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Abstract

Background: Determining the secondary structure of RNA from the primary structure is a challenging
computational problem. A number of algorithms have been developed to predict the secondary structure from the
primary structure. It is agreed that there is still room for improvement in each of these approaches. In this work we
build a predictive model for secondary RNA structure using a graph-theoretic tree representation of secondary RNA
structure. We model the bonding of two RNA secondary structures to form a larger secondary structure with a
graph operation we call merge. We consider all combinatorial possibilities using all possible tree inputs, both those
that are RNA-like in structure and those that are not. The resulting data from each tree merge operation is
represented by a vector. We use these vectors as input values for a neural network and train the network to
recognize a tree as RNA-like or not, based on the merge data vector. The network estimates the probability of a
tree being RNA-like.

Results: The network correctly assigned a high probability of RNA-likeness to trees previously identified as RNA-like
and a low probability of RNA-likeness to those classified as not RNA-like. We then used the neural network to
predict the RNA-likeness of the unclassified trees.

Conclusions: There are a number of secondary RNA structure prediction algorithms available online. These
programs are based on finding the secondary structure with the lowest total free energy. In this work, we create a
predictive tool for secondary RNA structures using graph-theoretic values as input for a neural network. The use of
a graph operation to theoretically describe the bonding of secondary RNA is novel and is an entirely different
approach to the prediction of secondary RNA structures. Our method correctly predicted trees to be RNA-like or
not RNA-like for all known cases. In addition, our results convey a measure of likelihood that a tree is RNA-like or
not RNA-like. Given that the majority of secondary RNA folding algorithms return more than one possible outcome,
our method provides a means of determining the best or most likely structures among all of the possible
outcomes.

Background
Our understanding of the role of RNA has changed and
continues to be redefined. It was once believed that the
sole purpose of RNA is to carry the information needed
to construct a specific protein. This information is
obtained from the protein’s gene and carried from the
nucleus of the cell to the machinery outside the nucleus

in the cell where the protein is then constructed. That
is, RNA carried the protein’s code. It is now known that
RNA is a major player in many gene regulatory net-
works and that there are numerous RNA structures
whose function does not involve coding for a protein.
Thus, we now refer to RNA as either coding or non-
coding. Novel non-coding RNA structures are still being
found and the number of non-coding RNA structures
now exceeds the number of coding RNA [1]. The role
of non-coding RNA in gene regulatory networks places
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the study of RNA in the forefront of efforts to under-
stand the complexities in Systems Biology.
A number of algorithms have been developed to pre-

dict the secondary structure from the primary structure.
Most of these algorithms use the thermodynamic para-
meters based on the principle that the most likely sec-
ondary structure is one having the minimal free energy.
But some suggest the actual RNA secondary structure
may have local instead of a global minimum free energy
[2] and thus many algorithms try to simulate RNA fold-
ing processes by iteratively adding stems rather than
pairings [3,4].
RNAalifold [5] integrates thermodynamic and phylo-

genetic information in a modified energetic model.
There is general agreement that there is still room for
improvement in each of these approaches [6]. The data-
base RAG: RNA-As-Graphs represents secondary RNA
using graph theory [7]. The details of the graph-theore-
tic representation are provided in the following section.
We utilize the information in the RAG database to
develop a novel predictive tool for secondary RNA
structure. When our tool is applied to predict secondary
RNA structures that are listed in the database, our
results concur with the database. We then predict addi-
tional secondary RNA structures with our graph-theore-
tic based predictive tool. Given that most algorithms
return several predicted secondary structures, ranking
them in order of likelihood, we provide an additional
tool to assist in the determination of which of the pre-
dicted structures is most likely.

Modeling RNA
RNA structure is divided into three classes: primary,
secondary and tertiary. The RNA sequence is the pri-
mary structure. The primary structure forms the sec-
ondary by folding back onto itself. When this folding
occurs, it forms Watson-Crick base pairs with interven-
ing unpaired regions. These regions occur in four types
of structures known as hairpins, bulges, internal loops
and junctions. Paired regions connecting these are
usually referred to as stems. Secondary RNA structure
can be represented by a two-dimensional drawing. Ter-
tiary RNA, or the three dimensional RNA molecule, can
be best described as being built from combinations of
secondary structure. Thus, the study of the secondary
structure of RNA has received and will continue to
receive much attention.
Since secondary RNA is represented by a two-dimen-

sional schematic, graph theory nicely lends itself as a
modeling tool for secondary RNA structure. The basic
skeletal structure of secondary RNA is captured by
representing the stems as edges of the graph and the
regions with unpaired bases as vertices. The resulting
graph is a graph known as tree graph, or simply a tree.

