the
GO, in combination with quantitative HT functional
genomics data, to quantify the effects of input gene
identifiers on the hypothesis terms. The results are pre-
sented in tabular and graphical formats. A qualitative
table shows the individual effect of each gene on each
hypothesis term and a quantitative table shows the over-
all effect of the entire gene dataset on each of the
hypothesis terms. The net effects from the quantitative
table are then summarised in a graphical output. The
advantages of this tool are the following: 1) it allows the
user to specify hypothesis terms; 2) it makes use of the
detailed gene annotation and the hierarchical structure
of the GO to determine effects; 3) it allows the user to
supplement information obtained from the GO with
their own expertise; and 4) it generates informative tab-
ular and graphical summaries of the net effects of genes.

Methods
Input requirements
GOModeler requires the user to provide two input files as
shown in Figure 1. The Gene Expression File is a text file
containing a list of gene identifier/gene expression value
pairs, one per line, with the identifier and the expression
value separated by a comma. Identifiers accepted by
GOModeler are UniProt accessions, gene names, and Gen-
Bank accessions. Alternatively, the Gene Expression File
can contain sequences in FASTA format where the last
line of each sequence is followed by a line containing a
comma and an expression value. The gene expression
values can be provided as fold changes (treatment/control),
expression differences (treatment – control) or the loga-
rithm of fold changes (log2 (treatment/control)). We
assume that the gene expression values submitted by the
user are a comparison of expression of a treatment and
control or of two different conditions. If the data is from
single-channel microarrays, we assume that the user has
already processed the data to yield expression differences,
ratios, or logarithms of ratios. For quantitative analysis, we
require the following conditions to hold for the gene
expression values:

1. Up-regulation is indicated by positive expression
values.
2. Down-regulation is indicated by negative expres-
sion values.
3. No change in expression is indicated by a value of
zero.
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Expression values provided as fold changes are auto-
matically converted to log2 (treatment/control) to ensure
that these requirements hold.
The second input file, the Hypothesis File, is a text

file containing a list of hypothesis terms of interest to
the user, one term per line (Figure 2a). The Hypothesis
GO Term (HGT) Builder uses the Hypothesis File to
create a Hypothesis GO Term (HGT) file as described
below. If the user already knows which GO term identi-
fiers are associated with each hypothesis term or if they
have previously used the HGT Builder to create an
HGT file, they can upload the HGT file directly. Each
line of the HGT file contains a hypothesis term and a
list of one or more associated GO terms separated by
commas (Figure 2b).
The Hypothesis GO Term Builder uses the Porter

Stemmer [14][15] to extract stems for the hypothesis
terms submitted by the user. For example, if the user
submits inflammation as a hypothesis term, the stem-
mer would produce inflam. This enables matches to GO
term names such as “inflammatory response”. The tool
then searches all GO term names, descriptions, and
synonyms for the specified hypothesis term stems. The
results of the search are returned as a list of GO records
with check boxes (Figure 3). The user can view addi-
tional details about each GO Term by clicking on the
term name before making his/her choice. If there are no
GO identifiers returned for a search term, the user is

given a link to AmiGO [16], where they can conduct a
more extensive search. The interface also provides a text
box where the user can enter additional GO identifiers
that were not found by the interface. The interface veri-
fies that these additional GO identifiers are valid and
not obsolete. The GO identifiers selected by the user or
input in the text box are used to create the HGT file.
After the file has been created, the user has the option
of saving the file before starting the analysis.
Figure 1 also illustrates the additional information

needed by GOModeler. The user is asked to enter their
email address because the analysis conducted by GOMo-
deler is time consuming for large datasets. The tool
emails the results, a job identifier, and a link to the edit
interface as soon as the analysis is complete. The results
can be retrieved and edited through the edit interface.
GOModeler retrieves maximal GO annotation for each

gene identifier listed in the Gene Expression File using
the AgBase GOanna tool [13]. The process of creating
the input file for GOanna varies depending on the type
of gene identifier provided by the user as shown in the
flow chart in Figure 4. GOanna accepts FASTA
sequences or UniProt accessions. GenBank accessions
are mapped to FASTA sequences and gene names are
mapped to UniProt Accessions. GOanna conducts a
BLAST search using standard GOanna parameters and
retrieves GO identifiers for each input sequence. The
user also needs to select the species of interest.

