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Abstract

Background: Analyzing interaction networks for functional characterization poses significant
challenges arising from the noisy, incomplete, and generic nature of both the interaction data as
well as functional annotation of molecules. Network-based methods focus on interacting molecules
(pairs or sets) occurring in close proximity to infer functional associations.

Results: In this paper we perform a formal comparative investigation of the relationship between
functional coherence and topological proximity in networks. We investigate the problem of
assessing the coherence of sets of biomolecules (or segments thereof) taking into account
functional specificity as well as the distribution of functional attributes across entity groups. We
also propose novel measures of topological proximity that are more robust to noisy and
incomplete interaction data.

Conclusion: We derive the following results in this paper: (i) there exists strong correlation
between functional similarity and topological proximity in various network abstractions, with
domain interaction networks (DDIs) demonstrating higher correlation than protein interaction
networks (PPIs); (ii) measures that quantify coherence among entire sets of proteins are superior
to aggregates of known pair-wise measures; and (iii) random-walk based measures of topological
proximity are better suited to existing interaction data. We validate our methods on diverse data,
including experimentally and computationally derived PPIs and DDIs, as well as on sets of known
biologically related groups of molecules.
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Background
Analysis of interaction data generated from high
throughput experiments takes a network-centric view of
functions of biological systems and the role of the
underlying components. Recent advances in this area
have focused on the development of computational
tools for network-based functional annotation [1],
identification of functionally coherent modules [2],
and relationship between network structure and function
[3,4], among others. Network proximity and connectiv-
ity are also shown to be effective in identifying proteins
that are implicated in similar phenotypes [5].

In this paper, we comprehensively investigate the
relationship between topological and functional mod-
ularity in the context of two network abstractions -
protein-protein interaction (PPI) and domain-domain
interaction (DDI) networks. Key to understanding the
relationship between network topology and functional
modularity are: (i) suitable measures for assessing the
functional coherence (or similarity) of a group of entities
with respect to each other, and (ii) measures for
quantifying the topological proximity in a network with
potential missing interactions and noise. To assess
functional coherence, canonical libraries of molecular
function, such as Gene Ontology [6], are typically used
[7]. Since annotations for different types of molecular
entities (e.g., proteins or domains) are derived in
different ways [8], they have different implications
with respect to their specificity and frequency distribu-
tions. Consequently, an important challenge in assess-
ment of functional coherence is the development of
measures that are robust to variations in distribution as
well as missing data. In recent work, we have shown that
information-theoretic measures that are specifically
designed to address these challenges are effective in
capturing the relationship between the functional
coherence and network proximity of pairs of proteins
[9]. In this paper, we build upon existing methods for
quantifying functional coherence and topological proxi-
mity through the following key results:

• We propose novel measures for assessing the
functional coherence of a group of molecules (in
contrast to pairs of molecules).
• We propose the use of information flow based
modeling of topological proximity and connectivity
in a network of interactions (in contrast to tradition-
ally used interaction counts or shortest paths).

We elaborate on these contributions below.

Functional coherence of a group of molecules
Traditional measures of functional coherence, including
our own prior results [9], have largely focused on pair-

wise distance measures. Generalizing from pair-wise
measures to coherence measures for sets of molecules
adds significant complexity. For example, in testing the
hypothesis that functional modularity is related to
connectivity in PPI networks, it is common to investigate
the functional purity of groups of proteins that induce
dense subgraphs in the network [10]. While these
enrichment-based methods have been widely used,
they provide common overrepresented GO terms in a
given set. They do not, however, provide a measure for
the homogeneity of underlying modules (sets). We show
that simple extensions of pair-wise measures to group
measures by averaging, taking the min, max, or other
such associative operations result in sub-optimal set-
coherence measures. We propose novel measures of
homogeneity of entire protein sets and demonstrate their
superiority over generalized pair-wise measures on
known groups of homogeneous complexes as compared
to a control of randomly generated protein sets.