The RNA trees used in this work were first developed
by Le et al. in [8] and Morosetti [9] to determine struc-
tural similarities in RNA.
To quantitatively organize and archive all possible

RNA tree representations, it is necessary to first gener-
ate the collection of all possible trees for a given num-
ber of vertices (n). For example, for the set n = {2, 3, 4,
5, 6, 7, 8, 9}, there are a total of {1, 1, 2, 3, 6, 11, 23, 47}
distinct trees, respectively [10]. The RAG database cata-
logs all tree structures for trees up to order 11 [7].
According to [7], the second eigenvalue l2 measures a
motif’s topological complexity. For example, a more lin-
ear tree graph has a lower l2 value while a highly-
branched tree graph has a high l2 value. The RAG data-
base catalogs each potential RNA motif by (n, l2). For
easy reference, each RNA motif has a specific index (n.
z), where z represents an integer corresponding to the
l2 ranking.
The trees with 2 through 8 vertices have been fully

classified as known (verified), candidate or non-candi-
date. The research compiled in [7] organizes all known,
candidate and non-candidate RNA trees of order 8 or
less by a color coding scheme. Red trees represent
known RNA, blue trees are candidate RNA and black
trees are non-candidate trees. A tree that is either a
known tree or candidate tree is referred to as an RNA-
like tree and a non-candidate tree is referred to as not-
RNA-like. The remaining trees on 9 or higher vertices
have not be grouped into these three categories. This
catalog of RNA trees is intended as a tool for searching
existing RNAs and to stimulate the search for candidate
RNA motifs not yet discovered in nature or a laboratory.
There are a number secondary RNA structure predic-

tion algorithms available online such as Zuckers MFold
and Vienna RFold. Given the primary RNA sequence,
the web server will return a list of predicted secondary
folds. These programs are based on finding the second-
ary structure with the total lowest free energy by calcu-
lating the free energy of a number of base-pairing
schemes and returning the lowest energy potential sec-
ondary structure as the most probable [11,12]. In the
majority of cases, even for long sequences, the predicted
structure is a structure whose tree representation is a
small ordered tree (a tree with fewer than 10 vertices).
However, there are secondary RNA structures whose
tree representation is a tree with 10 or more vertices.
For example, the 5S ribosomal RNA Clavibacter michi-
ganensis (RNA Database ID S73542) has a 10 vertex
tree representation.

Research description
In this work we consider the possibility that a larger
secondary RNA structure is formed by the bonding of
two smaller secondary RNA structures. We model this
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bonding process by defining a graph merge that occurs
on the vertices of the trees. If our hypothesis is valid,
then larger secondary RNA structures should arise from
trees that are unique to secondary RNA structure, and
not from arbitrary trees. That is, only trees that repre-
sent RNA, and hence are thermodynamically stable
structures, can be used to produce a tree which is still
stable. We test this hypothesis and find, under specified
constraints, stable trees are produced by merging two
stable trees. Furthermore, by applying a predictive
model, we find that some of the trees in the RAG data-
base that are listed as candidate RNA structures are not
clearly RNA-like in structure by our method. Our
approach is novel, and may be considered as a valuable
tool for refining prediction algorithms. It also illustrates
the applicability of graphs as models, not only for sec-
ondary RNA, but for biomolecules in general. In order
to formalize this idea, we introduce the graph-theoretic
terminology and concepts.

Basic terminology of Graph Theory
In graph theory, trees have been heavily studied both for
application purposes and theoretical investigations. As
defined in [13], a graph G = (V(G), E(G)) is a nonempty,
finite set of elements called vertices together with a
(possibly empty) set of unordered pairs of distinct ver-
tices of G called edges. The vertex set of G is denoted by
V(G), and the edge set of G is denoted by E(G). Here
we consider only simple graphs, that is, graphs with no
loops or multiple edges. A tree is commonly defined as
a connected graph with the property that no two ver-
tices lie on a cycle. These two properties, connected and
acyclic, completely characterize a tree since the removal
of any edge will disconnect the graph, and the addition
of any edge will create a cycle. Further, this implies that
any tree with n vertices contains n – 1 edges.
An isomorphism of graphs G and H is a bijection

between the vertex sets of G and H, f : V(G) ® V(H),
such that any two vertices v and w of G are adjacent in
G if and only if f (v) and f (w) are adjacent in H. This
kind of bijection is commonly called an edge-preserving
bijection or a structure-preserving bijection. If an iso-
morphism exists between two graphs, then we say the
graphs are isomorphic and we write G ≃ H. To illustrate
these terms, Figure 1 displays two isomorphic trees. Fig-
ure 2 shows the six non-isomorphic trees of order 6.
Figure 3 shows the index value and color codes of the
six trees on 6 vertices as shown in [14]. Two vertices
joined by an edge are said to be neighbors and the
degree of a vertex v in a graph G, denoted by degG(v), is
the number of neighbors of v in G. A vertex of degree
one is called a leaf, and its neighbor is called a support
vertex. For use in this paper, a vertex v in a tree T is an
internal vertex if it is neither a leaf or support vertex.

