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Abstract

Background: MicroRNA (miRNA) expression profiling data has recently been found to be
particularly important in cancer research and can be used as a diagnostic and prognostic tool.
Current approaches of tumor classification using miRNA expression data do not integrate the
experimental knowledge available in the literature. A judicious integration of such knowledge with
effective miRNA and sample selection through a biclustering approach could be an important step
in improving the accuracy of tumor classification.

Results: In this article, a novel classification technique called SFSSClass is developed that
judiciously integrates a biclustering technique SAMBA for simultaneous feature (miRNA) and
sample (tissue) selection (SFSS), a cancer-miRNA network that we have developed by mining the
literature of experimentally verified cancer-miRNA relationships and a classifier uncorrelated
shrunken centroid (USC). SFSSClass is used for classifying multiple classes of tumors and cancer cell
lines. In a part of the investigation, poorly differentiated tumors (PDT) having non diagnostic
histological appearance are classified while training on more differentiated tumor (MDT) samples.
The proposed method is found to outperform the best known accuracy in the literature on the
experimental data sets. For example, while the best accuracy reported in the literature for
classifying PDT samples is ~76.5%, the accuracy of SFSSClass is found to be ~82.3%. The advantage
of incorporating biclustering integrated with the cancer-miRNA network is evident from the
consistently better performance of SFSSClass (integration of SAMBA, cancer-miRNA network and
USC) over USC (eg., ~70.5% for SFSSClass versus ~58.8% in classifying a set of 17 MDT samples
from 9 tumor types, ~91.7% for SFSSClass versus ~75% in classifying 12 cell lines from 6 tumor
types and ~82.3% for SFSSClass versus ~41.2% in classifying 17 PDT samples from 11 tumor types).
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Conclusion: In this article, we develop the SFSSClass algorithm which judiciously integrates a
biclustering technique for simultaneous feature (miRNA) and sample (tissue) selection, the cancer-
miRNA network and a classifier. The novel integration of experimental knowledge with
computational tools efficiently selects relevant features that have high intra-class and low inter-
class similarity. The performance of the SFSSClass is found to be significantly improved with respect
to the other existing approaches.

Background
A family of ~22 nucleotide noncoding RNAs termed
microRNA (miRNA) has been identified in eukaryotic
organisms ranging from nematode to human [1-3].
MiRNAs regulate the expression of other genes by
binding to complementary sites in the target messenger
RNA (mRNA) through mRNA degradation or transla-
tional repression [4]. Increasing evidences indicate that
miRNAs are key regulators of various fundamental
biological processes such as cell cycle, cell growth and
differentiation, apoptosis and embryo development, etc
[5]. For example let-7 family of miRNAs identified in
C. elegans, Drosophila, Zebrafish or Human [6-8] have
important roles for terminal differentiation in normal
embryonic development, temporal upregulation etc. In
let-7 mutants, stem cells can fail to exit the cell cycle and
terminally differentiate at the correct time [6], so that
they continue to divide which is an indication of cancer.

Recent studies indicate that many miRNAs, referred to as
onco/tumor suppressor miRNAs, are involved in the
development of various human malignancies [9-11].
Differential expression of miRNAs contributes to carci-
nogenesis by promoting the expression of proto onco-
genes or by inhibiting the expression of tumor
suppressor genes [12,13]. Recently miRNA expression
profiling data is being used for predicting the diagnostic
categories of tissue samples including cancer versus non-
cancer, multiclass tumor samples, etc. Based on a
variation of the biological factors (such as tissue types,
time points, etc.), a microarray expression data set can be
made up of intra-class and inter-class samples [14]. The
intra-class samples correspond to a common biological
factor whereas inter-class samples possess different
factors. To enhance the prediction accuracy it is
important to identify the features (miRNAs) and samples
(tissues), which are most informative with respect to the
classification problem. The features and samples should
be so selected that intra-class similarity increases and
inter-class similarity decreases.