Information flow based topological proximity
Topological information is used to identify functionally
related proteins using shortest paths or density of direct
interactions [1,5]. However, evidence suggests that
multiple alternate paths between functionally associated
proteins are often conserved through evolution, owing to
their contribution to robustness against perturbations, as
well as amplification of signals [11]. Consequently,
consideration of multiple paths between molecules in a
network of interactions is likely to be more effective in
capturing the functional association between these
molecules. Furthermore, consideration of alternate
paths may account for missing data and noise in PPI
networks [12]. There exist many methods for the
assessment of network proximity based on the multi-
plicity of paths between nodes, including effective
resistance [13], commute distance [14], and random
walk proximity [15]. In this paper, we adapt an
abstraction that models information flow in the cell
using random walks with restarts [16].

Methods
Several methods have been proposed for assessing
functional similarity of biological entities (genes, pro-
teins, domains) [17-19]. Since the functional categories
in which these entities are categorized are themselves
interrelated through a taxonomy (e.g., Gene Ontology),
measures for similarity must consider the underlying
taxonomy while comparing molecules in terms of their
functional annotation [20]. Various approaches take into
account different factors, including taxonomic distance,
specificity/generality (rank in hierarchy) of common
ancestors, and associated number of molecules for the
functional terms being compared (statistical significance
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or information content). Since most molecules are
associated with multiple functional terms, assessment
of functional similarity between two molecules poses the
additional challenge of evaluating the similarity between
two sets of terms, as opposed to a pair of terms. In [9], we
developed an information theoretic measure for com-
puting similarity of two sets of terms associated with a
pair of molecules. We show that our measure is superior
to other composite measures computed by applying
associative operators (average, max, etc.) to pairwise
term similarity measures.

In this paper, we generalize and extend our results to
quantify the functional coherence (or similarity) of a set
of biomolecules (as opposed to a pair). Since each
molecule corresponds to a set of annotations, the
problem is one of quantifying the coherence of a set of
sets of terms. A straightforward approach to this would
compute pairwise similarities of each pair of molecules
in the set and to aggregate them using associative
operators (min, max, average). Pairwise similarities
(similarity of two sets of annotations) may themselves
be computed using our information theoretic measure.
An alternate approach to the problem, proposed in this
paper, computes the coherence of the set of molecules
without computing intermediate pairwise similarity
scores. We show that the latter approach is strictly
superior to the former in quantifying the coherence of a
set of biomolecules. We validate this claim by applying
our proposed measure, along with several other currently
used measures to a test group of known functionally
related proteins. We also apply the measures to
randomly generated groups and identify measures that
induce the greatest separation between the test and
random groups.

Finally, in order to study the correlation between
functional coherence and topological proximity in net-
works, we also need a measure for topological proximity.
Traditional measures of topological proximity rely on
the shortest path between two nodes. While this measure
is more suited to well-curated and complete datasets, it is
susceptible to missing interactions and noise. A single
false positive or negative may lead to significant
(erroneous) perturbation in shortest-path based mea-
sures. Measures based on random walks with restart [16],
on the other hand, are more resilient to incomplete and
noisy data. We consider both classes of measures of
topological proximity, and evaluate their correlation
with various functional similarity measures for both
protein interaction (PPI) and domain interaction (DDI)
networks. We show that a combination of random-walk
based topological proximity and our similarity measure
([9]) yield the strongest correlation between network
proximity and functional coherence.

Concepts and ontologies
Let C = {ci|1 ≤ i ≤ N } be a finite partially ordered set of
concepts. In terms of Gene Ontology (GO), these
concepts represent the GO terms in the sub-ontologies
(i.e., molecular function, biological process, and cellular
component). Without loss of generality, we refer to
concepts as terms throughout this paper. Terms are
related to each other through is a and part of relation-
ships, such that ci Æ cj denotes ci is a/part of cj. Note that,
if ci Æ cj, then the molecules associated with ci are also
associated with cj, known as the true path rule. Based on
these relationships, we define a binary relation over C,
denoted by ≼. We say cj is an ancestor of ci, denoted by
ci ≼ cj if and only if either ci Æ cj, or for some ℓ ≥ 1, there
exist c Ckl

∈ for 1 ≤ ℓ ≤ 1 such that c c c ci k k kl l
→ →

+1 1
,

for 1 ≤ ℓ < l, and c ck j→ (cj is an ancestor of ci in GO
hierarchy). Two terms ci, cj are comparable, denoted by
ci ~ cj, if either cj ≼ ci or ci ≼ cj. If ci and cj are comparable,
then the shortest path between ci and cj is given by
L(ci, cj) = L(cj, ci) = ℓ + 1 for minimum such ℓ.