Two vertices u and v are said to be identified if they
are combined into a single vertex whose neighborhood
is the union of the neighborhoods of u and v. The bin-
ary operation merge of two graphs G1 and G2 forms a
new graph Guv by identifying a vertex u in G1 with a
vertex v in G2. Figure 4 demonstrates vertex identifica-
tion at the colored vertices for the pictured trees.

Results and discussion
We consider the possibility that a larger secondary RNA
structure could be formed by the bonding of two smal-
ler secondary RNA structures. We model this bonding
process by defining a merge operation on two trees. In
this research, we determined all possible tree merges
which result in a tree with 9 or fewer vertices. We use
the RNA online-database RAG and the tree color code
developed by Schlick et al. in [7] and discussed in the
introduction. Recall that red trees are RNA-like
(known), blue trees are RNA-like (candidates) and black
trees are not RNA-like (non-candidates). Note that in a
tree model of a secondary RNA structure, a hairpin cor-
responds to a vertex of degree one, internal loops and
bulges are vertices of degree two, and junctions corre-
spond to vertices of degree three or more.
Initially, we hypothesized that the color of the merging

trees would be indicative of the color of the result tree.
However, we found that this is not necessarily the case.
Our hypothesis held when merging RNA-like tree motifs
at vertices of degree one (hairpins) or degree two
(bulges or internal loops). That is, when identifying ver-
tices of degree two or less, almost all red to red or red
to blue tree merges produced a red tree. However, this
was not always the case when the vertices being identi-
fied included a vertex of high degree (junction).
Using these findings, we trained a neural network to

recognize the known classification of a tree as RNA-like
or not RNA-like in structure. The network assigned a
value between 0 and 1 to classify these trees. Table 1
shows the interval values used to classify the trees as
RNA-like or not-RNA-like. Paralleling the work com-
pleted in [15], our artificial neural network was trained
on two classes of trees: the known RNA (red) trees and
the non-candidate (black) trees. There are 15 red trees
of order 7, 8 and 9 along with 11 black trees of order 7
and 8.
The training and the predictions of the neural network

were analyzed using standard methods in machine
learning. To ameliorate overfitting, neural network
training used leave-v-out cross-validation [16]. This
involves partitioning the data into a majority training set
and a minority complement (approximately 10% of the
data in this effort). As the network is trained on the
training set, its performance is assessed on the comple-
ment. In each of the 5 repetitions of the classifier
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experiment, the root-mean-square error for the comple-
ment predictions was less than 5% of the class value of
1 (i.e., below 0.05). In addition, the predictions were
assessed using a Receiver Operating Characteristic
(ROC), in which the true positive rate (sensitivity) is a
function of the false positive rate (1 - specificity) for a
binary classifier system as its discrimination threshold is
varied [17]. Specifically, the area under the ROC curve
(AUC) is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a
randomly chosen negative one. The AUC for the predic-
tions ROC curve is 0.985.

Predictions for the classified RAG trees
The MLP artificial neural network correctly predicted
100% of the known RAG trees to have a value greater
than 0.50. Further, the network correctly calculated a
prediction value below 0.50 for nine of the eleven black
trees. However, two non-candidate RAG trees, indexed
as 7.10 and 8.14, received an MLP prediction value
between 0.60 and 0.50. Therefore, we label all trees with
an MLP prediction value within the range 0 59. to .40
as “Unclassifiable”. Table 2 displays the RAG classifica-
tion and corresponding predicted class for each of the
classified 26 trees on 7, 8 or 9 vertices.

Predictions for the unclassified RAG trees
After using the MLP to predict the classified RAG trees,
we calculated the prediction value for the 43 unclassified
trees on 9 vertices from the RAG online web database.
For these 43 trees, the MLP predicts a total of 22 trees
to represent RNA motifs: 18 trees are highly-RNA-like
and four are only RNA-like. Further, there are 14 trees
which the artificial neural network predicts to not repre-
sent RNA secondary structure: 10 trees are highly not-
RNA-like with four trees grouping into the not-RNA-
like category. Overall, the MLP calculated an unclassifi-
able value for seven of the 43 trees. These values are
listed in Table 3.