Figure 1 Interface of GOModeler showing the required inputs.

Figure 2 File formats of input hypothesis files. A. Example Hypothesis File; B. Example Hypothesis GO Term File
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GOModeler uses the species selected by the user to nar-
row the subsequent GOanna search to the most relevant
species likely to have substantial GO annotation. For
example, if the user selects “chicken”, GOanna searches
chicken, mouse, and human databases. Table 1 gives a
list of the species currently supported and the databases
searched for each of these species. A Gene Information
File is created containing the original information in the
Gene Expression File along with the GO identifiers
found for each gene. The user is also asked to specify a
“Default Effect of Unsigned GO Terms” and “Default
Method for Conflict Resolution of Contradictory GO
Terms.” These parameters are discussed in detail in the
following section.

Mapping GO terms to effects
The GO terms in the Gene Information File and the
HGT file are the basis for the analysis conducted by
GOModeler. The first step of the analysis is to match

the GO identifiers for each gene in the Gene Informa-
tion file to the GO identifiers related to each hypothesis
term. Figure 5 describes the algorithm for the matching
process. For each gene, GOModeler first matches each
associated GO id with all the GO ids of each hypothesis
term. If an exact match is found, the associated GO
name is parsed to determine an effect value {+1, −1, 0}
as described below. If no exact match is found, the
match function recursively calls itself with the parents
of the gene GO id and the hypothesis term GO id list as
arguments to search for matches against generalizations
of the gene GO term with the hypothesis GO terms.
This operation is valid because the “true path rule” of
the GO states that the path from a child to all its par-
ents is always true- that is, if a particular GO term
applies to a gene product, then all ancestors of that GO
term also apply to the gene product [5].
After the matching process, GO term names are

parsed to determine effects. Although the GO is a

Figure 3 Hypothesis GO Term Builder interface. Users may select one or more terms and may enter one or more additional terms separated by
commas in the text box. Clicking on a GO term takes the user to the Amigo page describing the GO term.
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controlled vocabulary, the specific words “positive” and
“negative” are not always used explicitly to describe
effects. For example, the term GO:0002328 (pro-B cell
differentiation) implies a positive effect while the terms
GO:0006916 (anti-apoptosis), and GO:0044414 (suppres-
sion of host defenses) imply negative effects. If a name
contains the words positive, pro, stimulates, increases/d
or upregulates, an effect value of +1 is assigned. If the
name contains the words negative, anti, suppresses, inhi-
bits, decreases/d or downregulates, an effect of −1 is
assigned. If the GO term does not specify either positive
or negative effects, the assigned effect will depend on
the “Default Effect of Unsigned GO Terms” specified by
the user. If the user selects “no effect” then the final
effect for “unsigned terms” will be 0. If the user selects
“positive” all matched terms where GOModeler cannot
assign a positive or negative effect are assumed to have
a positive effect (+1). For example, the term

GO:0042981 (regulation of apoptosis) is an unsigned
term that could be assumed, based on common usage in
manuscripts, to have a positive effect. This problem is
created, and needs to be accounted for, because GO bio-
curators annotate only explicitly written facts and do
not infer further [17].
In some cases, GO terms with contradictory effects

will be found for the same gene-hypothesis term pair.
This is quite reasonable as gene product effects are
commonly context dependent. Regardless, in this case,
the conflict resolution method specified by the user is
used to determine the effect. Conflict resolution meth-
ods supported are: positives override, negatives override,
and the greater of positives and negatives. At the con-
clusion of the matching process, Effect_listi,j will contain
all of the effects found for gene i and hypothesis term j.

