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Abstract

Background: The large amount of high-throughput genomic data has facilitated the discovery of
the regulatory relationships between transcription factors and their target genes. While early
methods for discovery of transcriptional regulation relationships from microarray data often
focused on the high-throughput experimental data alone, more recent approaches have explored
the integration of external knowledge bases of gene interactions.

Results: In this work, we develop an algorithm that provides improved performance in the
prediction of transcriptional regulatory relationships by supplementing the analysis of microarray
data with a new method of integrating information from an existing knowledge base. Using a well-
known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection
of known information of yeast genes, we show that knowledge-based predictions demonstrate
better sensitivity and specificity in inferring new transcriptional interactions than predictions from
microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases
provide better prediction performance. Comparison of our results with ChIP-chip data and growth
fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable
candidates for follow-up biological verification.

Conclusion: High quality, comprehensive, and direct knowledge bases, when combined with
appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory
relationships from high throughput gene expression data.
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Background

The rapid accumulation of high-throughput genomic
data provides the foundation to computationally infer
previously unknown regulatory relationships between
transcription factors and their target genes. DNA micro-
arrays have been widely applied to measure genome-
wide mRNA abundance of many organisms under
different conditions. To infer regulatory relationships
from gene expression data, many of the computational
analysis methods developed to date focus only on the
experimental dataset itself, by evaluating similarities
between expression patterns using either clustering
algorithms such as hierarchical clustering [1] and self-
organizing maps [2], probabilistic graphical models [3],
or the context likelihood of relatedness (CLR) [4].

Most of these methods do not take full advantage of the
vast amounts of molecular interaction information
accumulated by the research community, including
gene-gene regulatory interactions [5,6], DNA-protein
binding [7], metabolic pathways [8] as well as sets of
genes related to diseases or cell functions [9]. Knowledge
bases collect, curate, and perform quality control of the
previous findings, either manually by expert biologists
[5] or computationally by artificial intelligence programs
[6], from peer-reviewed publications [5,6] and/or from
data of high-throughput experiments [7]. Different
knowledge bases can vary in many aspects, such as the
source of the original information, quality of the data
curation, and the comprehensiveness of the database.
Recent approaches have begun to utilize prior knowledge
for a variety of computational analyses of genomic data
including metabolic network modeling [10], inference of
activities of transcription factors [11], significance analy-
sis and classification using gene sets [12-15], and
inference of transcriptional regulation relationships
[16-18]. These studies demonstrate that knowledge-
based methods can help uncover important biological
information from high-throughput genomic data. We
have developed an improved algorithm to systematically
utilize information in a large collection of previously
known interactions between transcription factors (TFs)
and target genes (TGs) for the discovery of previously
unknown gene regulation. First, we estimated the
regulatory signal of a TF, mainly from the centroid
expression of the known co-regulated TGs of the TF. We
then built a predictor to discover new regulatory pairs
based on the relationship between the regulatory signal
of the TF and the expression of the candidate genes. We
also used our approach to characterize the various
properties of knowledge bases and investigated their
performance in regulatory-pair prediction.

Using the Yeast Proteome Database (YPD), a large
database created from manual curation of peer-reviewed
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publications by experts [5], we analyzed the utility of the
knowledge base in inferring new transcriptional regula-
tions from gene expression data sets of Saccharomyces
cerevisiae. We show that the knowledge base provides
valuable additional information to characterize pairs of
genes linked by transcriptional regulations, and predic-
tions made using prior knowledge have significantly
better performance than those from experimental data
alone. Further, we tested prediction performance using
knowledge bases of different characteristics, and show
that a knowledge base with comprehensive, direct and
high-quality interactions results in better performance in
analysis. Finally, we predicted 547 new regulatory pairs
through genome-wide analysis, and by evaluating these
pairs in a ChIP-chip binding dataset [7] and a growth
fitness data set [19], we suggest that they can be
reasonable candidates for further biological verification.

Methods

Data sources

We evaluated the usefulness of a knowledge base for
finding new regulatory pairs on a well-known collection
of 643 microarrays of yeast, described by Stuart et al.
[20]. We include in our study the 5,940 genes which
have missing data rates of less than 30%; the overall
missing data rate in the resulting dataset is less than 1%.