We denote the set of ancestors of a term ci by Ai = {ck Œ
C|ci ≼ ck}. Note that, not all ancestors of a term are
comparable, since the GO hierarchy is a directed acyclic
graph, as opposed to a tree. We represent the root term
of GO with a terminal concept r, such that ci ≼ r ∀ci Œ C.

Semantic similarity of terms
Semantic similarity measures quantify the similarity
between two terms based on the underlying taxonomical
relationships. The information content based measure of
semantic similarity quantifies similarity between a pair
of terms by taking into account the distribution of terms
among molecules. Specifically, it rewards infrequent
similar terms, over those that are frequent. Let Gc be the
set of molecules associated with term c in the available
database, with Gr being the set of all molecules. The
information content of a term is defined as I(c) = - log2
(|Gc|/|Gr|) [20]. Clearly, I(r) = 0, and as a consequence of
the true path rule, I(cj) ≥ I(ci) for cj ≼ ci. Then, the
semantic similarity between two terms is defined as

δ λI i j
c A A

i jc c I c I c c
i j

( , ) max ( ) ( ( , ))= =
∈ ∩ (1)

Here, λ( , ) argmax ( )c c I ci j c A Ai j
= ∈ ∩ is said to be the

minimum common ancestor of ci and cj.

Observe that this measure does not take into account
the specificity of terms with identical common
ancestors. This problem can be alleviated by normal-
izing the similarity between two terms by the
self-similarities of the terms being compared, e.g.,

by δ δJC i jc c
I ci c j I ci I c j

( , ) ( , ) ( ) ( )= − + +
1

1 2 [21]. Note, this
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measure has a well defined maximum of 1 and offer
bounded interpretation (ranging from 0 to 1) of
Resnik’s metric. We now generalize these term-similar-
ity measures to set-similarity.

Functional similarity of molecules
Biomolecules are generally associated with multiple
molecular functions and often involved in multiple
processes. Consequently annotations of molecules cor-
respond to sets of terms, as opposed to individual terms.
While assessing the similarity of sets of terms, we assume
that the sets are non-redundant, i.e., each set consists of
terms that are not comparable. This can be easily
enforced by ensuring that each branch in the hierarchy
is represented by at most one term in each set. In GO,
this involves considering only the most specific annotations
associated with a gene, which provides a non-redundant
representation of functional annotation. In this repre-
sentation, the association between the gene and the
ancestors of the most specific term is implied by the true
path rule.

An important challenge in the assessment of the
functional coherence of sets is that these sets are often
incomplete (that is, for many molecules, some of their
functions are unknown). Therefore, a reliable measure is
one that rewards the abundance of similar terms in the
terms, but does not penalize existence of unrelated terms
in one of the sets, since the relation between these terms
and the other set may be currently unknown. Simple
associative measures that aggregate the similarity of pairs
of terms in the two terms, such as average (rA) [17],
maximum (rM) [22], or average of maximums (rH) [18]
do not satisfy these properties [9].

Motivated by these considerations, in prior work, we
extend the notion of minimum common ancestors to
sets of terms, and generalize the concept of information
content from a single term to a set of terms [9]. Let
Λ( , ) ( , ),S S c ci j c S c S k lk i l j

= ∈ ∈ λ be the minimum common
ancestor set of term sets Si and Sj, and ⊔ denote a
generalized union operator that preserves non-redun-
dancy by keeping the most specific terms. The similarity
between two term sets is defined as the information
content of the set of minimum common ancestors, i.e.,

ρ I i j i jS S I S S
G Si S j

Gr
( , ) ( ( , )) log

( , )
,= = −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Λ
Λ

2 (2)

where G S Si jΛ( , ) is the set of molecules that are associated
with all terms in the set Λ(Si, Sj). Note that rI also needs
to be normalized with respect to self similarities, i.e.,
rJC = 1/(rI(Si, Si) + rI(Sj, Sj) - 2rI(Si, Sj) + 1).