Summarizing effects
GOModeler generates a qualitative table, a quantitative
table (Figure 6) and a graphical summary of the net
effects of the gene set on each of the hypothesis terms.
The qualitative table depicts the individual qualitative
effect QLi,j of each gene Gi on each of the hypothesis
terms Hj where QLi,j Î {−1, 0, +1, undefined}. Positive
effects are highlighted in green and negative effects are
highlighted in red. If QLij is defined, the quantitative
effect of each gene is computed as:
QTi,j = QLi,j*GEi where GEi is the gene expression

value associated with gene Gi.
The net quantitative effect, Nj, on each hypothesis

term, Hj, is computed as:

N QTj

i

n

ij=
=
∑

1

The quantitative table also displays the total pro, anti
and net effects of the gene set on each hypothesis term
(Figure 6).
The tool is designed to allow the user to incorporate

his/her domain knowledge to augment the information
encoded in the GO. The interface allows the users to
change the effect values obtained by GOModeler or add
an effect value where the tool was not able to determine
an effect (Figure 7). The users can use the Job ID sent by
GOModeler to view the results in the edit interface. The
edit interface also allows users to resolve conflicting
effects resulting from different GO terms for the same
gene identifier. For example, Rat IL-6 (UniProt: P20607)
is annotated to GO:0008285 (negative regulation of cell
proliferation) with an evidence code of IMP (Inferred
from Mutant Phenotype) but it is also annotated to
GO:0008284 positive regulation of cell proliferation with
an evidence code of IS0 (Inferred from Sequence

Figure 4 Process of obtaining GO identifiers for input identifiers.

Table 1 Species supported by GOModeler and the
corresponding BLAST databases searched to obtain GO
ids for gene identifiers

Species AgBase BLAST databases

Chicken Chicken, Mouse, Human, Rat

Rat Mouse, Human, Rat

Human Mouse, Rat, Human

Mouse Mouse, Human, Rat

Arabidopsis Arabidopsis

Maize Arabidopsis, Maize, Rice

Poplar Arabidopsis, Poplar
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Orthology) [16]. In such a case, the tool infers both posi-
tive and negative effects and it is up to the user to investi-
gate the source of the conflict and change the effects
based on the experimental context. Figure 8 shows the
results after the domain expert resolved conflicts based
on knowledge of the experimental context of these
results. The tool summarizes the net effect of the dataset
on each hypothesis term in a graphical format (Figure 9)
where the colour coding is consistent with the colour
coding in the qualitative and quantitative tables.

Results and discussion
Data from two cancer biology studies with the aim of
defining the phenotype of specific populations of neo-
plastically-transformed cells were used to demonstrate
the utility of GOModeler [18]. The GOModeler results
from the first study involving a set of nine differentially-
expressed cytokine genes are shown in Figure 6. Results
for the second study involving ten differentially-
expressed genes are given in Additional file 1. For the
GOModeler analysis, the species selected was chicken,
the gene input type was gene name and the other para-
meters selected were positive as the option for default
effect for unsigned GO terms and positives override as
the option for conflict resolution. Table 2 shows a com-
parison of the qualitative effects obtained using

GOModeler and the results obtained by manual analysis
by a PhD level immunologist. The direction of the net
effects obtained by GOModeler is in agreement with
75% of the results obtained by the manual analysis by
an immunologist. The results from GOModeler and the
manual analysis differ for the hypothesis terms apoptosis
and antigen presentation and inspection of the results in
edit mode reveals that two of the entries (IL-6 and IL-
10) had conflicting effects (−1 and +1) for apoptosis.
Because we had selected positives override as the conflict
resolution mechanism, the tool had selected +1 over −1.
The user has the ability to change the effect for indivi-
dual cells in edit mode.
Other differences between the manual scoring and
GOModeler can be attributed to incompleteness of the
GO [18]; that is, published data exists and GO terms
exist but the two have not been linked by GO biocura-
tors. For example, it is obvious that our immunology
domain expert has brought substantial knowledge to
bear about the hypothesis term antigen presentation that
is not yet annotated and present in the GO databases
for these genes. In some cases, such as the effect of IL-6
on chemotaxis, GOModeler and the domain expert
found opposite effects. Manual inspection of the GO
annotation of IL-6 confirms that GOModeler is obtain-
ing the correct effect based on information available in