A comparative analysis
A predictive tool based on domination parameters was
used in [15] to classify the all trees on 7, 8 and 9 ver-
tices. Here we compare our results to the original tree
categories determined in [7] and to results found in
[15]. Our comparison is summarized in Table 4.
All three studies agreed on the classification of nine of

the eleven non-candidate (black) tree graphs. The two
exceptions are graphs 7.9 and 7.10, which our study
finds to be unclassifiable. Further, with the exception of
tree 8.15, all three research studies concluded that all
known (red) tree graphs on 7, 8 and 9 vertices were
RNA like based on their respective structural calcula-
tions. The model in [15] predicted tree 8.15 to be RNA-

Figure 1 An example of two isomorphic trees.

Figure 2 The six non-isomorphic trees of order 6.
Figure 3 The index value and color category for trees of order 6
from RAG.
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like in structure, however, their predictive model
reported the highest amount of error for the classifica-
tions of this tree. We calculated a 0.56 likelihood that
tree 8.15 contains RNA-like structure. As a result, both
predictive models were unable to confidently classify
tree 8.15.
Most notably, the predictive model used in previous

RNA motif research supports the major results of this
paper. As seen in Table 4, the predictive model in [15]
classified 29 of the 43 unknown RNA trees to be RNA-
like. When examining these results, the authors of [15]
felt their model over predicted the class of RNA-like
tree graphs. Accordingly, we found a total of 18 trees to
be highly-RNA-like in structure. Of those, 17 of the 18
trees in the highly-RNA-like category from this study
are included to be RNA-like from the results compiled
by [15]. Consequently, the predictive model of our study
narrows the class of RNA-like motifs from previous
findings.
Additionally, of the 12 trees on 9 vertices that we pre-

dicted to be not-RNA-like in structure from our model,
previous findings agreed with 10 of those classifications.
The model in [15] predicted trees 9.31 and 9.43 to be
RNA-like, whereas we found both motifs to be highly
not-RNA-like. From the other direction, of the 14 trees
predicted in [15] to not-RNA-like in structure, our pre-
diction agreed with 12 of the 14. Trees 9.23 and 9.25
are both predicted to be not RNA-like in [15], but were
classified as potential RNA structures in our study.
Hence, our predictive model provides more descriptive
information about the structural classification of the
unknown RAG tree motifs on 9 vertices than the find-
ings from [15]. In summary, when comparing our
results with those in [15], we highlight two improve-
ments. First, our neural network outcomes were not
solely RNA-like or not RNA-like. Rather, our model
assigns a probability, which is a measurement of a tree’s

RNA likeness. Second, our model predicts fewer of the
trees on 9 vertices to be RNA-like, and thus seems to be
a more discriminating predictive tool.

Methods
We use graph theory to model the bonding of secondary
RNA structures and a predictive neural network to
quantify our results.

Graph theoretic model
The binary operation merge of two trees T1 and T2

forms a new larger tree Tuv by identifying a vertex u in
T1 with a vertex v in T2. Merging two trees of n and m
vertices produces nm total trees, some of which can be
isomorphic, and each resulting tree has a total of n + m
− 1 vertices.
To accurately model RNA bonding, we must consider

all possible vertex identifications between two RNA tree
models. For example, there are 12 possible vertex identi-
fications for merging trees 3.1 and 4.2. Of these 12
merges, the four non-isomorphic trees are shown in Fig-
ure 5. Figure 6 displays the official RAG identification
and color classes for the trees from Figure 5.
Our research determined all possible merges forming

trees on 9 and fewer vertices. When tracking the infor-
mation from all possible vertex identifications between
two trees, the resulting trees were noted and their fre-
quencies counted. For example, in Figure 6, the merge
of tree 3.1 and 4.2 results in the following tree set: 3.1 +
4.2 = {6.2, 6.4, 6.5, 6.6}. Trees 6.2, 6.4, 6.5 and 6.6
occurred with frequencies 6, 3, 2, and 1 respectively.
Additionally, we noted the type and degree of the ver-
tices at each merge. Table 5 displays all the information
for the vertex identifications of the merges between
trees 3.1 and 4.2.
For all 94 graphs on 2 through 9 vertices, every possi-

ble vertex identification resulting in a graph on 9 or
fewer vertices was calculated and recorded. Additional
file 1 displays the vertex identification results for all tree
merges. Then information from Additional file 1 was
translated into data vectors. Each data vector displays
the composition information for the result tree in the
following manner:
〈c1, c2, deg(v1), deg(v2)〉, 〈y1, y2〉], where for i ∊

{1, 2}, c
T

Ti
i

i
=

⎧
⎨
⎩

1

0

,

,

if is red or blue

is black,

deg(vi) is the degree of the identified vertex of Ti, and
y1 = 1 and y2 = 0 if the result tree is an RNA-like tree,

and y1 = 0 and y2 = 1 if the result tree is not RNA-like.

