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Abstract

Background: MapReduce is a parallel framework that has been used effectively to design large-
scale parallel applications for large computing clusters. In this paper, we evaluate the viability of the
MapReduce framework for designing phylogenetic applications. The problem of interest is
generating the all-to-all Robinson-Foulds distance matrix, which has many applications for
visualizing and clustering large collections of evolutionary trees. We introduce MrsRF (MapReduce
Speeds up RF), a multi-core algorithm to generate a t × t Robinson-Foulds distance matrix between t
trees using the MapReduce paradigm.

Results: We studied the performance of our MrsRF algorithm on two large biological trees sets
consisting of 20,000 trees of 150 taxa each and 33,306 trees of 567 taxa each. Our experiments
show that MrsRF is a scalable approach reaching a speedup of over 18 on 32 total cores. Our
results also show that achieving top speedup on a multi-core cluster requires different cluster
configurations. Finally, we show how to use an RF matrix to summarize collections of phylogenetic
trees visually.

Conclusion: Our results show that MapReduce is a promising paradigm for developing multi-
core phylogenetic applications. The results also demonstrate that different multi-core configura-
tions must be tested in order to obtain optimum performance. We conclude that RF matrices play
a critical role in developing techniques to summarize large collections of trees.

Background
MapReduce [1] is an exciting new paradigm for design-
ing parallel applications. It was popularized by Google
to support the parallel and distributed execution of data
intensive applications. To process petabytes of data,
Google executes thousands of MapReduce applications

per day. There is interest within the bioinformatics
community to harness the power of MapReduce to
develop parallel applications to process large datasets of
genomic data. For example, CloudBurst [2], a Map-
Reduce application for sequence analysis, has recently
been released. In this paper, we study whether
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MapReduce can be used to develop efficient parallel
phylogenetic applications for multi-core platforms.

We develop a new algorithm called MrsRF (MapReduce
Speeds up RF) for computing the all-pairs Robinson-
Foulds distance between t evolutionary trees on multi-
core computing platforms. The RF distance is a popular
measure for computing the differences in evolutionary
relationships between t phylogenetic trees of interest.
There are several applications for using RF matrices such
as visualizing collections of trees [3,4] and clustering tree
collections [5].

The novelty of our work centers around using MapReduce
in a non-standard way. Typical uses of the MapReduce
framework reduce the final output into a smaller
representation than the initial input. One of the
interesting aspects of the all-pairs RF distance problem
is that the output size (a t × t RF matrix) is much larger
than the input size (t phylogenetic trees). Under the all-
pairs RF problem, we are significantly expanding the
data. For k total cores, how they are partitioned among
the N nodes (or physical machines), where each node
consists of c computing cores, has a significant impact on
performance since cores on the same node share
resources such as memory bandwidth. For example,
with 32 total cores, a 16 nodes by 2 cores (16 × 2) cluster
configuration outperforms 8 × 4, 4 × 8, and 32 × 1
configurations in our experiments. Hence, multiple
configurations should be tested in order to attain
optimum performance on a multi-core platform.

We ran our experiments on 20,000 and 33,306 biologi-
cal tree collections consisting of 150 and 567 taxa,
respectively. MrsRF was implemented using Phoenix [6],
a MapReduce implementation for shared memory multi-
core platforms, and OpenMPI [7]. Our results show that
MrsRF is a promising methodology for parallelizing the
all-pairs RF distance problem. In our experiments, MrsRF
shows good overall speedup. On 8 cores, MrsRF is over 6
times faster than the best-performing sequential algo-
rithm, which is also MrsRF run on a single core. For 32
cores, it is 18 times faster than the serial version of
MrsRF. Speedup resulted from allowing the underlying
MapReduce runtime system to schedule communication
on the multi-core system, which greatly simplifies
MrsRF’s implementation.

A common trend in phylogenetics is encapsulating the
result into a single consensus tree, where the assumption
is the information discarded is less important than the
information retained. However, many of the trees may
contain elements of the “true” evolutionary tree and
their relationships should not be ignored. Hence, we
show how to use RF matrices to improve the

summarization of a phylogenetic analysis. Overall, our
results provide evidence that large computations invol-
ving phylogenetic trees can take advantage of the
MapReduce framework to design high-performance
phylogenetic applications.