Functional coherence of modules
Let ℛ be a set of n molecular entities (genes, proteins,
domains), with each entity being associated with a set of
terms, i.e., ℛ = {S1, S2, ..., Sn}. We aim to develop a
measure s(ℛ) to assess the functional coherence of this
set, such that a larger s indicates more semantic
similarity between the terms in sets S1, S2, ..., and Sn.
Without loss of generality, we call ℛ a module, since the
objective here can also be considered as assessing the
modularity of ℛ. We consider various measures to assess
the functional coherence of a module, which are
discussed below. In order to illustrate each measure,
we use a running example based on the ontology shown
in Figure 1. In the figure, let ℛ1 = {S1, S2, S3, S4} be a
module that can be interpreted as a complex composed
of two sub-complexes ℛ2 = {S1, S2, S3} (with the shared
term c4) and ℛ3 = {S3, S4} (with the shared term c6), in
which S3 "bridges” the two sub-complexes ℛ2 and ℛ3.

Average of pairwise information content
A straightforward way of computing set coherence is to
compute the average of the pairwise n(n - 1)/2 set
similarity scores [19,23]:

σ ρA i j

j j n
n n

S S( )
( ) /

( , ).R =
−

≤ ≤ ≤
∑1

1 2
1

(3)

In our running example, the average pairwise information
content of the molecules in complex ℛ1 is given by
sA(ℛ1) = (I(c4) + I(c4)/2 + 0 + I(c4)/2 + 0 + I(c6)/4)/6 = 3/8,

Figure 1
Sample ontology. S1 = {c4}, S2 = {c4}, S3 = {c4, c6}, S4 =
{c1, c6}, S5 = {c1}, S6 = {c6}. Sample ontology and annotations.
Each node of the hierarchy represents a term, each set
represents a protein.
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while that of sub-complexℛ2 is given bysA(ℛ2) = (I(c4) + I
(c4)/2 + I(c4)/2)/3 = 2/3, given that I(c4) = I(c6) = -log2
(3/6) = 1. Bridged complexes get lower score than
specialized complexes due to differences in sub-complex
annotations.

Generalized information content
It is possible to extend the notion of the minimum
common ancestor of pairs of terms to tuples of terms as
λ( , , ) argmax ( )c c I ci i c An k

n
ik

1 1
… ∩= ∈ =

. In the other words,
the minimum common ancestor of a set of n terms is
defined as the most specific among the terms that are
common ancestors of all of n terms in the set. Then, for
each n-tuple c1 Œ S1, c2 Œ S2, ..., and cn Œ Sn, the
functional coherence of these terms can be quantified as
I c ci in
( ( , , ))λ

1
… . Consequently, the minimum common

ancestor set of S1, S2, ..., Sncan be computed as

Λ( , , , ) ( , , , ),
,

S S S c c cn
c S j n

i i i

i j j

n1 2
1

1 2
… …=

∈ ≤ ≤

λ

leading to a generalization of the information content
based measure:

σ I nI S S
G Si S j

Gr
( ) ( ( , , )) log

( , , )
.R = = −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Λ
Λ

1 2…
…

(4)

In our running example, since l(c4, c1) = l(c4, c6) = l(c4,
c1, c6) = r, we have Λ(ℛ1) = {r}, thus the generalized
information content of complex ℛ1 is sI(ℛ1) = I(r) = 0.
On the other hand, since Λ(ℛ2) = {c4}, we have
sI(ℛ2) = I(c4). As illustrated by this example, sI is a
rather conservative measure of functional coherence and
it only rewards specialized modules in which all
molecules share very similar functions.

