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Abstract

Background: Proteins show a great variety of 3D conformations, which can be used to infer
their evolutionary relationship and to classify them into more general groups; therefore protein
structure alignment algorithms are very helpful for protein biologists. However, an accurate
alignment algorithm itself may be insufficient for effective discovering of structural relationships
among tens of thousands of proteins. Due to the exponentially increasing amount of protein
structural data, a fast and accurate structure alignment tool is necessary to access protein
classification and protein similarity search; however, the complexity of current alignment
algorithms are usually too high to make a fully alignment-based classification and search practical.

Results: We have developed an efficient protein pairwise alignment algorithm and applied it to
our protein search tool, which aligns a query protein structure in the pairwise manner with all
protein structures in the Protein Data Bank (PDB) to output similar protein structures. The
algorithm can align hundreds of pairs of protein structures in one second. Given a protein
structure, the tool efficiently discovers similar structures from tens of thousands of structures
stored in the PDB always in 2 minutes in a single machine and 20 seconds in our cluster of
6 machines. The algorithm has been fully implemented and is accessible online at our webserver,
which is supported by a cluster of computers.

Conclusion: Our algorithm can work out hundreds of pairs of protein alignments in one second.
Therefore, it is very suitable for protein search. Our experimental results show that it is more
accurate than other well known protein search systems in finding proteins which are structurally
similar at SCOP family and superfamily levels, and its speed is also competitive with those systems.
In terms of the pairwise alignment performance, it is as good as some well known alignment
algorithms.
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Background
Proteins show a great variety of 3D conformations,
which are necessary to support their diverse functional
roles. Protein sequences and structures have close
relationship with their biological functions, while
protein structures reveal more evolutionary information
than protein sequences do, since the structure of a
protein changes more slowly in the evolution than its
sequence does. Also, researchers frequently find that
proteins with low sequential similarity are structurally
homogenous. Therefore it is particularly important to
discover the structural similarity/dissimilarity among
different proteins. The research of protein 3D structure
similarity provides fundamental and very helpful tools
for many biological research topics, such as predicting
the functions of newly discovered proteins from the
functions of known similar protein structures, identify-
ing protein families with common evolutionary origins,
and understanding the variations among different classes
of proteins.

Protein structures can be determined via experimental
techniques such as X-ray crystallography, Nuclear Mag-
netic Resonance (NMR) spectroscopy, and even cryo-
electron microscopy. Due to these techniques, the
number of proteins discovered by biologists has
increased dramatically over the last 30 years. The rapid
growth of the PDB (see Figure 2a of [1] for an illustration
of the PDB growth rate from 1970’s to the year 2005)
necessitates the development of efficient and accurate
protein structure comparison and search algorithms and
automatic software tools.

In order to compare the structural similarity between
proteins, current protein structure alignment algorithms
(e.g. [2-19]) usually try to align the Ca atoms in protein
backbones. An alignment is characterized by (1) how
many atoms are matched, (2) where their positions are,
and (3) how well they are matched. (1) and (2) are
available once an alignment is determined. For (3), a
transformation based alignment algorithm usually cal-
culates RMSD, namely, the root mean square distance
between aligned (and transformed) Ca atoms in the
structures. Although it has been studied for over 30
years, the protein structure alignment problem is far
from being well resolved. New approaches and improve-
ments to existing approaches are frequently proposed
(see [20-23] for some recent works). Moreover, many
questions are still under active discussions.

Protein structural similarity can be used to infer
evolutionary relationship between proteins and to
classify protein structures into more general groups;
therefore a good protein structure alignment algorithm is

very helpful for protein biologists. However, a good
alignment algorithm itself may be insufficient for
effective discovering of structural relationships among
tens of thousands of proteins.