We describe knowledge bases containing information
manually curated from literature as having “direct
information”, and those with information extracted
from high-throughput data as having “indirect informa-
tion”. Here we assume that findings of a TF and its TGs
specifically reported in peer-reviewed publications are
more likely to be direct and specific regulations. In
addition, we define comprehensiveness of a knowledge
base to be proportional to the number of regulatory
pairs in the collection. Quality of a knowledge base is
quantified as the number of false positive interactions
for a given number of true gene interactions. The
repository of gene interaction pairs of transcriptional
regulation from the YPD is an example of a direct
knowledge base. We extracted 3,043 pairs of transcrip-
tional interactions between 523 TFs and 919 TGs from
the YPD for inclusion in our analysis of this direct
knowledge base.

To evaluate the validity of our genome-wide predicted
regulatory relations, ChIP-chip binding data from
Harbison et al. [7] and a growth fitness dataset of
homozygous gene deletions having growth fitness data
of 3,961 genes in 418 conditions [19] were used as
independent data sources. The growth fitness score was
calculated as the log ratio of the growth rate of the gene
deletion to that of the control.
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Representation of gene expression

Let E;; be the expression level for gene i of array j, and n
be the total number of the arrays in our collection. The
naive-representation (NR) for gene i is defined as the
following.

Rimm =[Eq, - Einl (1)

With a knowledge base, we can use the known co-
regulated TGs to define a new representation. Let S; be
the set of TGs regulated by gene i in the knowledge-base.
We define the knowledge-based-representation (KBR) for
gene i as follows:

k_ 1

! N;j+1

ZR;aive + Rinaive (2)

8€S;

N; is the number of TGs regulated by the gene i in the
knowledge base. The KBR represents the centroid expres-
sion of gene i and TGs that it regulates. If a gene is not a TF
or there is no known TG for the gene, the KBR of the gene
is equal to the NR. The KBR of a TF can also be considered
as reflecting the regulatory signal for the TF.

Classification methods and generation of negative sets

To evaluate the performance of prediction with knowl-
edge-based analysis, we used two classification algo-
rithms, correlation cutoff and support vector machine
(SVM). The correlation cutoff method measures the
correlation between representations of a TF and a
candidate TG. Pairs with a correlation value greater
than a certain cutoff are called true regulatory pairs.
A Pearson correlation coefficient was used as a measure-
ment of correlation. The correlation approach can be
applied to both the NR and KBR for a pair of genes. The
NR cutoff method uses the correlation between NRs of a
TF and a TG, while the KBR cutoff method uses the
correlation between KBRs. Receiver-operation-character-
istic (ROC) curves of cutoff methods are plotted by
changing cutoff thresholds. SVM uses an optimal
marginal classification, which builds the decision
boundary maximizing distance from the boundary to
the training samples of each class in the feature space
[21]. It has been shown to have good scalability to large
data sets with high accuracy [22]. We can use NR and
KBR to build a feature for SVM. The NR SVM method
builds a feature vector of a regulatory pair by con-
catenating the NRs of the TF and the TG. The procedure
for the KBR SVM approach is identical except for the use
of KBRs instead of NRs. The NR SVM method is the same
as used in Qian et al. [17]. ROC curves of SVM methods
are plotted by changing thresholds of prediction scores.
The prediction score of an SVM is defined as the distance
of a tested sample from the optimal decision boundary.
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Here, we use SVM-light [23], an open-source implemen-
tation of the SVM algorithm, with a radial kernel
function.

In order to build and evaluate predictors of cutoff and
SVM methods, the 3,043 pairs of transcriptional inter-
actions extracted from YPD served as the positive
regulatory set, and the negative training and test sets in
which the pairs have no regulatory interactions were
randomly selected from all possible TE-TG pairs under
the assumption that genome-wide regulatory relations
are sparse [16,17]. In order to reflect sparseness of true
regulatory relations, we chose negative sets ten times
larger than positive sets, as in Qian et al. [17]. In
addition, negative sets were generated using the dis-
tribution of positive sets so that the number of false
relations of a TF would be proportional to the number of
true relations of the TF.