Graph information content
We extend the graph information content measure
proposed by Pesquita et al. [24]. The idea behind this
approach is that, if a group of molecules are coherent,
then the information content of the DAG induced by the
intersection of ancestors is close to the information
content of the DAG induced by the union of ancestors.
In other words, defining Ai c S ci

A= ∈∪ as the ancestor set
Si, graph information content of set ℛ is defined as

σ G

I cc i
I cc i

( )
( )

( )
.R A

A
= ∈∑

∈∑
∩

∪
(5)

Observe that, if all molecules are annotated with the
same set of terms, sG(ℛ) would be equal to one, and zero

if they have no common terms. Similar to sI, a drawback
of this measure is its sensitivity to outliers; that is, if a
single molecule in the set is sufficiently functionally
different it has a significant impact on the score. Indeed,
in our running example, we have sG(ℛ1) = I(r) = 0, while
sG(ℛ2) = (I(c4) + I(c2))/(I(c4) + I(c2) + I(c6) + I(c3)) = 1/2,
given that I(c2) = I(c3) = -log2 (3/6) = 1.

Weighted information content
Complexes are functionally cohesive modules, but they
are often composed of sub-complexes, each performing a
specific part of the general function of the complex [25].
However, as illustrated by our running example, general-
ized information content (sI) and graph information
content (sG) require all molecules to be functionally
coherent with each other for the module to be
considered coherent. In order to provide a more relaxed,
and biologically motivated measure of functional
coherence, we consider shared functionality between all
combinations of molecules and weigh the information
content of shared functionality by the number of
molecules that contribute to the shared functionality.

Specifically, let ′ =
≤ ≤ ≠

A A Ai i jj n i j
\

,1∪ be the set of terms

in the ancestor set of Si that are not shared with any other
molecule inℛ. Then, weighted information content of set
ℛ is defined as the ratio of the information content of all
terms that are shared in at least two molecules to the
information content of all terms associated with at least
one molecule in the set; that is:

σW

I c
c ii n

I c
c ii n

( )

( )

( )
R A

A

= − ∈ ′
∑

≤ ≤
∑

∈
∑

≤ ≤
∑

1
1

1

(6)

In other words, we consider all the partial DAGs (A)
generated by each Si in ℛ. All the terms that are part of
overlapping DAG correspond to shared information
among those proteins. The numerator in the above
equation corresponds to the information content of the
overlapping DAG, while the denominator normalizes
that score with total information of the combined DAG.
In our running example, we have

sW (ℛ1) = (3I(c4) + 3I(c2) + 2I(c6) + 2I(c3))/(3I(c4) + 3I
(c2) + 2I(c6) + 2I(c3) + I(c1)) = 0.86 and sW (ℛ2) = (3I
(c4) + 3I(c2))/(3I(c4) + 3I(c2) + I(c6) + I(c3)) = 3/4, given
that I(c1) = - log2 (2/6) ≈ 1.6 Since members of the
module ℛ1 share all functions other than c1, this
measure captures the coherence of the bridged module
better than other methods. This method only penalizes
for functions which are not shared by a member with rest
of the module.
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Post-processing coherence scores
We now discuss how coherence scores are processed to
make them comparable against each other for different
module sizes and across various sub-ontologies.

Combination of sub-ontology scores
The scores discussed above can be based on any of the
three sub-ontologies of GO. Since cellular component
annotations are sparser than annotations of biological
process and molecular function, we use the method
proposed by Schlicker et al. [26]. For pairs of molecules,
we combine the two coherence scores obtained from
biological process and molecular function ontologies as:

ρ ρ

ρ

ρ

ρ
( )

( )

max ( )

( )

max ( )
C

BP

BP

MF

MF
=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤
1
2

2 2

⎦⎦

⎥
⎥
⎥
.

where max r(BP) and max r(MF) are the maximum
possible scores for biological process and molecular
function, respectively. Module coherence scores (s) are
based only on biological process ontology.

Accounting for module size
In order to compare modules of different sizes, we
normalize the functional coherence scores based on a
background distribution that characterizes the coherence
of modules of identical size. Specifically, for a given
module ℛ, we generate a sufficiently large number of
random modules of size |ℛ| and compute the functional
coherence of each of these modules. Then, letting σ (| |)R

denote the average functional coherence of these
modules, we compute the size-adjusted coherence score
of ℛ as σ σ σ( ) ( ) / (| |)R R R= .