Protein structure query (e.g. [10,12,13,24-36]) aims to
find similar structures in a protein dataset according to a
given query structure. Due to the large size of protein
data repositories like the PDB, protein structure query
requires a very fast structure alignment tool; however,
the complexity of current alignment algorithms are
usually too high to make a fully alignment-based search
practical. For some proteins, it may take hours to days
for protein structure search engines like CE [12] and
DALI [37] to return a search result; a fast and accurate
protein structure query tool which enables real-time
structure searching in a large dataset is still in need. To
improve the search speed, in recent years many methods
have been designed to reduce the query time. Baker and
Dauter (2004) developed SSM [8] which uses Secondary
Structure Match for the pairwise structure comparison. In
addition, various linear encoding methods have been
applied to protein search systems. For instance, 3D-
BLAST [33] developed by Yang and Tung (2006), can
improve the comparison speed thousands of times as the
speed of CE and DALI. Similar methods include
ProtDex2 [35], Sarst [31], and TopScan [36]. These
methods improve the time performance greatly. How-
ever, when being compared with pairwise alignment
methods, they have weakness in accuracy. In [34] we
have developed a protein structure query algorithm and
tool to find similar protein structures in the PDB for any
given structure. With a combination of geometric filter
and 3D structure alignment, given a query protein, the
algorithm can find proteins whose structures are overall
similar with the query structure in the PDB in a few
minutes. The geometric filter can exclude dissimilar
proteins efficiently, and reduce a lot the number of times
of pairwise alignments. On the negative side, it misses
some significant proteins whose structures are partially
similar with the given protein.

To further improve the speed and accuracy of our protein
structure query tool, in this paper we propose a very fast
protein structure alignment algorithm, which is suitable
to do pairwise 3D alignment with all protein structure
representatives in the PDB. It can find similar proteins in
the PDB (of more than 130,000 protein chains) in a
short time, and avoid missing similar structures. In our
experiments, some exciting results have been observed
when comparing our query tool with other well known
protein search engines. The experimental results show
that our tool is more accurate than other systems such as
CE [12], Dali [37], and SSM [8] in finding proteins that
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are structurally similar to the query protein, and its speed
is also competitive with them.

Results and discussion
In this section, we show the experimental results for an
implementation of our algorithm and its comparisons
with other well known similar systems which are
accessible online. The quality evaluation of protein
alignment algorithm is based on its alignment length
and RMSD value. The quality evaluation of protein
search tool is according to its precision, recall, and query
speed.

Evaluation of the alignment results
There is no general standard for analyzing and compar-
ing the results of different alignment algorithms, because
each method uses different alignment measures. Besides
the two basic measures: alignment length and RMSD
value, some methods also calculate a native score for
their alignment results. For instances, CE and Dali use
different kinds of Z-scores as their native score. SSM has
the

Q-score =
+ × ×

Nmat
RMSD

N N

2

1
3

2
1 2[ ( ) ]

,

where Nmat is the number of matched pairs of Ca atoms,
N1 is the number of Ca atoms in the first protein, and N2

is the number of Ca atoms in the second protein. The
Q-score considers both alignment length and RMSD
value when measuring the alignment results. Subbiah
proposed a geometric match measure,

SASk = RMSD Nmat
k( / ) ,100

in [38]. As shown by its definition, SASk also considers
both alignment length and RMSD value. Lower SASk
means better alignment result and k is the degree to
which the score favors. A smaller k can be used when
longer alignment length is preferred and a bigger k is for
smaller RMSD value. Here we have collected 224
alignment cases and used Q-score and SASk to test the
performance of our algorithm. The test cases were
originally proposed by various papers for various testing

purposes. A list file available on our website shows all
the 224 cases. They include No. 1 - No. 20 (see Table III
in [12]), No. 21 - No. 88 (see Table I in [24]), No. 89
(see Tables I and II in [12]), No. 90 - No. 92 (supple-
ment to Table III in [12]), No. 93 (see Figure 5 in
[12]), No. 94 - No. 101 (see Table IV in [12]), No. 102 -
No. 111 (see Table V in [12]), No. 112 - No. 120
(supplement to Table V in [12]), No. 121 - No. 124 (see
Table VII in [12]), No. 125 - No. 143 (see Table 1 in
[11]), No. 144 - No. 183 (see Table 1 in [17]) and No.
184 - No. 224 (see Table 2 in [17]). We compare our
alignment results with Dali, CE and SSM. In each test
case, different alignment algorithms have different
results. CE and Dali always get more aligned pairs than
those of our algorithm and SSM, but their accuracy is
relatively lower (having larger RMSD value). So using
merely aligned pairs or RMSD value as the criterion to
measure the performance of alignment algorithm makes
no sense. Therefore, we calculate Q-score and SASk for
the alignment results of all the methods and compare the
alignment results in terms of Q-score Difference and
Average SASk. The Q-score Difference is calculated by
(Qscore_Ours - Qscore_X) where X is Dali, CE or SSM. And we
use k = 1, 2 and 3 for the Average SASk to analyze the
quality of all the four methods. It should be mentioned
that our method can output sequential alignments and
non-sequential alignments, thus we compare both of
them with other methods. We call the sequential method
SPSA and the non-sequential method NPSA for short.