An artificial neural network
In their numerical form as data vectors, the vertex iden-
tification results are used to predict the RNA-like status

Figure 4 An example of a merge of two trees.

Table 1 The key for categorizing the artificial neural
network prediction values

ANN Value Resulting Category

1.0 - 0.80: Highly-RNA-Like

0 79 0 60. .− RNA-Like

0 59 0 40. .− Unclassifiable

0 39 0 20. .− Not-RNA-Like

0 19 0 0. .− Highly Not-RNA-Like
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of the 43 unclassified trees on 9 vertices. The data vec-
tors from the 15 known (red) tree graphs on 7, 8 and 9
vertices along with the data vectors of the 11 non-candi-
date (black) tree graphs on 7 and 8 vertices make up the
training data. To check the validity of our model, we
then predicted the status of the 26 known tree classifica-
tions on 7, 8 and 9 vertices. Then, the model is used as
a predictive tool for the 43 unclassified trees of order
nine. This research parallels previous work by the
authors in [15]. In this section, we discuss the details of
designing, training and using an artificial neural network
as a prediction tool.

Description
Following the network created in [15], our approach is
to train a multi-layer perceptron (MLP) artificial neural
network using a standard back-propagation algorithm.
Results from a back-propagation MLP can be repro-
duced independently by other researchers and can also
provide information beyond simple predictions. The 3-
layer MLP is used to predict the RNA-like status of
the trees. The first layer, or input later, contains four
perceptrons corresponding to the data vector from one
vertex identification of the complete merge between
two trees. The last layer, or output layer, consists of

Table 2 The prediction values for the classified RAG trees

RAG Index Color Class ANN Prediction ANN Result RAG Index Color Class ANN Prediction ANN Result

7.1 Red 1.00000 Highly RNA-Like 8.19 Black 0.33309 Not-RNA-Like

7.10 Black 0.59091 Unclassifiable 8.20 Red 0.69128 RNA-Like

7.11 Black 0.00045 Highly Not-RNA-Like 8.21 Black 0.00747 Highly Not-RNA-Like

7.2 Red 0.99860 Highly RNA-Like 8.22 Black 0.00437 Highly Not-RNA-Like

7.3 Red 0.99990 Highly RNA-Like 8.23 Black 0.00001 Highly Not-RNA-Like

7.6 Red 0.99721 Highly RNA-Like 8.3 Red 0.99796 Highly RNA-Like

7.9 Black 0.43130 Unclassifiable 8.5 Red 0.99991 Highly RNA-Like

8.10 Red 0.99994 Highly RNA-Like 8.7 Red 0.99815 Highly RNA-Like

8.11 Red 0.99682 Highly RNA-Like 8.9 Black 0.75935 RNA-Like

8.14 Black 0.52998 Unclassifiable 9.6 Red 0.99991 Highly RNA-Like

8.15 Red 0.56343 Unclassifiable 9.11 Red 0.99993 Highly RNA-Like

8.17 Black 0.36524 Not-RNA-Like 9.13 Red 0.99740 Highly RNA-Like

8.18 Black 0.00595 Highly Not-RNA-Like 9.27 Red 0.99795 Highly RNA-Like

Table 3 The prediction values for the unclassified RAG trees

RAG Index Color Class ANN Prediction ANN Result RAG Index Color Class ANN Prediction ANN Result