Methods
MapReduce
MapReduce [1] is a popular parallel model that auto-
mates parallel computation largely in the background,
making it easier to develop a parallel program. Popular-
ized by Google in 2004, it has since been used for a variety
of diverse applications such as distributed sort and grep,
Google web indexing, and data processing by large
companies such as Amazon, Yahoo! and Facebook. The
central features of the MapReduce framework are two
functions: map() and reduce(). The map() function
produces a set of intermediate key/value pairs. The
reduce() function accepts an intermediate key and a set
of values and merges them together. Both the map() and
reduce() functions are written serially by the programmer.
The underlying MapReduce framework takes care of
scheduling these functions on the multi-core system.

Figure 1 gives an overview of how the MapReduce
paradigm operates in order to count the number of
words in a file. Each instance of the map function (or
mapper) receives one line of input. Each mapper takes its
line of input and splits it into words. The mapper then
outputs a (key, value) pair of the word and the value 1.
Since all the lines are independent from each other, all
mappers run in parallel.

As each mapper outputs (key,value) pairs, these pairs are
merged to form keys with associated lists of values. In
the reduce phase, each instance of the reduce function
(or reducer) takes as input a key and associated list of
values. In Figure 1, the fifth reducer takes in as input the
key fish and the associated list 1-1-1-1, as “fish” occurred

Figure 1
Word count example using the MapReduce
paradigm.
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four times in the input file. Each reducer takes its list of
values, sums all of its member’s values, and outputs this
sum of values with the key.

Phoenix: a MapReduce library
The underlying MapReduce framework of MrsRF is based
on Phoenix [6], a multi-core MapReduce approach.
Phoenix is a threads-based implementation of Map-
Reduce designed specifically for multi-core systems
where all computing cores have access to shared memory.
It dynamically schedules map and reduce tasks to
available compute cores. Hadoop [8] is the most popular
framework for developing MapReduce applications. We
developed MrsRF implementations in both Phoenix and
Hadoop. For our RF matrix application, we were able to
achieve significantly better performance using Phoenix.
Consider a N × c multi-core cluster configuration, where
N represents the number of physical nodes (or machines)
of the cluster and c is the number of computing cores per
node. Each of the cores on a node share access tomemory.
Phoenix works on a 1 × c configuration. We augment
Phoenix with OpenMPI in order to use distributed-
memory clusters, where N ≥ 1. Our MrsRF implementa-
tion is available publicly from the web [9].

Robinson-Foulds distance
The Robinson-Foulds (RF) distance [10] is one of the
most common methods used to compare the topological
differences between two trees. For tree T on n taxa,
removing an edge (or bipartition) splits tree T into two
independent sets, S1 and S2. Each of the n taxa belong to
either S1 or S2. Consider bipartition B in tree T. We can
represent this bipartition as S1|S2, where Si contains the
names of the taxa in that set. The RF distance computes
the topological distance between two trees by comparing
their set of bipartitions. Let BT define the set of
bipartitions found in tree T. The RF distance between
trees Ti and Tj is:

RF T T
Ti T j T j Ti

i j( , ) .=
− + −B B B B

2

In this paper, we develop a multi-core algorithm to
compute the t × t RF matrix for a collection of t trees.
Entry (i, j) in the RF matrix represents the RF distance
between trees Ti and Tj. Finally, our results shows the RF
rates instead of RF distances. The RF rate is obtained by
normalizing the RF distance by the number of internal
edges and multiplying by 100. For n taxa, there are n - 3
internal edges in a binary tree. Hence the maximum RF
distance between two trees is n - 3, which results in an RF
rate of 100%. Thus, the RF rate varies between 0% and
100% signifying that the two trees Ti and Tj are identical
and maximally different, respectively.