Figure 5 Algorithm to infer effects of GO terms from the GO terms for genes and GO terms corresponding to each hypothesis term.
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Figure 6 Qualitative and quantitative tabular results for GOModeler for the test cytokine dataset.
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the GO annotation of IL-6 for rat, mouse, human and
chicken. This is a specific example where the GO is
incomplete and also where the effect is context depen-
dent and so the gene product effect can be positive in
some cases and negative in others.
In general, GOModeler tends to identify more positive

effects than negative effects. This phenomenon can
occur when genes have conflicting positive and negative
(pro and anti) effects specified by the GO (indicated by
“(+1/−1)” in the qualitative table) and, additionally, a
bias is introduced by selecting “positives override” for
conflict resolution. This is obviously something that
users must be aware of and it is reasonable to assume
that they will be. However, there are more complicated
factors also. For example most GO terms are
“unsigned”, i.e. they do not indicate positive or negative.
We have opted to use “positive” as the default effect for
unsigned GO terms based on colloquial usage and our
experience that “positive effects” are often implicit. An
example is the physical manifestation of programmed
cell death known as apoptosis. “positive regulation of
apoptosis” (GO:0043065) and “negative regulation of
apoptosis” (GO:0043066) can be used to indicate pro
and anti effects by annotators. However, authors can
imply that a gene positively regulates apoptosis without
explicitly saying so. In such cases the GO term “apopto-
sis” (GO:0006915) is used for annotation and yet the
domain specific experts will know that this is a positive

regulation. Finally, scientists tend to publish their posi-
tive data and to make hypotheses in a positive sense.
Unlike most GO-based discovery tools [6] that focus

on the under- or over-representation of GO categories,
GOModeler supports hypotheses testing using the GO.
Although modern high throughput methods support
discovery-based science, hypothesis driven science
remains the approach used by most molecular biologists
and required for funding from many agencies (e.g.
NIH). GOEA tools can be used to generate an initial list
of hypotheses, but they are of limited value for hypoth-
esis testing. GOEA tools can typically only identify
hypotheses for GO terms that are over and underrepre-
sented in a dataset. These statistical approaches are not
applicable for analysis of biological processes that
involve only a few genes because the GO terms involved
occur in such small numbers that they will never be
identified as “over-or under-represented” by statistical
analysis. By contrast GOModeler can identify such
effects. In addition, most GOEA tools limit their analysis
to a specific and arbitrary level of the GO DAG (i.e. GO
Slim categories). These categories are often so general
that they can be of little use in hypothesis-driven
research. Some GOEA tools allow the user to “drill
down” from the GO Slim categories, but as the GO
terms become more specific, there will be fewer genes
with these annotations, making it highly unlikely that
they will pass the statistical tests for under- or over-

Figure 7 Edit Interface. This interface allows the user to modify term effects and to enter effects when the tool found none.
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representation. In addition, selection of an arbitrary level
of detail falsely assumes that all terms at the same level
in the GO DAG hierarchy are at the same conceptual
level [18]. In addition, some parts of the GO are much
better developed than others. Tools that focus on over-

or under-represented GO terms provide no information
about the direction of effect of the dataset on the cate-
gories. Although GOModeler is a GO-based tool, the
issues addressed by GOModeler and GOEA tools are
fundamentally different and each has their own uses.