Discussion on the alignment results
Table 1 shows some statistical data based on the
experimental results. Compared with Dali, CE and
SSM, our algorithm has smaller average RMSD, and its
average alignment length is longer than that of SSM, but
shorter than that of CE and Dali. Its average SASk is
always smaller than other three algorithms, no matter k =
1, 2 or 3. A lower SASk score indicates a better alignment.
To further test our algorithm, we compare it with others
by Q-score. Figure 1 reflects the Q-score Difference
between our algorithm and others respectively. A black
area below X-axis indicates that the Q-score of our
algorithm is lower than that of the compared method.
Since in each graph the upper part of the whole black
area is always larger than or equal to the lower part, it is

Table 1: Results of multiple alignment algorithms. Comparison of the average alignment length, RMSD and SASk

Dali CE SSM SPSA NPSA

Average alignment length 130.43 132.82 117.78 119.20 122.65
Average RMSD 2.78 2.83 2.37 2.23 2.30

Average SAS1 2.96 3.08 2.76 2.62 2.48
Average SAS2 3.89 3.60 3.92 3.43 3.25
Average SAS3 6.67 5.69 6.84 5.60 5.19
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clear that our alignment algorithm is comparable to
other well known algorithms. It is worth mentioning
that in most test cases, SSM and our method always give
alignment results with small RMSD value and shorter
alignment length, while CE and Dali always find more
matched pairs but with larger RMSD value. So if more
matched pairs are desirable, Dali and CE are good
alignment tools; on the other hand, if shorter but more
accurate alignments are preferred, SSM and our method
are better.

Evaluation of the query accuracy
When applying alignment algorithms into protein search
systems, the algorithms which can output best alignment
results might not have the best performance of search
accuracy.

The Structural Classification of Protein database (SCOP
[39-42]), manually constructed by human experts, is
believed to contain accurate structural classifications.
The SCOP hierarchy has the following levels: domain,
family, superfamily, fold, and class.

For a database search tool, the recall rate and precision
are two commonly used parameters for assessing its
query quality. Precision is defined as n/N and recall rate
is n/T, where n is the number of true proteins (from the

same family of the query protein) in the result list, N is
the total number of proteins in the result list, and T is the
total number of proteins in the same family of the query
protein in the database. Therefore, the precision is
between 0 and 1, and the quality of a ranked output
list is directly based on it. The recall rate is also between
0 and 1, and the missing problem of a search engine is in
relation to it. In 2004, Aung and Tan [35] collected
34,055 proteins form the ASTRAL SCOP 1.59 to form a
large target database, from which 108 proteins were
selected as the query proteins. These query proteins are
from four main classes (All-a, All-b, a/b and a + b) of
ASTRAL SCOP 1.59 and their average family size is
around 80. We use these different categories of proteins
to do the queries on our search engine, use Q-score as
the criterion to rank the output proteins, and compare
the result with that of CE [12], MAMMOTH [11], 3D-
BLAST [33], PSI-BLAST [29], ProtDex2 [35], and TopScan
[36]. Results for all the methods except ours are taken
from [33]. Since our sequential method is much faster
than its non-sequential counterpart, we just use the
sequential method in our experiments. In our search
system we do support both sequential and non-
sequential methods.

According to the 108 query results, our method based on
pairwise alignment algorithm shows better performance

Figure 1
Q-score difference plots. Figure 1 shows the Q-score Difference between our algorithm and CE [12], Dali [37],
and SSM [8], respectively.
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than others. CE and MAMMOTH are the second and third
accurate methods. 3D-Blast, which is based on a linear
encoding method, ranks fourth and its precision is about
5% lower than ours on average. PSI-BLAST is a classical
sequence search algorithm, and its precision outperforms
both TopScan and ProtDex2. However, when being
compared with alignment algorithms such as CE, MAM-
MOTH and ours, its precision is much lower. Figure 2
(left) shows the Receiver Operating Characteristic (ROC)
curves for all the methods. When the recall rate is 100%,
the average precision of our method is 63%, which is the
highest. In addition, all the pairwise alignment methods
including CE,MAMMOTH and ours have higher precision
than that of other methods, and with the increasing of
recall, this trend becomes more obvious.