Index of detectability
In order to compare various measures of functional
coherence, we assemble a positive (test) group and a
randomly selected (control) group of proteins. The
positive set comprises of proteins that are known to be
functionally related based on prior biological knowledge
(i.e., they are known to exist in complexes and perform
related functions). Clearly, if we plot coherence values for
samples from the test set and from the control set, we
expect to see two distinct distributions - samples from the
test group are expected to have higher coherence scores
than those from the control group. The separation of the
two distributions induced by each method indicates the
fitness of the measure in quantifying coherence in sample
sets, in terms of distinguishing coherent and arbitrary
sets. This separation is quantified as:

d
meant T t meant C t

stdt T t stdt C

( )
( ( )) ( ( ))

(( ( ( ))) ( (
σ σ σ

σ σ
= ∈ − ∈

∈ + ∈
2 (( ))) ) /

,
t 2 2

which is proportional to the area under the binormal
ROC curve [27]. Here, T and C denote the sets of test and
control modules, respectively.

Measure for topological proximity
The most commonly used measure of topological
proximity is graph distance, where the distance between
a pair of nodes in a connected graph is defined as the
length of the shortest path between them. In the context
of biological networks, there are several drawbacks to
this measure. It is particularly susceptible to missing or
incorrect data - i.e., a single missing edge may reduce
proximity significantly, alternately, a single false edge
may increase proximity incorrectly [28]. Furthermore,
this measure does not take into account the global
structure and connectedness of the graph, with alternate
paths between a pair of nodes.

Nodes connected to each other via disjoint paths are
likely to be functionally closer than nodes that are
connected via a single path. Indeed, evidence suggests
that multiple alternate paths between functionally
associated proteins are often conserved through evolu-
tion, owing to their contribution to robustness against
perturbations, as well as amplification of signals [11].

To alleviate these drawbacks, we consider an alternate
measure that captures the multi-faceted relationship
between a pair of nodes [16]. This measure uses a
random walk with periodic restarts to estimate the
affinity between pairs of nodes. In this model, the
random walk is initiated at node i, with neighbor
transition probability proportional to edge weight, and
at each step, the walk returns to source node i with
probability c. The proximity of node j to node i is defined
as the relative amount of time spent at node j by such an
infinite random walk. It can be shown that the proximity
of all nodes to node j can be computed iteratively as

r c r c ei
t

i
t

i
( ) ( ) ( ) .+ = + −1 1W

Here, W is the stochastic matrix derived from the
adjacency matrix of the network, ei is the restart vector
with e ji( ) = 1 if j = i and 0 otherwise, and r ei i

( )0 = .
Then, the proximity of node j to node i is given by
lim ( )( )

t i
tr j→∞ . Repeating this procedure for all proteins,

we obtain a matrix of network proximity scores for all
pairs of proteins. Note, however, that this measure of
proximity is not symmetric (proximity of j to i is not
necessarily equal to the proximity of i to j). Therefore, we
take the average of the two proximity values to compute
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the proximity between a pair of proteins. Using the
proposed measures of functional coherence and the
random-walk based measure for topological proximity,
we quantify the relationship between topological proxi-
mity and functional coherence by computing the
correlation of the resulting matrices.

Materials
We obtain protein interaction data for S. cerevisiae and
S. pombe, from the BioGRID database [29] version
2.0.51. We filter the dataset to obtain a set of physical
interactions between proteins, i.e., genetic interactions
are removed based on experiment systems (e.g., knock-
out experiments) mentioned on the BioGRID website.
Integr8 [30] is used to map the proteins in the
interaction dataset to their Uniprot names, keeping
only those proteins that we can map to a Gene Ontology
term using Integr8.