Motivated by this, here we develop SFSSClass algorithm
which judiciously integrates a biclustering technique for
simultaneous feature (miRNA) and sample (tissue)
selection (SFSS), a newly constructed cancer-miRNA
network and a classifier. The proposed method uses

biclustering of miRNA expression profiling data to
select features as well as samples/conditions relevant
for classification. A bicluster provides a subset of
the features that are co-expressed within a subset of the
samples [15,16]. To increase the confidence that the
selected features and samples are relevant, we integrate a
cancer-miRNA network that we have constructed by
mining the literature of experimentally verified cancer-
miRNA relationships. This network lists all the miRNAs
that have been found to be associated with different
tumor types obtained from the literature. A lot of
research has been devoted to the identification of
specific miRNAs in specific cancers but such a compre-
hensive cancer-miRNA network based on differential
expression patterns was still lacking in the literature.
This network is not only useful in SFSSClass, it also
throws up several new and interesting biological insights
which are not evident in individual experiments, but
become evident in the global graphical interface. For
example, such a network can aid in the detection of
cancer marker, identify hub miRNAs, reveal commonly
altered regulatory pathways and also detect tissue
specific (or cancer specific) miRNAs. These raise many
unaddressed issues in miRNA research that have never
been reported previously [17].

The novel integration of experimental knowledge and
computational method efficiently selects relevant fea-
tures that have high intra-class and low inter-class
similarity. Thereafter, a supervised classifier USC is
trained on the selected data in order to classify multiple
classes of tumor tissues and cell lines. The experiments
are conducted on the microarray data used in [9] and
[18]. In a part of the investigation, poorly differentiated
tumors (PDT) having non diagnostic histological
appearance [9], but for which clinical diagnosis was
established by anatomical context, are classified while
training on more differentiated tumor (MDT) samples.

Related work
In [9] a bead based miRNA expression profiling platform
was used to measure the expression of 217 miRNAs in
334 tissue samples consisting of many different types of
tumors some of which were poorly differentiated. The
authors then used 68 samples having 11 tumor types to

BMC Bioinformatics 2010, 11(Suppl 1):S22 http://www.biomedcentral.com/1471-2105/11/S1/S22

Page 2 of 8
(page number not for citation purposes)



train a probabilistic neural network in order to classify
the 17 PDT samples. They reported a classification
accuracy of ~70.5%. This was much better when
compared to the performance of the mRNA based
classifier where they achieved ~5.9% classification
accuracy. The work in [19] improved the accuracy to
~76.5% by proposing a classifier fusion approach using
two bagged fuzzy k-NN classifiers with both mRNA and
miRNA expression data (taking 40 genes from each).
They also employed a feature selection technique called
Relief-F [20]. When investigated on miRNA and mRNA
data separately, the reported accuracies are ~70.5% and
~47.1%, respectively [19]. In [21] a comparative study is
provided showing the classification accuracies of PDT
samples obtained by executing different classifiers. The
k-NN classifier (k = 1) obtained ~76.5% accuracy on
discretized data but for continuous data a classification
accuracy of ~58.8% is obtained by SVM and k-NN
(k = 5). Here only four tumor classes are considered as
training data (out of eleven available) since results with
more number of classes was poorer.

Methods
Data
Three data sets (Ds1, Ds2 and Ds3) are considered for the
experiments. For Ds1, training and test data are generated
from miGCM_218.gct [9]. For Ds2 training and test data
are generated from [18]. For Ds3 training data is
generated from miGCM_218.gct and test data is gener-
ated from PDT_miRNA.gct [9]. Note that the test data set
is totally independent in each experiment (i.e., it has not
been used in anyway during training). For Ds1, 66 tumor
samples are chosen from 9 MDT types among which 17
randomly chosen samples are considered for test data
and the remaining are considered as training data. For
Ds2, we have considered a total of 43 human cancer cell
lines comprising central nervous system (CNS), colon,
leukemia, melanoma, ovarian and renal tissue types.
Another three tissue types such as breast, lung and
prostate are excluded from the analysis as mentioned in
[18], because breast and lung cancer cell lines have a
lower intragroup correlations and for prostate, only two
cell lines are available. Another cell line LOX IMVI of
melanoma is excluded because it seems to be non
melanotic and highly undifferentiated [22]. The full data

set consisting of 627 probes, is first processed and
filtered and select those probes which have expression
values of ≥8, after log2 of raw expression value, in at least
10% of the cell lines. A total of 278 probes (miRNAs)
have been selected. From 43 selected cell lines we have
randomly chosen 12 cell lines as test set. For Ds3, 77
MDT samples from 11 distinct tumor types are chosen
for training set and 17 PDT samples are chosen for the
test set. The data is preprocessed, as suggested in [9], by
filtering out those miRNAs whose expression values
never exceed a minimal cutoff (≥7.25 on log2 scale) for
all the samples. A detailed information regarding the
data is given in Table 1 and in the Additional file 1.