Performance for searching weak similarities
In the SCOP database, proteins in a same species or
domain are the most similar proteins, and then are the
proteins belonging to a same family. Experts also classify
weakly similar proteins into a same superfamily. There-
fore, to precisely assess the efficiency of searching
methods challenged by searching weakly similar pro-
teins, we use the entire ASTRAL SCOP 1.73 as the target
database, and select 129 query proteins belonging to
four major classes. The average superfamily size of these
129 query proteins is around 300. We use these proteins
to do queries on our search engine and also on 3D-
BLAST [33], PSI-BLAST [29], and SSM [8]. We are aware

that ProtDex2 [35], Sarst [31], and TopScan [36] are also
famous protein search systems, however they have not
updated their database for a long time. Figure 2 (right)
shows the experimental results of the four methods for
searching similar proteins at superfamily level, according
to which our method is the most accurate one. 3D-
BLAST, the second most accurate method in this
experiment, has its precisions about 8.1% lower than
ours on average. We claim that pairwise alignment
algorithms have more advantages in finding remote
homologous proteins than linear encoding method or
sequential search method does. Nevertheless, according
to the experimental result, our method occasionally has
problem detecting related proteins in the same super-
family. About 17% query results of our search engine
have serious missing problems (precision lower than
50% when recall rate is 100%), while 3D-BLAST is 35%
and other methods have more serious missing problems
than 3D-BLAST.

Evaluation of reliability
Our search engine provides an alignment length and an
RMSD value for every retrieved structure. In order to
assess the reliability of our search engine, we calculate
the Q-score value of each structure by its alignment
length and RMSD value; and gather statistics on
precision and recall rate for various Q-score values at
both superfamily and family levels. According to the
data in Table 2, when Q-score is higher than 0.4, the

Figure 2
Precision and recall curves. Figure 2 shows the accuracy performance of multiple protein search methods. The left shows
the precisions and recall rates of 108 queries by multiple methods at SCOP family level, and the right shows those of 129
queries by the same methods at SCOP superfamily level.
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average precisions are over 90% for both levels. The
recall rates are 62.05% for family level and 45.22% for
superfamily level.

Evaluation of query speed
As shown in Table 3, on average, our method requirs
about 112.20 seconds to search the database for each
query protein in a single machine. Although it is much
slower than 3D-BLAST and PSI-BLAST, when being
compared with pairwise alignment algorithms CE, and
MAMMOTH, ours has great advantage in the time
performance. In addition, we have used our web server
and the web servers of 3D-BLAST, PSI-BLAST and SSM to
do the 129 queries in the entire PDB database. The PSI-
BLAST, SSM, and 3D-BLAST servers have average query
time of 16, 27, and 44 seconds respectively. Benefit from
the distributed computing system and the offline
classification, our web tool can scan the entire PDB
database in 17 seconds on average, which is shorter than
those of 3D-BLAST and SSM. Moreover, our results
contain an alignment length and an RMSD value for
every output protein. Although PSI-BLAST and 3D-
BLAST do not have these data, they are the most
important measures for comparing protein structural
similarities. The 3D-BLAST server is the slowest one with
an average query time of 44 seconds. In our knowledge,
other search engines such as CE [12] and Dali [37] which
are based on one-against-all pairwise alignment algo-
rithms need hours to days to complete the queries.

Conclusion
We have developed a fast protein alignment algorithm and
an efficient protein structural similarity search engine by a
combination of the structure alignment algorithm and a
structure classification method. Our experiments show that
it ismore accurate than other well known systems in finding
proteins that are structurally similar. The fast speed of our
alignment algorithm results from a simple and efficient
method for finding a rigid body transformation.

Methods
Brief description of algorithms
We give a brief description of our algorithms in this
section. We have developed two protein alignment
algorithms, both of them have three main stages. The
first two stages are shared by them, but they have a
different third stage. The third stage of the first alignment
algorithm is based on DP (dynamic programming), and
it preserves the order of Ca atoms in protein backbones.
The second algorithm, whose third stage is based on MM
(maximal matching), does not preserve the order,
however it brings larger alignments than the first, while
its speed is slightly slower. Our main technical contribu-
tion is a fast method used in stage two for finding a rigid
body transformation to superimpose two protein struc-
tures. A process flow is shown in Figure 3.