We obtain domain interaction data from the DOMINE
database [31] version 1.1. This dataset is composed of
known, as well as predicted domain interactions. Based
on the source and quality of the data, we partition this
dataset. Struct interactions are inferred from PDB entries
of protein complexes and are collected from iPfam and
3did. Comp-2 interactions are predicted by at least two
computational methods that infer domain interactions
from protein interaction networks using techniques such
as maximum likelihood estimation or from co-evolution
of conserved sites in protein sequences. HC+MC inter-
actions consists of high and medium confidence inter-
actions (for details, please refer to [31]).

To test the functional coherence of sets, we obtain
positive and random cases from GRIP [32]. GRIP
generates positive cases from MIPS CYGD complex
catalogue [33] by picking sets from known complexes.
For wildtype cases, GRIP selects proteins at random. We
generate a total of 16 datasets of which eight are made
up of positive cases and eight are random. Each set
consists 2000 sets of proteins (complexes), ranging from
four to eleven proteins each.

Gene Ontology Annotation (GOA) [34] release 47.0
dated 2009/03/09 is used to obtain annotation informa-
tion for Uniprot proteins. GOA combines manual and
automated inferences of gene product annotations. The
mapping of Pfam-A domains to their Gene Ontology
functions is obtained from pfam2go http://www.gen-
eontology.org/external2go/pfam2go released on 2009/
03/04. We use only the Biological Process and Molecular
Function sub-ontologies of Gene Ontology [6] version
1.550 for evaluation, since the coverage for the Cellular
Component sub-ontology is relatively sparse.

Results and discussion
We first compare the behavior of the molecular
similarity metrics by examining their correlation with
different topological proximity measures, and follow
with a detailed look at their behavior on comprehensive
PPI and DDI data. We then investigate the differences
between PPI and DDI networks in terms of the relation-
ship between network proximity and functional similar-
ity using our generalized information content based
metric. Finally we compare various measures for
computing the functional coherence of sets. To evaluate
similarity vis-a-vis proximity, we compute, for every pair
of nodes in a network, the shortest distance between
them, proximity for a given value of c, and various
semantic similarity measures. Using these, we compute
correlation of topological proximity metrics and func-
tional similarity measures. As in [9] we normalize raw
similarity scores to obtain a mean similarity score of zero
and standard deviation of one. We create groups of pairs
based on their topological proximity and compute
average semantic similarity for each group.

Topological proximity and semantic similarity measures
We first evaluate the proximity measure based on
random walks. Since the parameter c can be varied to
perturb the affinity between nodes, we first estimate an
optimal value for c. We compute the proximity matrix
for various values of c, ranging from 0.1 to 0.9, for the
domain network HC+MC. We also compute the semantic
similarity scores for different metrics - average of
information content (IC) based term similarity (rA/δI),
average of self-normalized IC based term similarity (rA/
δJC), IC based molecule similarity (rI), and self-normal-
ized IC based molecule similarity (rJC). We compute the
correlation between these computed functional similar-
ity scores and topological proximity. Semantic similarity
is computed for the biological process (BP) and molecular
function (MF) ontology separately, as well as by
combining the two scores.

As evident in Figure 2(a), for c = 0.3, we obtain the best
correlation between the proximity matrix and any
semantic similarity metric using combined BP and MF
ontology. For further analyses, we use this value (c =
0.3) to compute the proximity matrix. In this network
we also note that topological proximity (c = 0.3) has
much better correlation with functional similarity than
shortest path, for all similarity metrics. This validates
our proposed use of random-walk based topological
proximity measure. Indeed, this behavior follows our
hypothesis that since proximity takes into account all
paths from one node to another, two nodes connected
in multiple ways are expected to be more functionally
similar.
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In Figure 2(b) we plot the correlation of topological
proximity and semantic similarity measures using BP,
MF and both ontologies. BP offers slightly better
correlation than MF. In general, MF corresponds to a
lower level property of a molecule directly related to its
structure. BP is a higher level construct, related to the
wider neighborhood in the network. Hence interacting
molecules are more likely to belong to the same
processes even if they have different functions. Finally
the correlation obtained by combining the two ontolo-
gies is higher than taking them separately.