Cancer-miRNA network
In order to globally observe and identify the miRNAs and
associated cancer modules, generation of a cancer-miRNA
network is crucial. As is evident, a particular type of cancer
may be associated with the dysregulation of several
distinct miRNAs and conversely dysregulation of one
miRNA can be associated with several cancer types. In our
previous work, generation of the cancer-miRNA network
was based on the bipartite graph theoretic approach [17].
We formed a bipartite graph G = (U, V, E) where U is the
set of cancer types, V is the set of miRNAs and (u, v) Œ E iff
v is differentially expressed or dysregulated in cancer type
u. In other words, a bipartite graph based network model
is constructed consisting of two disjoint sets of nodes
where edges only exist between nodes from different sets.
Here U is a set of 31 cancer types and V is a set of 192
cancer associated miRNAs. In order to develop the
network, the differential expression patterns of experi-
mentally verified human miRNAs in different cancer and
normal tissue types obtained from extensive literature
search are taken into account. Other relevant parameters
that have been considered are location of the miRNAs at
fragile sites and cancer associated genomic regions,
epigenetic alteration of miRNA expression and abnorm-
alities in miRNA processing target genes and proteins. The
complete network is provided in a tabular form in Table
S1 of Additional file 1.

Classifier uncorrelated shrunken centroid
Uncorrelated shrunken centroid (USC) algorithm [23] is
the robust version of the Shrunken Centroid (SC)

Table 1: Selection of number of miRNAs, samples and classes from the training data in different stages of the experiment

Data Set Original Data After Pre-processing After SFSS

miRNA Sample Class miRNA Sample Class miRNA Sample Class

Ds1 217 49 9 187 49 9 63 28 9
Ds2 627 31 6 278 31 6 77 22 6
Ds3 217 77 11 187 77 11 91 37 9
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algorithm [24], in which a sample is assigned to the class
with the nearest average pattern. An instance is predictive
of the class if at least one of its class centroids
significantly differs from its overall centroid, termed as
relative difference (dik). The class centroid of an inatance
i in class k is defined as the average expression level of
that instance over all the samples in class k. Similarly, the
overall centroid of an instance i is defined as the average
expression level of that instance over all the experiments.

Let xij = Expression level for instance i = 1, 2, ..., p and
samples j = 1, 2, ..., n. Let number of classes = K and Ck =
Set of all nk samples in class k.

For ith instance overall centroid is,
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The term ‘significant’ can be measured by shrinkage
threshold Δ. If |dik| > Δ then the instance with the
corresponding class centroid is selected as relevant
feature and used for classification. This can be stated as,
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where ′dik is referred to as shrunken relative difference.
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represents the standardized square distance of x* to the
shrunken class centroid and the second term represents a
correction for the class prior probability.

Based on the minimum discriminant score sample x* is
assigned to the class k.

In SC, a set of instances, SΔ is produced for a given
shrinkage threshold Δ. As Δ increases, the number of
relevant instances decrease since in this case the
difference between the class centroid and the overall
centroid of an instance needs to be larger for it to be
considered as relevant. In USC, a set of redundant,
correlated instances are further removed by computing
the pairwise correlation for each pair of instances. If the
pairwise correlation is greater than a correlation thresh-
old r , the instance with the smaller relative difference is
removed from the set of relevant instances. This way a set
of relevant instances is generated for each shrinkage
threshold Δ and correlation threshold r. This relevant
instance set is then used for the classification. The USC
algorithm is equivalent to the SC algorithm when r = 1
i.e. no correlated instances are removed from the list.

SFSSClass: proposed classification method with
simultaneous feature and sample selection
Prediction accuracy of a classifier can be improved
through the selection of relevant features and samples.
The features are called relevant if these have high intra-
class compactness and low inter-class similarity. In this
regard we note that although expression data is available
for a large number of miRNAs, only a small subset
actually shows a similar expression pattern in a subset of
tumor types due to their tissue specific regulatory nature.
Thus, in this article we propose a technique called
SFSSClass that uses biclustering for simultaneous feature
and sample selection (SFSS). A flow chart of SFSS
technique is provided in Figure 1.

The cancer-miRNA network is used in SFSSClass for
selecting the relevant biclusters. We have used bicluster-
ing algorithm SAMBA [15] (a brief description of SAMBA
is given in Additional file 1) on the preprocessed data set
where the data is centered and normalized for each
feature (miRNA), bringing the mean to 0 and standard
deviation to 1. Among the obtained biclusters, we select
those as potential ones which have atleast one miRNA
that has existing biological evidence regarding it’s
correlation with at least one tumor sample. In other
words, a bicluster is to be considered as potential if at
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least one cancer-miRNA association is present in the
cancer-miRNA network. From a potential bicluster we
choose only the relevant samples appearing in the cancer-
miRNA network, but all the miRNAs are considered. The
reason for considering all the miRNAs in a bicluster is
that biological investigation has already revealed that
genes belonging to the same cluster (or, bicluster) are
likely to be co-regulated. Selected relevant miRNAs and
samples are then used as the training set for the purpose
of classification.