Brief-Algorithm
S1 and S2 are two 3D protein Ca backbone structures; L is
a set of local alignments (a local alignment is a match of
two substructures of consecutive Ca atoms from two
backbones); δ is the maximum allowed distance between
two matched Ca atoms; FG() is a function to calculate
rigid body transformation; T () is a function to translate
and rotate a structure; find local alignments (stage 1);

for each local alignment l in L

T = FG(l) (beginning of stage 2);

′S2 = T(S2);

repeat

Table 3: Average search time of each program on 108 queries in
the SCOP 1.59. Results for all the methods except ours are taken
from [33]. Their experiments were performed on a computer
with an Intel Pentium 2.8 GHz processor and 1,024 megabytes of
RAM memory. Ours were done on a computer with Intel
Pentium 2.66 GHz processor and 1,024 megabytes of RAM
memory

Software Total
search time (s)

Average search
time per query (s)

Our method 12,117 112.20
3D-Blast 34.35 0.318
PSI-BLAST 18.31 0.170
CE 13.5 days 3 hours
MAMMOTH 131,855 1220.88

Table 2: Statistics on the reliability of scores. Precision is defined as n/N and recall rate is defined as n/T, where n is the number of true
proteins of Q-scores higher than the limit value in the result list. A true protein means it is from the same family or superfamily of the
query protein. N is the total number of retrieved proteins whose Q-scores are higher than the corresponding value, and T is the total
number of proteins in the family or superfamily of the input protein

Q-Score 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

avg.recall(%)-family 14.65 20.20 28.14 39.28 48.99 62.05 75.84 84.31
avg.precision(%)-family 99.35 98.56 97.42 97.16 94.83 91.57 87.43 70.85
avg.recall(%)-superfamily 9.22 12.89 18.96 27.53 34.87 45.22 56.59 68.43
avg.precision(%)-superfamily 99.39 99.15 99.01 98.89 98.74 97.58 96.60 87.39
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H = ∅;

for every pair of points (pu, qv), where pu is in S1 and
qv is in S2

if distance(pu, qv) ≤ δ then put (pu, qv) into H;

end for

T = FG(H);

′S2 = T(S2);

until the number of pairs in H does not increase (end
of stage 2)

find aligned pairs between S1 and ′S2 from H (stage 3);

end for

output the largest alignment;

End of Algorithm

First stage
In the first stage, our algorithm searches for a set of local
alignments, each consisting of a series of consecutive Ca
atom pairs in the backbones of two proteins P and Q,
which are represented by their Ca atoms in backbones
P = p1p2 ... pn1 and Q = q1q2 ... qn2

. We use (i, j, l) to

Figure 3
Flowchart. Figure 3 is a flowchart of our alignment algorithm.
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represent a local alignment, which indicates that a
gapless segment pipi+1 ... pi+l-1 of the first protein
backbone P starting at Ca atom i matches a gapless
segment qjqj+1 ... qj+l-1 of second protein backbone Q
starting at Ca atom j, and both segments have l atoms.
We compute the distance matrices of the two backbones
to match their local regions. If all the corresponding
distances in the two distance matrices have small
difference, then a local alignment is found. Our
algorithm to search all the local alignments runs in
time O(d1m1m2), where d1 is a constant number, m1 is
the number of Ca atoms in P and m2 is the number of Ca
atoms in Q.

Second stage
In the second stage, each local alignment is used to find
an initial rigid body transformation. There are many
algorithms for finding a rigid body transformation to
superimpose a set of pairs of 3D points [43]. In this
paper a least square estimation method [44] is applied
in our algorithm. Given a set H = {(a1, b1), (a2, b2),...,
(am, bm)} of point pairs in the 3D Euclidean
space, FG(H) is a rigid body transformation T derived
by the method in [44] to minimize the RMSD:

1 2
1m T a bi ii

m
distance( ( ), )=∑ . Let H0 be the set of all

pairs (pi+k, qj+k) (k = 0, 1,..., l - 1) in a local alignment (i, j, l).
The rigid body transformation T0 = FG(H0) is derived.
After obtaining T0, we use it to superimpose the two
structures and collect all the pairs (pu, qv), where pu is from
P and qvis fromQ and the distance between pu and T(qv) is
bounded by a threshold, and put them into H1. A new
rigid body transformation T1, which is FG(H1), is derived
based on the new set H1. By repetitively calculating a new
transformation and adding new point pairs into H1, we
can improve the transformation until no more pairs can
be added.

A lot of matched pairs are used during the process of
getting a transformation. It is necessary to mention that
our algorithm selects all the matched pairs without
considering conflicts, where two pairs share a same Ca
atom. Obviously, this kind of conflicts is ndisallowed in
a global alignment. However, when calculating a
transformation, there is no need to consider that, and
sometimes it is hard to choose the best one among the
conflicting pairs. Our method of searching a rigid body
transformation with the presence of conflicting pairs not
only makes the second stage simple and fast, but also
improves its accuracy.