HashRF
Our MrsRF algorithm for multi-core platforms is based
on the HashRF algorithm [11,12], a fast, sequential
algorithm for computing an all-to-all RF matrix to
compare t trees on n taxa. For a bipartition B, HashRF
uses a global hash table H to store that bipartition along
with the identities of the trees (TIDs) that contain that
bipartition. HashRF uses two uniform hash functions h1
and h2, where the h1 value represents the hash table
location for storing the bipartition B and h2 provides a
shortened bipartition identity (BID) for this bipartition.
Moreover, for each (h1(B), h2(B)) pair, a list of trees
(TIDs) containing bipartition B is also stored in the hash
table H. To compute the RF matrix M, each index
(h1 value) of the hash table H is visited. At H [h1], each
h2 value (representing a unique bipartition B) is visited
and its list of tree identities (TIDs) are extracted. For each
pair of trees Ti and Tj in the list of TIDs, entry M [Ti, Tj] is
incremented by one to compute a similarity matrix.
Once the hash table has been traversed, entry M [i, j] is
subtracted from n - 3, the maximum RF distance, to
produce the RF matrix. The worst-case running time of
HashRF is O(nt2).

MrsRF: Computing a t × t RF matrix
We introduce MrsRF (MapReduce Speeds up RF), a multi-
core all-to-all RF distance matrix algorithm using the
MapReduce framework. The design of MrsRF is moti-
vated by the HashRF algorithm. Moreover, in MrsRF,
bipartitions are analogous to words in the MapReduce
word count example. MrsRF takes as input a tree file
containing t trees and a N × c cluster configuration. The
number of cluster nodes specifies the number of physical
machines that executes the code. The number of cores is
the number of CPUs within each node. For serial
execution, N = 1 and c = 1. If instead one wanted to
run MrsRF on 2 machines each containing 4 CPUs, the
respective N and c values would be 2 and 4.

There are two main steps to our MrsRF algorithm. First,
we organize the N nodes into a grid in order to partition
the t input trees among the nodes. Phoenix, the
underlying MapReduce library, automatically distributes
the input for a single node amongst its c cores. That is, it
works for 1 × c cluster configurations. As a result, we
manually partition the input among the N nodes. If N is
a perfect square, then we assume the nodes are organized
into a N N× grid. If N is not a perfect square, let i =
Î N ˚. If N mod i = 0, then we assume a N/i × i grid of
nodes. Otherwise, we decrement i until it divides N
evenly. For N = 4, the N nodes are partitioned into a 2 ×
2 grid (see Figure 2). If N = 18, we obtain a 6 × 3 grid.
The size of the input tree file has no bearing on how the
N nodes are organized into a grid.
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Secondly, once the nodes are organized in a grid using
OpenMPI, the MrsRF(p, q) algorithm is executed on each
node to compute a p × q submatrix. For example, consider
node N2 in Figure 2. Let P and Q represent the row and
column trees, respectively, in the submatrix. For node
N2, P = {Tt/2, ..., Tt-1} and Q = {T0, ..., Tt/2 - 1}. Hence,
the size of nodeN2’s submatrix is p × q, where p = |P | and
q = |Q |.

Once each node is finished computing its p × q
submatrix, the final t × t RF matrix is the concatenation
of the N submatrices.

MrsRF(p, q): Computing a p × q RF submatrix
The heart of our MrsRF algorithm lies in the subprogram
MrsRF(p, q), which runs independently on each of the N
nodes. Each node has access to the input file containing
the t trees and is responsible for retrieving the appro-
priate trees for its P and Q sets. A node knows which
trees belongs to its P and Q sets based on its identifier
within the node grid. In Figure 2, P = {Tt/2, ..., Tt-1} and
Q = {T0, ..., Tt/2 - 1} on node N2. If the number of
computing cores on node N2 is eight, then the trees
associated with sets P and Q will each be split into
four files, yielding a total of eight input files for the eight
cores. Under MapReduce, these eight files will be
automatically assigned to the cores on node N2.

Under MrsRF(p, q) the trees in P are compared to the
trees in Q . If P Q≡ , all trees are compared to each
other. Node Ni’s submatrix is created in parallel using
two MapReduce phases as described below.

Phase 1 of the MrsRF(p, q) algorithm
The first map stage
Similarly to HashRF, the first MapReduce phase is
responsible for generating the global hash table. That
is, every bipartition is given a unique identifier (key). Its
values are the tree identities (TIDs) that contain that
bipartition. The number of mappers correspond to the

number of cores utilized on a particular node. Each
mapper sends its trees to HashBase to create a local hash
table. HashBase is our name for a modification to
HashRF that outputs a hash table from its input trees.
Each line from the hash table that is provided to MrsRF
(p, q) from HashBase consists of a bipartition Bi and the
associated list of tree ids that were found to share it. In
addition, all the bipartitions that are found are given a
marker to denote which input file created it. This is to
ensure that bipartitions shared within a tree file are not
compared to each other. The bipartition and its list of
tree ids form a (key, value) pair, which is emitted as an
intermediate for the reduce stage.