Topological proximity and functional
similarity in networks
Using the measure rJC by combining BP and MF
ontology, we compare the relationship between

functional similarity, random walk based network
proximity (Figure 3a), and network distance
(Figure 3b). We plot the normalized average semantic
similarity, as in the previous case, for the PPI and DDI
networks for various groupings of proximity values and
shortest path distances. Each bin in Figure 3a is adjusted
such that the number of pairs in each bin in Figure 3a is
approximately equal to that in Figure 3b. As evident in
the figure, the larger the proximity (between a pair of
nodes) the (more) similar their functions. Conversely,
lesser the distance between a pair of nodes, higher their
similarity. Larger the slope between the groupings the
better the measure performs (or dataset is) in grouping
similar functioned molecules together. For both proxi-
mity measures, we find that DDIs have better functional
similarity than PPIs, as also noted in [9]. Further, it is

Figure 2
Comparing topological metrics. Comparison of different network distance measures in terms of their behavior with
respect to semantic similarity metrics in HC+MC domain network, using the (a) for various values of c and shortest path (b)
effect of ontologies.

Figure 3
Comparing PPIs and DDIs. Comparison of various networks with respect to the relation between semantic similarity and
(a) network proximity and (b) network distance.
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apparent that the relationship between functional
similarity and topological proximity is stronger in
computationally inferred DDI networks than that in
PPI networks. Among the PPI networks, S. cerevisiae,
which is the most completely annotated and studied, we
observe stronger correlation between functional similar-
ity and both proximity measures, compared to other
PPIs.

Correlation of proximity measures and similarity in
Figure 2a provides comparison of the curves in Figures 3a
and 3b. Further comparison of Figures 3a and 3b indicates
that the slopes of the curves are are generally higher for
random walk based proximity, as compared to shortest
path. Again, since proximity binds two nodes not just on
topological distance but also on number of paths in
between, only strongly correlated nodes have higher
proximity values. These observations suggest that network
proximity based on random walks is likely to be more
relevant to, hence indicative of, functional coherence and
modularity.

Comparing measures for sets
We evaluate coherence measures for sets using index of
detectability on sets with (known) functionally corre-
lated protein and sets of randomly selected proteins. We
compute functional coherence using the following
measures: average of pairwise information content
(using term sA/rA/δI and molecule sA/rI based similar-
ity), Generalized Information Content (sI), Extended
graph information content (sG), and Weighted informa-
tion content (sW). As we observe in the previous section,
since biological processes span wider neighborhoods,
they are more likely to be shared in a module. For this
reason, we compute the coherence score using only the
biological process ontology. As the index of detectability
is a measure of significance, we can plot a curve
indicating the threshold corresponding to p-value < 0.05.

Figure 4 shows the index of detectability for various
measures as the size of modules is varied from 4 to 11.
We note that average of pairwise similarity based on
molecule IC performs best from small modules, and that
its performance remains steady as module size increases.
Extended graph information content performs the worst
and its performance decreases drastically as module size
increases. As the module size increases, we expect the
complex to be composed of sub-complexes with specific
function, while the overall functionally shared among all
molecules in this complex may be general. We see
similar behavior in the generalized information content
measure. The weighted information content based
measure demonstrates improved performance as set
size increases. This is because it can detect all shared

functionality among sub-complexes that are parts of the
entire complex, and have overlaps or bridges among
them to carry out the biological tasks. Figure 4 also
displays a curve indicating the threshold on index of
detectability that corresponds to a statistical significance
of p < 0.05 (according to normal distribution). This curve
shows that only the weighted information content and
pairwise molecule based similarity metric deliver sig-
nificant performance in distinguishing known complexes
and random sets of genes (p < 0.05), and the
performance of the proposed measure increases with
increasing complex size.

Conclusion
We draw the following conclusions from our study:
(i) our proposed measure of functional coherence of sets
of entities (proteins, domains) is superior to other
existing measures, (ii) we comprehensively study the
relationship between functional coherence and topolo-
gical proximity using suitable measures and derive
formal conclusions for process- and function- based
annotations, and (iii) we use our measures to study a
range of PPIs and DDIs and establish the suitability of
these abstractions to various kinds of analyses.
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