Figure 8 Qualitative and quantitative tabular results for GOModeler for the test cytokine dataset after conflict resolution by domain user.
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To illustrate the differences in GOModeler and GOEA
tools, we have used the dataset in Figure 6 with three
popular GOEA tools, AgriGO, GOStat and DAVID.
GOStat and DAVID reported only high level terms (e.g.
immune response, extracellular region, abiotic response

to stress) and did not “discover” any of the hypothesis
terms in our dataset. With our small set of genes,
AgriGO generates a message stating that “Sorry, less
than 10 entries can be mapped with GO. Analysis
Failed.” GOModeler, on the other hand, does not rely on

Figure 9 Graphical summary of net effects from the quantitative output in Figure 8.

Table 2 Comparison of GOModeler results for the test cytokine dataset with manual analysis results. Columns with the
heading G were generated by GOModeler and those with the heading of M were obtained by manual annotation by
an immunologist

Genes Hypothesis Terms

TH2 Antigen Presentation Chemotaxis Metastasis Angiogenesis T Cell Activation Cell Proliferation Apoptosis

G M G M G M G M G M G M G M G M

IL-2 1/-1 0 1 1 1/-1 1/-1 1 1 1 1/-1 -1

IL-4 1/-1 1 1 1 1 1/-1 1 1 -1 0

IL-6 1 0 1 -1 1 0 1 1 1/-1 0 -1/1

IL-8 1 1 1 1 1 1 -1 -1 1

IL-10 1 1 1 1 1 0 -1 -1 -1 -1/1 -1

IL-13 1 1 0

IL-18 1 1 1 1 1 1 1 1 1 1

IFNg -1 -1 1 1 1 1 1/-1 -1 1 1

TGFb 1 1 1 1/-1 -1 1 1/-1 -1

Effect

Sum of Pro 5 5 0 3 7 2 6 2 6 2 4 1 6 4 7 2

SumofAnti 0 -1 -1 0 0 -1 0 0 0 0 -1 0 -3 -3 -1 -3

Net 5 4 -1 3 7 1 6 2 6 2 3 1 3 1 6 -1

Manda et al. BMC Bioinformatics 2010, 11(Suppl 6):S29
http://www.biomedcentral.com/1471-2105/11/S6/S29

Page 10 of 12



statistical over or under representation and allows users
to control the level of specificity appropriate for testing
their hypotheses.
One limitation that GOModeler shares not only with

GOEA tools but also with network and pathway tools
such as Ingenuity Pathway Analysis (http://www.ingenu-
ity.com/) is that the computed quantitative effects pro-
vide a simplified view of gene effects. All of these
methods ignore complexities introduced by differential
gene effects on gene pathways, biological processes and
molecular functions (though they can take cell location
into account). Adding to this complexity is the contex-
tual relative effect of a gene product. This view does,
however, allow us to show the direct effects of relative
expression between two comparable systems (control
versus treatment) i.e. genes that are much more highly
expressed in the treatment system will have higher
quantitative effects compared with the control system.
We have already successfully applied this approach in
several published papers that used a preliminary version
of GOModeler with substantial user input [19-21].
GOModeler is not a gene expression analysis tool and

an essential underlying assumption of GOModeler is
that appropriate statistical analysis of differential gene
product expression has been done. This is completely
compatible with reductionist approaches and GOMode-
ler’s utility is to quickly survey the GO to assign terms
from one of the three ontologies based on the user’s
hypothesis terms at the most appropriate and granular
level of the GO. For example, there are currently only
six genes annotated in the GO to be involved in angio-
genesis. Reductionist biologists could test a hypothesis
about genetic regulation of angiogenesis by, for example,
quantitative PCR of these six genes. Although we often
think of HT methods as associated with discovery
based-science, a HT functional genomics experiment
(such as RNAseq) would also measure the same six
mRNAs and could be used for hypothesis driven
research. As demonstrated by our examples, GOModeler
can be used for the reductionist approach [20,21] or for
a HT functional genomics approach [19,22-24]. HT
functional genomics experiments, however, allow many
other genes to be tested for other hypotheses using
GOModeler.