9.1 Unknown 1.00000 Highly RNA-Like 9.32 Unknown 0.00464 Highly Not-RNA-Like

9.10 Unknown 0.99874 Highly RNA-Like 9.33 Unknown 0.99897 Highly RNA-Like

9.12 Unknown 0.99724 Highly RNA-Like 9.34 Unknown 0.81259 Highly RNA-Like

9.14 Unknown 0.99722 Highly RNA-Like 9.35 Unknown 0.25818 Not-RNA-Like

9.15 Unknown 0.48019 Unclassifiable 9.36 Unknown 0.39903 Not-RNA-Like

9.16 Unknown 0.58718 Unclassifiable 9.37 Unknown 0.11790 Highly Not-RNA-Like

9.17 Unknown 0.99660 Highly RNA-Like 9.38 Unknown 0.57340 Unclassifiable

9.18 Unknown 0.99993 Highly RNA-Like 9.39 Unknown 0.00576 Highly Not-RNA-Like

9.19 Unknown 0.81428 Highly RNA-Like 9.4 Unknown 0.99840 Highly RNA-Like

9.2 Unknown 0.99888 Highly RNA-Like 9.40 Unknown 0.00238 Highly Not-RNA-Like

9.20 Unknown 0.58342 Unclassifiable 9.41 Unknown 0.00025 Highly Not-RNA-Like

9.21 Unknown 0.64473 RNA-Like 9.42 Unknown 0.69128 RNA-Like

9.22 Unknown 0.28250 Not-RNA-Like 9.43 Unknown 0.00756 Highly Not-RNA-Like

9.23 Unknown 0.84883 Highly RNA-Like 9.44 Unknown 0.40451 Unclassifiable

9.24 Unknown 0.99705 Highly RNA-Like 9.45 Unknown 0.00441 Highly Not-RNA-Like

9.25 Unknown 0.62696 RNA-Like 9.46 Unknown 0.00434 Highly Not-RNA-Like

9.26 Unknown 0.99942 Highly RNA-Like 9.47 Unknown 0.00002 Highly Not-RNA-Like

9.28 Unknown 0.36067 Not-RNA-Like 9.5 Unknown 0.72341 RNA-Like

9.29 Unknown 0.83375 Highly RNA-Like 9.7 Unknown 0.99875 Highly RNA-Like

9.3 Unknown 0.99840 Highly RNA-Like 9.8 Unknown 0.99909 Highly RNA-Like

9.30 Unknown 0.52189 Unclassifiable 9.9 Unknown 0.55979 Unclassifiable

9.31 Unknown 0.00769 Highly Not-RNA-Like
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two perceptrons with activations y1 and y2, where y1 =
1 and y2 = 0 if the result tree, which corresponds to
the input data vector, is predicted to be an RNA tree
and where y1 = 0 and y2 = 1 if the result tree is not
RNA-like. The middle layer, or hidden layer, is com-
prised of 24 perceptrons. The weights between the
input and hidden layers will be denoted by w jk and
the weights between the hidden and output layers will
be denoted by aij.
Implementation
The data vectors from the vertex identifications of the
26 trees on 7, 8 or 9 vertices that either are an RNA

tree or not an RNA-like tree determine the training

set TS p qi i
i= ={( , )} 1
26

Where p p p p pi i i i i= 1 2 3 4, , , is the data vector, qi = 〈1,
0〉 if the tree is known or predicted to be an RNA tree,
and qi = 〈0, 1〉 of the tree is not RNA-like. The back-
propagation algorithm is used to implement a gradient
following minimization of the total squared

error E y p qi i

i

= −
=
∑1

2

2

1

26

( )

where y(pi) = 〈y1(p
i), y2(p

i)〉 is the output due to an
input of pi and the norm is generated by the corre-
sponding dot product.

Table 4 A comparative analysis of the predicted results between [15], [14] and this paper

RAG
Index

RAG Color
Class

Domination Predicted
Class

Bonding Predicted
Class

RAG
Index

RAG Color
Class

Domination Predicted
Class

Bonding Predicted
Class

7.1 Red RNA-Like Highly-RNA-Like 8.17 Black Not-RNA-Like Not-RNA-Like

7.10 Black Not-RNA-Like Unclassifiable 8.18 Black Not-RNA-Like Highly-Not-RNA-Like

7.11 Black Not-RNA-Like Highly-Not-RNA-Like 8.19 Black Not-RNA-Like Not-RNA-Like

7.2 Red RNA-Like Highly-RNA-Like 8.20 Red RNA-Like RNA-Like

7.3 Red RNA-Like Highly-RNA-Like 8.21 Black Not-RNA-Like Highly-Not-RNA-Like

7.6 Red RNA-Like Highly-RNA-Like 8.22 Black Not-RNA-Like Highly-Not-RNA-Like

7.9 Black Not-RNA-Like Unclassifiable 8.23 Black Not-RNA-Like Highly-Not-RNA-Like

8.10 Red RNA-Like Highly-RNA-Like 8.3 Red RNA-Like Highly-RNA-Like

8.11 Red RNA-Like Highly-RNA-Like 8.5 Red RNA-Like Highly-RNA-Like

8.14 Black Not-RNA-Like Unclassifiable 8.7 Red RNA-Like Highly-RNA-Like

8.15 Red RNA-Like Unclassifiable 8.9 Black Not-RNA-Like RNA-Like

9.1 Unkwn RNA-Like Highly-RNA-Like 9.31 Unkwn RNA-Like Highly-Not-RNA-Like

9.10 Unkwn RNA-Like Highly-RNA-Like 9.32 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.11 Red RNA-Like Highly-RNA-Like 9.33 Unkwn RNA-Like Highly-RNA-Like