A set of relevant miRNAs (SΔ) is chosen based on
shrinkage threshold Δ , where Δ and SΔ are inversely

proportional. Again, a pairwise correlation for each pair
of miRNAs (gi, gj) in SΔ is then computed for each Δ and
it is determined whether this correlation is greater than a
correlation threshold r. If so then the miRNA with
smaller relative difference is removed from the set of
relevant miRNAs. The optimal parameters (Δ and r) are
determined from the results of the ten random fourfold
cross validation. Based on the selected criteria the
classification of the test set has been performed. We
used publicly available tool EXPANDER version 3.2 for
SAMBA http://acgt.cs.tau.ac.il/expander/expander.html
and TIGR MeV version 3.1 [25] for executing the
multiclass classifier USC. A detailed analysis of the
results is described in the following section.

Results and discussion
Multi-class cancer classification using miRNA
expression profiling data
Experiment 1(Exp1)
Here, a set of 17 MDT samples from 9 tumor types have
been classified. In the proposed method, the classifica-
tion is based on a training set of 63 miRNAs and 28
samples obtained by performing simultaneous feature
and sample selection. We compared the performance of
the proposed method with USC, k-NN1 and k-NN5, and
obtained a significantly better accuracy. Both USC and
k-NN1 obtained a prediction accuracy of ~58.8%
and k-NN5 obtained an accuracy of ~52.9% whereas
SFSSClass obtained an accuracy of ~70.5% (see row Exp1
of Table 2). This underlines the importance of using the
biclustering technique and cancer-miRNA network that is
able to fetch the relevant miRNAs and samples prior to
classification so that performance of the classifier is
increased significantly. See Figure S1 and Figure S2 of
Additional file 1 for the detailed analysis of the
experiment.

Experiment 2(Exp2)
Here, a set of 12 cell lines from 6 tumor types have been
classified. The classification is based on a training set of
77 miRNAs and 22 samples obtained by performing
simultaneous feature and sample selection. We com-
pared the performance of the proposed method with
USC, k-NN1 and k-NN5 and obtained a significantly
better accuracy. In case of k-NN for k = 1 and k = 5
obtained prediction accuracies are of ~58.3% and
~66.7% respectively whereas USC obtained the predic-
tion accuracy of 75%. Our method SFSSClass is found to
outperform than the other methods and obtained a near
optimal prediction accuracy of ~91.7% (see row Exp2 of
Table 2). This again underlines the importance of
selection of relevant features and samples using the
biclustering technique in conjunction with the cancer-
miRNA network prior to classification. See Figure S4 and

Figure 1
A flow chart of SFSSClass, the proposed classification
method with simultaneous feature and sample
selection.
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Figure S5 of Additional file 1 for the detailed analysis of
the experiment.

Classifying poorly differentiated tumors
In a part of the investigation we have classified the PDT
samples based on a set of MDT training set. After
performing simultaneous feature and sample selection
from the training set, 91 miRNAs and 37 samples are
selected from 9 tumor types, viz., colon, pancreas,
kidney, bladder, prostate, ovary, uterus, lung and breast.
In our biclustering experiment the miRNAs that are
significantly dysregulated in mesothelioma or mela-
noma, did not appear in association with these two
tissue types in any of the obtained biclusters. We have
compared the prediction accuracies obtained by the
proposed method with those reported previously in
several literature including USC. The detailed results are
shown in Table 3 and a brief description on various
classifiers mentioned in the article is given in Table 1 of
Additional File 2. The prediction accuracy is obtained
based on the optimal parameters Δ = 0.3 and r = 0.9 for
the USC and Δ = 0.1 and r = 0.9 for the proposed

method as the minimum average classification error rate
is obtained by the ten random fourfold cross validation
using these parameters (for the detailed analysis of
the experiment see Figure S3 of Additional file 1 and
Figure 2 in the main text). From Table 3 it is observed
that the proposed method provides much improved
accuracy than any of the other approaches. Incorporation
of the biclustering method and cancer-miRNA network
improves the performance when USC algorithm is used
(~82.3%) compared to the case without biclustering
(~41.2%). This clearly shows the efficiency of the
proposed method for extracting the relevant data
through which more improved classification is possible.