Third stage
In the third stage, we output an alignment that is a set of
aligned pairs, where each Ca is allowed to appear in at

most one pair. Two different methods, dynamic pro-
gramming and maximal matching, are applied to bring
the sequential alignment and non-sequential alignment,
respectively.

The dynamic programming method can find an optimal
solution by following the order of two backbone
sequences. And the minimal length of a local alignment
is set to 4. The maximal matching method returns a non-
sequential alignment. Before applying the classical
maximal matching algorithm to a graph of local
alignments, we first delete edges in the graph so that
each edge in the bipartite graph corresponds to a local
alignment of length at least 4. The minimal length is
used to exclude some isolated pairs, which are not
biologically meaningful.

As we know, most existing protein alignment algorithms
repeat finding the aligned regions between two back-
bones and recalculate the rigid body transformation
when looking for a maximal alignment. Our algorithm
does not involve the Ca atoms alignment when
determining the rigid body transformation. This is why
our alignment algorithm is remarkably faster than other
algorithms. It can work out hundreds of pairs of protein
alignments in one second. Therefore, it is very suitable
for protein search. The sequential and non-sequential
methods show an interesting tradeoff between speed and
the number of aligned pairs.

Methods of speeding up the alignment and search
In order to speed up the computation of our basic
algorithm, we propose some strategies that improve the
time performance.

Improve the time performance of the alignment algorithm
Finding a good rigid body transformation between two
protein structures is often time consuming. This is why
most alignment algorithms are relatively slow. In order
to develop an efficient protein alignment algorithm for
protein search, we reduce computational time for
finding the rigid body transformation while maintaining
sufficient alignment quality.

First of all, the size of local alignments directly determines
the time performance. A large number of local alignments
will result in slow global alignments. Before finding the
local alignments, we first filter out all the shorta helices of
length less than 8, because this kind of local structures are
very common in proteins and may prevent the program
from finding significant local alignments. Moreover, the
length of a local alignment should be reasonably large to
make sense, so we only consider local alignments with
length greater than a threshold. In our experiments these

BMC Bioinformatics 2010, 11(Suppl 1):S34 http://www.biomedcentral.com/1471-2105/11/S1/S34

Page 8 of 10
(page number not for citation purposes)



two filters excluded about 85% unnecessary ones from all
the possible local alignments.

Furthermore, each local alignment is used to calculate an
initial rigid body transformation. However, it is possible
that the final global alignments derived from different
local alignments are the same or highly similar.
Obviously, reducing these redundant local alignments
can improve the time performance greatly. For each local
alignment, we first apply every previously obtained rigid
body transformation to it and calculate a corresponding
RMSD value. A small RMSD by some transformation
means that a final global alignment based on the current
local alignment will be similar to that based on an old
local, therefore the current one can be skipped. This
technique efficiently reduces the unnecessary calculation
of transformations. Supported by these effective filters,
our alignment algorithm compares hundreds of pairs of
proteins in one second, remarkably faster than other well
known alignment algorithms.

An Offline classification
Our search system has an offline classification for all the
protein structures in the PDB. The purpose of this
classification is to improve the speed of protein structure
query. It has the following steps:

1. Partition the PDB into groups. Use our pairwise
alignment algorithm to check the structural similarity
among the protein chains in the PDB. The Q-score,
proposed in [8] is a non-linear score for measuring such
similarity. It has been found that different protein
structure query servers agree reasonably well on this
score. Here we support that two proteins with alignment
Q-score higher than 0.5 are similar. Therefore, after the
partition every two proteins in the same group have a
pairwise alignment Q-score of at least 0.5.

2. Select representatives. For each group, one protein
chain is selected as a representative. In order to get it, we
align each protein with all others in the same group and
calculate the sum of Q-scores. A protein chain with the
highest sum of Q-scores is selected as the representative.
The classification is based on all-against-all pairwise
alignment. It synchronizes itself with the PDB and all the
protein chains in the PDB are partitioned into about
14,000 groups. Searching the entire PDB with 130,000
protein chains is reduced to doing so in our classified
database with about 14,000 representatives. Thus, it
improves the speed to a great extent.

Distributed computing
In order to speed up the query system by taking
advantage of parallel computing, we assign the

representative proteins of the over 14 K groups to
multiple computers to perform pairwise structure align-
ments with the input protein simultaneously. Based on
the experimental result of 129 queries, the average query
time of our search tool is 104.04 seconds in a single
machine, and 17.84 seconds in our cluster. The cluster
has 6 computers and it achieves a linear gain of time
performance that is close to 6.
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