9.12 Unkwn RNA-Like Highly-RNA-Like 9.34 Unkwn RNA-Like Highly-RNA-Like

9.13 Red RNA-Like Highly-RNA-Like 9.35 Unkwn Not-RNA-Like Not-RNA-Like

9.14 Unkwn RNA-Like Highly-RNA-Like 9.36 Unkwn Not-RNA-Like Not-RNA-Like

9.15 Unkwn Not-RNA-Like Unclassifiable 9.37 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.16 Unkwn RNA-Like Unclassifiable 9.38 Unkwn RNA-Like Unclassifiable

9.17 Unkwn RNA-Like Highly-RNA-Like 9.39 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.18 Unkwn RNA-Like Highly-RNA-Like 9.4 Unkwn RNA-Like Highly-RNA-Like

9.19 Unkwn RNA-Like Highly-RNA-Like 9.40 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.2 Unkwn RNA-Like Highly-RNA-Like 9.41 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.20 Unkwn RNA-Like Unclassifiable 9.42 Unkwn RNA-Like RNA-Like

9.21 Unkwn RNA-Like RNA-Like 9.43 Unkwn RNA-Like Highly-Not-RNA-Like

9.22 Unkwn RNA-Like Not-RNA-Like 9.44 Unkwn RNA-Like Unclassifiable

9.23 Unkwn Not-RNA-Like Highly-RNA-Like 9.45 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.24 Unkwn RNA-Like Highly-RNA-Like 9.46 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.25 Unkwn Not-RNA-Like RNA-Like 9.47 Unkwn Not-RNA-Like Highly-Not-RNA-Like

9.26 Unkwn RNA-Like Highly-RNA-Like 9.5 Unkwn RNA-Like RNA-Like

9.27 Red RNA-Like Highly-RNA-Like 9.6 Red RNA-Like Highly-RNA-Like

9.28 Unkwn Not-RNA-Like Not-RNA-Like 9.7 Unkwn RNA-Like Highly-RNA-Like

9.29 Unkwn RNA-Like Highly-RNA-Like 9.8 Unkwn RNA-Like Highly-RNA-Like

9.3 Unkwn RNA-Like Highly-RNA-Like 9.9 Unkwn Not-RNA-Like Unclassifiable

9.30 Unkwn RNA-Like Unclassifiable
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The weights are initially assigned random values close
to 0. Then, for each pair (pi, qi) the weights ajk are
adjusting using
ajk ® ajk + lδjξk
where    k k j j

i
kp= ∑ −( ) where l > 0 is a fixed

parameter called the learning rate, and where

 j j j
i

jy y q y= − −( )( ).1 1

The weights ωkr are adjusted using

      kl kl i k k j

j

p jk→ + −
=

∑1

1

2

1( )

In each training session, the patterns should be ran-
domly permuted to avoid bias, and training should con-
tinue until E is sufficiently close to 0 [18].
The MLP artificial neural network was trained and

tested by predicting complements. During this procedure,
the vertex identification data vectors of the 26 classified
tree motifs were randomly partitioned into a training set
and a complement set. Predicting complements was per-
formed with 15% of the data vectors in the complement
set for each trial.
The network was trained using the data not in the

complement until the total squared error was close to 0
(approximately 10,000 iterations for each of the 5 repeti-
tions of the classifier experiment). Once the network is
trained, it is used to predict the classification of the data
in the complement set. This is known as leave-v-out
cross-validation. According to [16], cross-validation is a
reliable measure of the generalization error of the net-
work when the training set is not too large.
In order to most accurately utilize our data, each tree’s

final classification was calculated as an average of a lin-
ear combination of prediction values from the vertex
identifications. To do so, we began this procedure by
using the MLP to predict the value for each vertex iden-
tification for a given tree. Then, this value was multi-
plied by a weight which refers to the total number of
graph isomorphisms for the vertex identification. This
weight was noted for each identification and can be
referenced in the “Total Graphs” column of Additional
file 1. To normalize the result, the linear combination of
all the vertex identification values was divided by the
sum of the weights. This final average determined the
prediction value for the tree. Table 6 outlines this pro-
cedure for tree 7.9.