The CLR and SEREND algorithm

Software implementations of the CLR and SEREND
algorithm were obtained from their supporting websites
[4,18]. The algorithms were applied to our yeast data
with default parameters. The SEREND algorithm was
performed without sequence motifs information for a
fair comparison, and the expression classifier scores were
used as the final prediction scores.

Results and discussion

Representation of gene expression using a

knowledge base

There have been many studies to infer new gene
regulations based on gene expression data alone. These
methods are based on examining the correlation in gene
expression pattern between a TF and a candidate TG
under the assumption that a TF and its regulated TGs will
be co-expressed and have higher correlation or richer
mutual information in expression [3,4]. Although this
model may fit reasonably well for a subset of known TFs
[3], we expect that it does not hold for many others.
Many TFs require complex post-translational modifica-
tions to switch on the transcription of TGs; this
activation process is often independent of the expression
level of the TF in the absence of a self regulatory loop.
Therefore, expression of a TF does not necessarily imply
activation and the transcription of its TGs.

To illustrate the challenge of inferring regulatory
relations with only co-expression patterns, we measure
correlation coefficients between expression levels of a TF
and its TG in a well-known collection of 643 microarrays
of yeast [20]. For the positive regulatory set, we collected
a set of 3,043 known regulatory pairs from the YPD
database, while the negative regulatory sets were
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randomly selected from all possible TF-TG pairs minus
the 3,043 positive pairs as described in Methods. As
shown in Figure 1A, the expression profile of a single TG
did not correlate well with its TF for the true positive
regulatory pairs from the knowledge base. Comparing
with the random negative pairs, the distribution of
correlation coefficients of the true regulatory pairs
showed a similar Gaussian-like curve and peak position,
despite of small shift. Although this is a naive measure-
ment, it clearly shows the difficulty to distinguish true
and false regulatory relations from gene expression data
alone.

The knowledge base of gene regulations provides
valuable additional information. For each of the
known TFs, there is a set of confidently identified TGs
that the TF regulates. We expect that TGs regulated by the
same TF are likely to share similar expression profiles. To
verify this, we measured correlation coefficients over the
same data set as in Figure 1A. For the true regulation set
from the knowledge base, a correlation coefficient is
calculated between the expression level of a TG and the
centroid of expression levels of the other TGs regulated
by the same TF. In contrast, for the random regulatory
pairs, a correlation coefficient is calculated between a
gene and the centroid of the known set of TGs regulated
by a randomly chosen TF. These two distributions were
distinct - the distribution of the true regulatory pairs
exhibited higher correlation values compared to the
random false pairs (Figure 1B). Therefore prior knowl-
edge of regulatory relationships provides us unique
characteristics of true regulatory pairs that are distin-
guishable from the false pairs. Here, to reduce the noise
of individual genes, we chose to use the correlation
between the centroid of the set of known co-regulated
genes and a candidate gene instead of individual gene
correlations.
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Distributions of correlation coefficients. (A)
Correlations of gene expressions between TFs and their
TGs. (B) Correlations between gene expressions of TGs and
the centroids of other TGs co-regulated by the same TFs in
the knowledge base.
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Improvements in predicting transcriptional regulations
using knowledge-based analysis

Next, we compare methods using either naive-represen-
tation (NR) with the microarray data alone or knowl-
edge-based-representation (KBR) that includes both the
microarray data and the collection of prior knowledge,
on the same gene expression data set as the previous
section. The KBR was designed to include both TG
expression terms which are expected to be dominant for
TFs with many known TGs, and TF expression which can
be informative for TFs with few or no known TGs. The
true and random regulatory sets in the previous section
were used as the positive and negative sets respectively,
and two-fold cross-validations was performed for all TFs
together. For the cross-validation, training and test sets
were randomly separated and mutually exclusive, and
the KBRs were encoded using information from training
sets only. To evaluate the impact of the knowledge base
driven analysis, we first used a simple correlation cutoff
classifier; that is, if the correlation between a representa-
tion of a TF and a candidate TG was larger than a certain
cutoff value, the regulatory pair was labeled a true
regulation, and otherwise it was labeled false. Predic-
tions with a knowledge base show better performance
than without a knowledge base (Figure 2A). At a 10%
false positive rate, the NR cutoff (prediction without a
knowledge base) corresponded to a 18% true positive
rate while the KBR cutoff (prediction with a knowledge
base) had a 48% true positive rate. In addition, a SVM
method utilizing known regulations in a knowledge
base to predict new regulations shows the best
performance, a 80% true positive rate at a 10% false
positive rate. This improvement is expected because
while the cutoff classifier only considers information
of co-regulated genes, the SVM classifier includes
additional information such as co-regulated genes and
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Figure 2