In Figure 3, there are two input files, each containing two
trees each. Trees in the first file are only compared to
trees contained in the second file. In the figure, we
assume there are only two mappers, where each mapper
is responsible for handling one of the two input files.
Each mapper creates a local hash table based on the trees
that it receives by using a marker of “1” (for file 1) or “2”
(for file 2) to keep track of trees and their bipartitions
from the P and Q sets, respectively. Each mapper then
emits its marked hash table to the reduce stage. For
example, in Figure 3, the first mapper emits the
following (key, value) pairs: (AB|CDE, (1, T0, T1)),
(ABC|DE, (1, T0)), and (ABD|CE, (1, T1)). These (key,
value) pairs are processed in an intermediate stage,
where each reducer processes all of the values associated
with a particular key.

The first reduce stage
Once the map stage completes, each of the r reducers
takes as input a (key, list(value)) pair with bipartition Bi
as the key and a list of tree id lists as the value. There will
be at most m lists of tree ids for each bipartition. Each
reducer then combines these O(m) lists in a manner such
that the trees from file 1 are separated from the trees
from file 2 to form a single line in the global hash table.
Each row of the global hash table represents a unique
bipartition among the t trees. Continuing with our
example from Figure 3, the first reducer processes the

Figure 2
Global partitioning scheme of the MrsRF algorithm.
Here, N = 4. Each of these 4 submatrices will be calculated
by a separate instance of MrsRF(p, q).

Figure 3
Phase 1 of the MrsRF(p, q) algorithm. Two mappers
and two reducers are used to process the input files, where
P = {T0, T1} and Q = {T2, T3}.

BMC Bioinformatics 2010, 11(Suppl 1):S15 http://www.biomedcentral.com/1471-2105/11/S1/S15

Page 4 of 9
(page number not for citation purposes)



lists associated with keys ABD|CE, and ABC|DE. Thus,
the first reducer receives the list of lists (ABD|CE,(1, T1))
and (ABC|DE, (1, T0), (2, T2, T3)) and outputs the final
(key, value) pairs of (ABD|CE, (T1||)), and (ABC|DE,
(T0 ||T2, T3)), respectively. The symbol || denotes a
partition that separates trees from the first input file
with trees from the second input file.

Phase 2 of the MrsRF(p, q) algorithm
The second map stage
Each of the m mappers receives an equal portion of the
global hash table based on the total number of
comparisons required to process the (key,value) pairs.
In Figure 4, key (ABC|DE) has as its list of values (T0||T2,
T3). Two total comparisons will be done since T0 is
compared to T2 and T3. In general, if there are u tree ids
on the left side of || and v trees on the right side, then uv
total comparisons are required. Each mapper then
computes a local similarity matrix from its portion of
the hash table. In the second reduce stage, this similarity
matrix will be converted into a RF (or dissimilarity)
matrix.

Consider Figure 4. The first mapper has two rows of the
global hash table assigned to it. Next, it computes a p × q
similarity matrix from those hash table elements. In our
example, the resulting similarity matrix is of size 2 × 2.
To do this, it compares the tree ids in the first partition of
a row to the tree ids located in the second partition of a
row, and increments the local similarity matrix accord-
ingly. For example, for the hash table row (ABC|DE, (T0
||T2, T3)), the first mapper increments by one the
locations (T0, T2) and (T0, T3) in its local similarity
matrix. Rows that do not contain elements in both of its
partitions are discarded. Therefore, in Figure 4, the hash
table row (ABD|CE, (T1 ||)) is discarded. Each increment
to entry (i, j) in the similarity matrix represents that the
pair of trees Ti and Tj share a bipartition.

Once, a mapper has finished processing its hash table, it
emits its similarity matrix for processing in the reduce
stage. The key is the row id and the value is the contents
of that row id. Thus, in Figure 4, the first mapper emits
the (key, value) pairs (T0, (1, 1)), and (T1, (0, 0)).