Conclusions
GOModeler facilitates hypothesis testing from HT func-
tional genomics datasets. The results obtained from
GOModeler demonstrate that the tool is a valuable
resource for hypothesis-driven research and that it pro-
vides capabilities complementary to other tools that
focus on enrichment analysis or statistical comparison
of two datasets. Because there are problems with the
incompleteness of the GO and context-dependent

effects of gene products on biological processes, molecu-
lar functions, and cellular location, we provide the user
with the ability to supplement the automated results
with his/her expertise through editing.

Availability and requirements
GOModeler is available for public access at the AgBase
website http://agbase.msstate.edu/ ® Tools ® GOMo-
deler. GOModeler has been implemented in Perl and
HTML. Results are provided in both tabular and graphi-
cal format. Help documentation is available from to
assist users in preparation of datasets, interpretation of
result and use various tool features.

Additional material

Additional File 1: File name: Additional_File_GOModeler.pdfTitle of
data: Figure 1 Qualitative and quantitative tabular results for GOModeler
for the second cancer biology study. Figure 2 Graphical summary of net
effects.

Acknowledgements
This research was partially supported by National Research Initiative of the
USDA Cooperative State Research, Education and Extension Service under
grant number 2007-35205-17941 and by the National Science Foundation
under grant number EPS 0903787.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 6, 2010: Proceedings of the Seventh Annual MCBIOS
Conference. Bioinformatics: Systems, Biology, Informatics and Computation.
The full contents of the supplement are available online at http://www.
biomedcentral.com/1471-2105/11?issue=S6.

Author details
1Department of Computer Science and Engineering, Mississippi State
University, MS, USA. 2Institute of Digital Biology, Mississippi State University,
MS, USA. 3Life Sciences and Biotechnology Institute, Mississippi State
University, MS, USA. 4College of Veterinary Medicine, Mississippi State
University, MS, USA.

Authors’ contributions
MF wrote the original version of GOModeler. PM has refined the tool,
compiled the datasets used for evaluation, participated in the optimization
and performance evaluation of the code and drafted the manuscript. SCB
conceived the pipeline; supplied datasets used in the manuscript, conducted
the manual analysis of the dataset, and helped write the manuscript. FM
helped develop the strategy for finding GO terms for gene products and
hypothesis terms, in evaluating results, and in writing the paper. SMB
participated in the pipeline and algorithm development and helped write
the manuscript. TJK developed the format and code for generating the
tabular and graphical output. BN evaluated the tool and provided
suggestions for improvement. All authors have read and approved the
manuscript.

Competing interests
No competing interests exist.

Published: 7 October 2010

References
1. Weinshilboum RM: The genomic revolution and medicine. Mayo Clin Proc

2002, 77(8):745-746.
2. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008,

26(10):1135-1145.

Manda et al. BMC Bioinformatics 2010, 11(Suppl 6):S29
http://www.biomedcentral.com/1471-2105/11/S6/S29

Page 11 of 12

http://www.ingenuity.com/
http://www.ingenuity.com/
http://agbase.msstate.edu/
http://www.biomedcentral.com/content/supplementary/1471-2105-11-S6-S29-S1.pdf
http://www.biomedcentral.com/1471-2105/11?issue=S6
http://www.biomedcentral.com/1471-2105/11?issue=S6
http://www.ncbi.nlm.nih.gov/pubmed/12173708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18846087?dopt=Abstract


3. [http://www.ingenuity.com/].
4. [http://www.ariadnegenomics.com].
5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 2000,
25(1):25-29.

6. Huang da W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res 2009, 37(1):1-13.

7. Pereira GS, Brandao RM, Giuliatti S, Zago MA, Silva WA Jr.: Gene Class
expression: analysis tool of Gene Ontology terms with gene expression
data. Genet Mol Res 2006, 5(1):108-114.

8. Beisvag V, Junge FK, Bergum H, Jolsum L, Lydersen S, Gunther CC,
Ramampiaro H, Langaas M, Sandvik AK, Laegreid A: GeneTools–
application for functional annotation and statistical hypothesis testing.
BMC Bioinformatics 2006, 7:470.