2-fold cross-validation performances of prediction
methods. (A) ROC curves of the regulatory predictions
using different methods with a knowledge base (KBR cutoff
and KBR SVM) and without a knowledge base(NR cutoff).
(B) ROC curves of the CLR algorithms with and without
prior knowledge, and the expression classifier of the
SEREND algorithm.
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co-regulating TFs as well as information about false
regulations.

To further evaluate the benefit of knowledge bases for
other previously established methods, the NR and KBR
were applied to the CLR algorithm [4]. The CLR
algorithm estimates a likelihood of the mutual informa-
tion score between a TF and a TG, and determines the
pair to be true or false by comparing the estimated
likelihood with its background distribution. In the
original CLR algorithm, the mutual information is
obtained from gene expression profiles of a TF and a
TG, which are the same as their NRs. By substituting NRs
to KBRs, the performance improvement gained by
incorporating prior knowledge can be measured for the
CLR algorithm. As before, KBRs were encoded with the
positive training set, and the performance was measured
over the test set. While the CLR algorithm with the NRs
showed reasonable predictive power for E. Coli, it did
not predict well for yeast, managing a 15% true positive
rate at a 10% false positive rate (Figure 2B). We suspect
that the complex regulatory mechanisms of eukaryotic
organisms can possibly induce such performance reduc-
tion. In contrast, the KBR CLR algorithm showed a much
better performance with a 42% true positive rate at the
same 10% false positive rate under the same conditions.
In addition, the KBR CLR had comparable performance
with a 50% true positive rate at 10% false positives of the
SEREND (SEmi-supervised REgulatory Network Disco-
verer) algorithm, which is a supervised approach using a
knowledge base that previously showed a significant
improvement over the NR CLR for E. coli [18]. These
results indicate that a knowledge base can help improve
the prediction power and accuracy for regulatory rela-
tions, and we found that the SVM method utilizing KBR
showed over all the best performance (80% true positive
rate at 10% false positives).

Important characteristics of knowledge bases

A knowledge base is a representation of our existing
understanding of biology; therefore, it is not complete.
Different knowledge bases often vary on the type of
original sources-direct vs. indirect evidence of regulation,
the comprehensiveness and the quality of the collec-
tions. Intuitively, direct, comprehensive and high quality
knowledge of regulation relationships are important
characteristics of a knowledge base.

To evaluate the directness of a knowledge base, we
compared the YPD database [5] and ChIP-chip data [7]
with p-value less than 0.0001. The YPD database
includes direct knowledge of regulations collected from
the literature, while ChIP-chip binding data provides
evidence of binding between a TF and a TG. Since the
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binding of a TF to the DNA of its TG is considered a
necessary but not sufficient step in transcriptional
activation, ChIP-chip data can be considered as indirect
knowledge of transcriptional regulations. We tested these
two types of prior knowledge using NR SVM. First, we
randomly chose two sets of 2,000 pairs among 3,043
YPD database pairs and 2,789 ChIP-chip binding pairs as
positive training sets. Among the rest of the 1,043 YPD
database pairs, we chose 996 pairs that are not included
in either of the two positive training sets as a positive
test set.