The second reduce stage
Here, the input is a similarity matrix row identifier, i, and
a list of rows that contain the local similarity scores
found by each of the mappers. For a particular key, the
number of rows within the list of rows received by a
reducer is equal to the number of mappers,m. In Figure 4,
the first reducer receives the following (key, value) pair for
similarity identifier, T0: (T0, (1, 1), (1, 0)). The reducer
sums up the columns of each of the lists to produce (T0, (2,
1)). To produce the RF distance for row Ti, each column in
the final similarity matrix is subtracted from n - 3, the
maximum possible RF distance where n represents the
number of taxa in the t trees of interest. Together, the
output from the reduce stage yields a final submatrix. For
each node Ni, the resulting submatrix is written to a file.
These files can then be combined to form a final RF matrix,
or be kept in their partitioned form for easier handling.

Analysis of MrsRF
MrsRF(p, q) is where all of the computation for the MrsRF
algorithm lies. At least one node will require O(t) time to
obtain the trees for its P and Q sets. The first map phase
of the MrsRF(p, q) algorithm, which is based on HashRF’s

first phase, requires O n p q
m( )( ( ))+ , where n is the number of

taxa and m is the number of mappers. O(n(p + q)) is the
total number of bipartitions that must be processed across
the p + q trees and inserted into the hash table. Suppose b
unique bipartitions are found. In the worst case, a
bipartition has a length of p + q, which re ects the fact
that it appears in all p + q trees. Hence, the complexity is
O p qb

r( ( ))+ for the first reduce phase, where r is the
number of reducers. For the second phase of the MrsRF
(p, q) algorithm, in the worst case, each mapper requires
O bpq

m( ) to produce its local similarity matrix. Each reducer
requires O mpq

r( ) time. Hence, if p and q are large enough,
phase 2 is more time-consuming than phase 1 in theMrsRF
algorithm. Our analysis does not incorporate communica-
tion costs as there is not an explicit model of communica-
tion for the MapReduce framework.

Biological trees
Below, we describe the biological trees used in this study
were obtained from two recent Bayesian analysis.

1. 20,000 trees obtained from a Bayesian analysis of
an alignment of 150 taxa (23 desert taxa and 127
others from freshwater, marine, and oil habitats)

Figure 4
Phase 2 of the MrsRF(p, q) algorithm. Once again, there
are two mappers and two reducers. The horizontal bars
between elements represent a partition that separates trees
from one file from trees in the other. Bipartitions containing
elements on only one side of the partition are discarded.
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with 1,651 aligned sites [13]. Two independent runs
consisting of 25 million generations (with trees
sampled every 1,000 generations) were performed
with four independent chains in MrBayes using the
GTR+I+Γ model.
2. 33,306 trees obtained from an analysis of a three-
gene, 567 taxa (560 angiosperms, seven outgroups)
dataset with 4,621 aligned characters, which is one of
the largest Bayesian analysis done to date [14]. Twelve
runs, each with four chains, ran for at least 10 million
generations in MrBayes using the GTR+I+Γ model.
Trees were sampled every 1,000 generations.

Table 1 presents statistical data on our collection of
biological trees. Both collections contain unique trees as
each tree appears once. The total number of bipartitions in a
collection of t binary trees is t(n - 3), where n is the number
of taxa. This is the number of bipartitions that must be
processed by MrsRF in order to compute the t × t RF matrix.
Many of the these bipartitions are shared across the trees.
There are 1,168 and 2,444 unique bipartitions among the
150 and 567 taxa trees, respectively. The hash table size is
the result of the first reduce stage of the MrsRF(p, q)
algorithm. The RF matrix data is the output of the second
reduce stage of the algorithm. When MrsRF is executing for
speed in our experiments, the hash table from the first
reduce stage of MrsRF(p, q) is kept in memory.