Figure 5 The four non-isomorphic resulting trees when merging
trees 3.1 and 4.2

Figure 6 The RAG identification and color classes for the trees from
Figure 5

Table 5 The data table produced from the tree merge
between RAG Trees 3.1 and 4.2

3.1 and
4.2

v ∊V (3.1) v ∊V (4.2) Results Total
Graphs

Merge: deg
(v)

Type deg
(u)

Type Graph Color

1 1 Leaf 1 Leaf 6.2 Red 6

2 2 Support 1 Leaf 6.4 Blue 3

3 1 Leaf 3 Support 6.5 Black 2

4 2 Support 3 Support 6.6 Red 1
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Once the MLP was fully trained, the network was
used to predict the classification of the 26 red or black
RAG trees on 7, 8 and 9 vertices. For these trees, the
final MLP prediction values range from 1.0 to 0.0. As a
result, the key in Table 1 uses a range to classify the
final values. The ROC curve for the results in Table 2
are shown in Figure 7. It is worth noting that ROC ana-
lysis suggests that 0.6 is the “best threshold” between
RNA-like and not RNA-like, thus supporting the use of
the key in Table 1.

Conclusions
Using a tree representation of secondary RNA structure,
we model the creation of a larger structure from the
bonding of two smaller structures by considering all
combinatorial possibilities. We model the bonding with
a graph operation called (vertex) merge. Data from this
process included information on the degrees of the ver-
tices identified in the merge and the classification of
substructures. We created data vectors and then utilized
these data vectors from known RNA trees on 7, 8 and 9
vertices together with the data vectors from the non-

candidate RNA trees on 7 and 8 vertices to create and
train a neural network to recognize a tree as RNA-like
or not-RNA-like in structure. We applied this predictive
tool to categorize known RNA classifications and to pre-
dict unknown RNA trees.
The results for the 15 red trees of orders seven, eight,

and nine agree with the classifications from the RAG
database and previous research in [15]. Further, our
neural network correctly classified 9 of the 11 black, or
non-candidate, trees on 7 and 8 vertices to agree with
previous research. However, the authors of [15] felt
their model over predicted the class of RNA-like trees
for those 43 unclassified trees on 9 vertices. Their
results classified 29 of the unknown trees as RNA-like
in structure, and 14 as not-RNA-like. As a result, this
study narrows down the class of highly-RNA-like tree
structures on 9 vertices from the 29 predicted in [15] to
18 according to the values calculated by the MLP artifi-
cial neural network.
We revealed that graphical operations from the field

of mathematical graph theory can successfully model
secondary RNA motifs. Further, we demonstrated that
these numerical values from these operations can enable
the training of an artificial neural network to recognize
the difference between likely and unlikely RNA struc-
tures. These findings, along with those from previous
predictive models, exhibit the power of mathematical
graph theory as an effective modeling method. By repre-
senting bimolecular structures with graph theory, mod-
ern researchers enter an extensive and unexplored field
of quantitative biology. Although trees have previously
been used to model secondary RNA structure, the appli-
cations of techniques from graph theory have been lim-
ited. There are numerous binary operations on graphs,
such as the Cartesian product and graph join. In this
paper, we have introduced graph merge as a novel
approach to the study of RNA binding.
As a follow up to this study, future research could

combine the data from [7,15] and this paper to create a
more powerful predictive model. A more intelligent arti-
ficial neural network, or another predictive tool, could
utilize all three sets of data to predict the classifications
for all the RAG trees. Additionally, future projects could
examine the effect of other graphical invariants and
operations on the structural properties of the RAG

Table 6 An example of the algorithm used to determine the prediction value for tree 7.9

a[7.9] : = 4 * RNANet : –Classify (〈1, 1, 1, 3〉); a[7.9] : = 〈0.95945, 3.52754〉

b[7.9] : = 2 * RNANet : –Classify (〈1, 0, 1, 2〉); b[7.9] : = 〈0.00030, 1.99985〉

c[7.9] : = 1 * RNANet : –Classify (〈1, 1, 2, 2〉); c[7.9] : = 〈0.97666, 0.02253〉

d[7.9] : = 4 * RNANet : –Classify (〈1, 1, 2, 1〉); d[7.9] : = 〈3.95652, 0.05185〉

e[7.9] : = 6 * RNANet : –Classify (〈1, 1, 1, 3〉); e[7.9] : = 〈1.43917, 5.29130〉

Class[7.9] := 〈0.43130, 0.64077〉

Figure 7 The Receiver Operating Characteristic for the Neural
Network Predictions of the classified RAG trees
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motifs. Another potential research project could be to
use the ideas of our research, and those from [15], to
examine the structural components of the unclassified
RAG trees on 10 vertices from [14].

Additional material

Additional file 1: The complete table of vertex identifications from
all tree merges
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