Negative training and test sets were generated according
to the distribution of the positive sets. The ROC curves of
the two knowledge bases show that the direct knowledge
base have better performance than the indirect one
(Figure 3A). Another possible explanation for the above
observation is that bindings of TFs to DNA were
measured in only few conditions, mainly in rich media
[7], while the YPD knowledge base has regulatory
information collected from vast number of different
experiments. Since the microarray expression dataset
from Stuart et al. [20] was collected from experiments
under various conditions, the ChIP-chip results from
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Figure 3

Performance comparison according to
characteristics of knowledge bases. ROC curves of true
and false positive rates for the analysis using (A) direct
(YPD) and indirect (ChlIP-chip) prior knowledge, (B)
different sizes of knowledge bases with KBR SVM (solid) and
KBR cutoff (dashed) methods, and (C) different qualities of
knowledge bases by adding different amount of false positives
to the knowledge base with KBR SVM (solid) and KBR cutoff
(dashed) methods. True positive rate is the ratio of samples
determined as true from the positive test set, and false
positive rate is that from the negative test set
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Harbison et al. [7] might not reflect the regulatory
relations well across all these experiments.

To evaluate the importance of the size of a knowledge
base, we tested KBR cutoff and KBR SVM on several sets
of knowledge of different sizes. Each algorithm was
applied to build classifiers trained using 1/2, 1/4, 1/8
and 1/16 of the knowledge base, and it was tested on the
rest of the knowledge base. As expected, the prediction
performance diminished as the size of the prior knowl-
edge decreases (Figure 3B). Since our KBR methods
explicitly utilized the averaged expression values of the
known TGs to reduce the noises and identify the
common signal of regulation, more comprehensive
information on the known regulatory relationships
lead to the improved sensitivity and accuracy of the
predictions.

We analyzed the prediction performance corresponding to
different knowledge base qualities by adding different
amount of artificial false positive regulatory relations to the
existing knowledge base. We built a positive training set
with a half of the knowledge base, true positives. We then
added random false positives of a half, equal and twice size
of the true positives to the positive training set. The other
half of knowledge base was used for a positive test set.
Negative training and test sets were generated as before. As
shown in Figure 3C, the predictions with less false positives
in the knowledge base demonstrated better performance
for both of KBR SVM and KBR cutoff methods. Since false
positives in the training set perturb the predictor and add
noise to the averaged expression values that we utilize here,
high quality knowledge bases have more advantages in the
inference of new regulatory pairs.

Genome-wide inferences of new regulatory relations
Finally, genome-wide predictions were performed to
identify candidate novel regulatory pairs. We used the
KBR SVM method that showed the best performance in
the cross-validation tests. The full YPD database served
as the positive training set, and the negative training set
was generated randomly. We tested all possible pairs of
523 TFs and 5,940 genes, and discovered 1,765
candidate regulatory relationship pairs (prediction
scores > 0.8). This cutoff threshold corresponds to
~0.01% of false positive rate in the cross-validation
tests. Among them, 572 pairs were found to be new
regulatory relations not previously included in the YPD
database. The re-discovery rate of known regulatory
relations was 39.3% (= 1,193/3,043) by selecting top
0.057% (= 1,765/523/5,940) of total candidates.

While these predicted relations can be verified using
individual experiments, the verification experiments are
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often difficult to conduct at a large scale. We therefore
evaluated the predicted regulatory pairs with an inde-
pendent source of high-throughput data, a well-known
ChIP-chip binding dataset [7]. Among 572 predicted
pairs, 259 pairs were tested in the ChIP-chip experiment,
and these pairs had a significantly lower p-value
distribution in binding than randomly selected pairs
(Figure 4A). Even though binding of protein to DNA
does not guarantee transcriptional activation, most of
the transcriptional regulatory processes are expected to
include binding. Therefore, lower p-values of the
predicted pairs imply that the predicted pairs have
higher chance to be verified as true regulatory relations.
12 predicted pairs with prediction scores larger than 0.8
and ChIP-chip binding p-values less than 0.01 are listed
in Table 1. Some of the predicted regulatory pairs are
indirectly supported by independent studies. For exam-
ple, the binding of IFH1 to the promoter position of
RPS22A was observed independently through high-
resolution ChIP [24], and GCN4 was reported to
contribute to the induction of ADE12 from microarray
experiments on wild-type and GNM4 mutant strains
[25]. We also noticed that not all the 259 pairs of
candidates had significant p-values in the ChIP experi-
ment, and we suspect that this is partially because the
predictions are based on gene expression data measured
under many different conditions together with accumu-
lated previous knowledge while the ChIP-chip experi-
ment used for comparison was mainly under rich media.
In addition, using the growth fitness dataset of homo-
zygous yeast gene deletions under chemical genomic
profiling [19], we examined the phenotypic correlations
of co-regulated TGs by the same TFs. As shown in
Figure 4B, the co-regulated genes had higher correlation
with each other in phenotypes compared with random
pairs. We suspect that the phenotypes of deletions of co-
regulated TGs tend to have higher correlations because
co-regulated TGs tend to have enriched similarity in