Conclusion
Recent evidences indicate that miRNAs have important
roles in human malignancies and act as onco/tumor
suppressor miRNAs. The cancer associated genomic
regions, putative and experimentally verified target
onco/tumor suppressor genes, significant over or under
expression of the miRNAs in specific cancer cell lines are
a few potential evidences of the involvement of miRNA

Table 2: Number of selected features and samples, and comparison of classification accuracies obtained by different classifiers for Exp1:
classification of multiclass MDT samples and Exp2: classification of multiclass cancer cell lines

Experiment Classifier After feature and sample selection Classification accuracy (%)

No. of miRNAs No. of Samples No. of Classes

Exp1 SFSSClass 63 28 9 70.58
USC 187 49 9 58.82
kNN1 187 49 9 58.82
kNN5 187 49 9 52.94

Exp2 SFSSClass 77 22 6 91.67
USC 278 31 6 75
kNN1 278 31 6 58.34
kNN5 278 31 6 66.67

Table 3: Number of selected features and samples, and comparison of classification accuracies obtained by different classifiers for the
classification of multiclass PDT samples

Classifier After feature and sample selection Classification accuracy (%)

No. of miRNAs No. of Samples No. of Classes

SFSSClass 91 37 9 82.35
USC 187 77 11 41.17
DFL(Discretized data) 3 23 4 58.82
C4.5 3 23 4 52.94
RIP 3 23 4 35.29
NB 42 23 4 35.29
kNN1 42 23 4 47.05
kNN5 42 23 4 58.82
SVM 42 23 4 58.82
Classifier Fusion 40(miRNA)+40(mRNA) 68 11 76.47
Bagged Fuzzy kNN 40 68 11 70.58
PNN 173 68 11 70.58
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in cancers. Limited work has been done towards
revealing the fact that a number of miRNAs can control
commonly altered regulatory pathways. However, this
becomes immediately evident in the global graphical
interface provided by the cancer-miRNA network pro-
posed in our previous work [17]. In this article we
develop the SFSSClass algorithm which judiciously
integrates a biclustering technique for simultaneous
feature (miRNA) and sample (tissue) selection, the
cancer-miRNA network and a classifier. The performance
of the SFSSClass is found to be significantly improved
with respect to the other existing approaches. For
example, while the best accuracy of classifying PDT
samples obtained from [19] is ~76.5%, the accuracy of
SFSSClass is found to be ~82.3%. The advantage of
incorporating biclustering integrated with the cancer-
miRNA network is evident from the consistently better
performance of SFSSClass over USC (e.g., ~70.5% for
SFSSClass versus ~58.8% in Exp1, ~91.7% for SFSSClass
versus ~75% for USC in Exp2 and ~82.3% for SFSSClass
versus ~41.2% for USC in classifying PDT samples).

Although the proposed approach is applicable to cancer-
miRNA network, the concept of integrating domain

knowledge (obtained through literature mining) based
feature selection with classification may be useful in
other Bioinformatics domains. For example, a very low
prediction accuracy is obtained when classifying the PDT
samples based on mRNA expression profiling data,
~ 5.9% in [9] and ~ 47.1% in [19]. In this context,
judicious integration of cancer-gene network, biclustering
and the classifier may improve the prediction accuracy.
In future, specific information extracted from the cancer-
miRNA network such as cancer specificity of miRNAs,
hub miRNAs, over/under expressibility of miRNAs, etc.,
will be integrated with SFSSClass for more accurate
prediction of tumor tissue origin.
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Additional material

Additional file 1
Appendix for “SFSSClass: An integrated approach for miRNA based
tumor classification". The detailed information about cross validation
result and chosen optimal parameters for both the USC and the proposed
method are given in the figures s1 to S6. A complete list of all the
miRNAs involved in different cancer types is provided in Table S1. The
differential expression patterns of miRNAs in different tumor tissues
along with a list of references (PubMed-indexed for MEDLINE or
PMID) are also present in this table. The information is obtained by
extensive literature search. Other relevant parameters that have been
considered are location of the miRNAs at fragile sites and cancer
associated genomic regions, epigenetic alteration of miRNA expression
and abnormalities in miRNA processing target genes and proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-11-S1-S22-S1.pdf]

Additional file 2
A brief description on various classifiers that have been used for
classifying tumor samples.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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