9. Berriz GF, King OD, Bryant B, Sander C, Roth FP: Characterizing gene sets
with FuncAssociate. Bioinformatics 2003, 19(18):2502-2504.

10. Feng W, Wang G, Zeeberg BR, Guo K, Fojo AT, Kane DW, Reinhold WC,
Lababidi S, Weinstein JN, Wang MD: Development of gene ontology tool
for biological interpretation of genomic and proteomic data. AMIA Annu
Symp Proc 2003, 839.

11. Ashburner M, Lewis S: On ontologies for biologists: the Gene Ontology–
untangling the web. Novartis Found Symp 2002, 247:66-80, discussion 80-
63, 84-90, 244-252.

12. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P,
Mueller LA, Yoon J, Doyle A, Lander G, et al: Functional annotation of the
Arabidopsis genome using controlled vocabularies. Plant Physiol 2004,
135(2):745-755.

13. McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB,
Barrell DG, Hill DP, Dolan ME, Williams WP, et al: AgBase: a functional
genomics resource for agriculture. BMC Genomics 2006, 7:229.

14. Zhao Y, Karypis G: Data clustering in life sciences. Mol Biotechnol 2005,
31(1):55-80.

15. Porter MF: An algorithm for suffix stripping. Program: Electronic Library &
Information Systems 2006, 40(3):211-218.

16. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO: online
access to ontology and annotation data. Bioinformatics 2009,
25(2):288-289.

17. Hill DP, Smith B, McAndrews-Hill MS, Blake JA: Gene Ontology
annotations: what they mean and where they come from. BMC
Bioinformatics 2008, 9(Suppl 5):S2.

18. Rhee SY, Wood V, Dolinski K, Draghici S: Use and misuse of the gene
ontology annotations. Nat Rev Genet 2008, 9(7):509-515.

19. Buza JJ, Burgess SC: Modeling the proteome of a Marek’s disease
transformed cell line: a natural animal model for CD30 overexpressing
lymphomas. Proteomics 2007, 7(8):1316-1326.

20. Kumar S, Buza JJ, Burgess SC: Genotype-Dependent Tumor Regression in
Marek’s Disease Mediated at the Level of Tumor Immunity. Cancer
Microenviron 2009, 2(1):23-31.

21. Shack LA, Buza JJ, Burgess SC: The neoplastically transformed (CD30hi)
Marek’s disease lymphoma cell phenotype most closely resembles T-
regulatory cells. Cancer Immunol Immunother 2008, 57(8):1253-1262.

22. Dail MB, Shack LA, Chambers JE, Burgess SC: Global liver proteomics of
rats exposed for 5 days to phenobarbital identifies changes associated
with cancer and with CYP metabolism. Toxicol Sci 2008, 106(2):556-569.

23. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E:
Comprehensive proteomic analysis of bovine spermatozoa of varying
fertility rates and identification of biomarkers associated with fertility.
BMC Syst Biol 2008, 2:19.

24. Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H,
Burgess SC: Bovine germinal vesicle oocyte and cumulus cell
proteomics. Reproduction 2007, 133(6):1107-1120.

doi:10.1186/1471-2105-11-S6-S29
Cite this article as: Manda et al.: GOModeler- A tool for hypothesis-
testing of functional genomics datasets. BMC Bioinformatics 2010 11
(Suppl 6):S29.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Manda et al. BMC Bioinformatics 2010, 11(Suppl 6):S29
http://www.biomedcentral.com/1471-2105/11/S6/S29

Page 12 of 12

http://www.ingenuity.com/
http://www.ariadnegenomics.com
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17062145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17062145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14728344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14728344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12539950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12539950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15173566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15173566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16961921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16961921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16118415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18460184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18460184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18475267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18475267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17443643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17443643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17443643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19308678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19308678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18796496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18796496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18796496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18294385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18294385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636165?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Input requirements
	Mapping GO terms to effects
	Summarizing effects

	Results and discussion
	Conclusions
	Availability and requirements

	Additional material
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