Table I: Genome-widely predicted regulatory pairs of TFs and
TGs. Listed are predicted pairs of which prediction scores are
larger than 0.8 and p-values of binding are less than 0.01

TFs TGs Scores P-values
YLR223C (IFHI) YJL190C (RPS22A) 1.2911 0.0070
YJRO60W (CBFI) YOR375C (GDHI) 1.2126 0.0001
YLR451W (LEU3) YOR202W (HIS3) 1.2027 < 0.0001
YDR207C (UME$) YJR048W (CYCI) 0.9489 0.0059
YELO09C (GCN4) YNL220W (ADEI2) 0.9472 0.0077
YLR223C (IFHI) YMR242C (RPL20A)  0.934] 0.0079
YLR403W (SFPI) YBRI89W (RPS9B) 0.8802 0.0050
YDR253C (MET32)  YPRI67C (METI6) 0.8625 < 0.0001
YBRO83W (TECI) YGRO32W (GSC2) 0.8542 0.0095
YDLO56W (MBPI) YIRO19C (MUCI) 0.8524 0.0006
YLR403W (SFPI) YGLO76C (RPL7A) 0.8429 0.0058
YGLO35C (MIGI) YGRO88W (CTTI) 0.8401 0.0091
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Figure 4
Validation of the genome-wide regulatory
predictions with external resources. (A) P-value
distributions of ChIP-chip binding dataset for predicted
regulatory pairs and randomly selected pairs. (B)
Correlation coefficient distributions in the growth fitness
dataset for known co-regulated TGs, predicted regulatory
pairs and random pairs. The three distributions shown in (B)
represent the correlation of growth fitness between a known
TG (gray), a predicted TG (solid black), and a randomly
selected non-TG vs. the centroid of the known TGs
of a TF (dashed black).

biological functions. To test this hypothesis for the 572
predicted pairs, we measured the correlation between
the fitness of a predicted TG and the fitness centroid of
the known TGs of its predicted TF, and compared the
distribution with randomly selected pairs. The predicted
pairs had significantly higher correlation than the
random pairs as previously known pairs (Figure 4B).
Rigorous determination controlled by 0.01% of false
positive rate can induce higher correlation of the
predicted pairs than known pairs. The above tests on
these independent experiment datasets suggest that the
predicted regulatory pairs can potentially be reasonable
candidates for follow-up biological verifications.

Conclusion

In this work, we show that a knowledge-based approach
significantly helps the characterization of true gene
transcriptional regulatory interactions from non-regula-
tory random pairs. The expression patterns between co-
regulated TGs were much more highly correlated
compared to random pairs. In addition, predictions of
transcriptional regulations using a knowledge-based
approach achieved significantly better performance
than using the high throughput genomic data alone.
We also examined the impact of several properties of the
knowledge base on prediction performance, and showed
that the sensitivity and specificity increase when using a
high-quality, comprehensive knowledge base with direct
regulatory information. Finally, we performed genome-
wide prediction over all possible TF-TG pairs and
determined 572 pairs as new candidate regulatory
relations. These predicted regulatory pairs have signifi-
cantly lower p-values in ChIP-chip binding dataset and
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higher correlation in growth fitness with previously
known TGs. Overall the results suggest that knowledge-
driven analysis significantly helps the interpretation of
high-throughput genomic data. Several efforts are under-
way to build high quality, comprehensive knowledge
bases from peer-reviewed publications that integrate
genomic, chemical and systemic functional information,
including BIND, Proteome, IPKB, KEGG, Reactome and
others. These databases will enable further development
of statistical and machine learning approaches for the
integrative analysis of high-throughput experimental
data, especially in the studies of higher organisms. We
will further evaluate applying our methods to these
studies.
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