Implementation and platform
All experiments were run on a multi-core cluster with
configurations ranging from 1 to 32 nodes. Each node
consists of a PowerEdge 1950 1U server, with two Intel
Xeon E5420 2.5 GHz quad-core processors, resulting in a
total of eight cores. Each node also consists of 16 GB
DDR2 667 MHz fully-buffered DRAM and 160 GB of
hard-disk. The nodes are connected together with a
gigabit ethernet switch. We modified the Phoenix
runtime system (Original Release version) to work on
64-bit Linux platforms, as the cluster runs the CentOS
5.2 64-bit operating system on all nodes. HashRF and
HashRF(p, q) [11] are written in C++ and MrsRF and
Phoenix are implemented in C. All programs are
compiled with gcc 4.1.2 with the -03 compiler option.

Results and discussion
Establishing the fastest sequential algorithm
We evaluate the performance of MrsRF on our computa-
tional platform as we vary the number of cores, the number

of nodes, and the problem size of interest. First, we establish
the fastest sequential algorithm in order to compute the

speedup of our approach. Speedup is defined as T
TN c

1
×

where, T1 is the time required by the fastest sequential
program and TN × c is the time required by MrsRF run on N
nodes and c cores. Previous experiments establishedHashRF
and HashRF(p, q) as the fastest sequential algorithms for
computing the RF matrix [11,15].

Figure 5 compares the sequential running time of
HashRF, HashRF(p, q), and MrsRF. Each data point
represents the average of five runs of the algorithm for
each dataset. Surprisingly, our experiments showed that
our MrsRF algorithm using 1 core is up to 2.8 times faster
than HashRF on larger tree sets. This corresponds to an
average time of 680.9 seconds for MrsRF compared to a
running time of 1913.22 for HashRF, and a running time
of 1657.75 for HashRF(p, q). The difference in perfor-
mance is due to language-specific implementation
decisions. MrsRF is written in C to match the imple-
mentation language of Phoenix. HashRF and HashRF
(p, q), on the other hand, are C++ implementations that
employ the Standard Template Library (STL) and classes,
which introduces extra overhead when compared to
MrsRF’s ANSI C implementation. Thus, all our speedup
results are in relation to MrsRF run on a single core.

Multi-core performance of MrsRF
Figure 6 shows the speedup of MrsRF on our 20,000 and
33,306 tree sets over the total number of CPUs utilized,
ranging from 1 to 32 cores. Every dataset was run five

Table 1: Statistics for our Bayesian tree collections

number of taxa total trees (t) total bipartitions unique bipartitions hash table size RF matrix cells (t × t) RF matrix size

150 20,000 2.9 × 106 1168 16 MB 4 × 108 1.2 GB
567 33,306 18.8 × 106 2444 102 MB 1.1 × 109 3.3 GB

Figure 5
Sequential running time and speedup of HashRF,
HashRF(p, q), and MrsRF (1 core) algorithms on
20,000 and 33,306 trees on 150 and 567 taxa,
respectively. (a) denotes the running time for each
algorithm. (b) denotes the speedup of HashRF(p, q) and
MrsRF (1-core) over HashRF.
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times using various cluster configurations. The numbers
reported are the average between each set of five runs.
Speedup is calculated with respect to MrsRF run serially
on one core.

Cluster configurations
To test how much a factor architecture is to speedup, we
used different system configurations to measure perfor-
mance. Let N denote the number of nodes used, and
c denote the number of cores used on each node. For any
N × c configuration, there areNc total cores being utilized.
Thus, for 8 total cores to be used, we run our algorithm
using 1 × 8, 2 × 4, 4 × 2 and 8 × 1 configurations. Each
curve denotes the number of cores utilized per node.
Therefore, if c = 4 and the total number of cores is 8, then
this data point reflects a 2 × 4 configuration. Likewise, if
c = 1 and the total number of cores is 32, then the data
point reflects a 32 × 1 configuration.

150 taxa trees
Figure 6 shows that as the number of bipartitions
increase, so does the performance of MrsRF. While the
curves for c = 2 and c = 4 performs the best, the c = 1 and
c = 8 configurations performs the poorest. Performance
differences across various cluster configurations are
underscored as the total number of cores increases.
This is due to overhead in partitioning the data (c = 1)
and inter-node resource contention for memory band-
width (c = 8). Despite this, an increase in total cores
results in an increase in performance, and we see our best
performance when 16 total nodes is utilized, with a
maximum speedup of 7.25 for this dataset. This
corresponds to an average running time of 8.73 seconds
for MrsRF on 32 cores.

567 taxa trees
We see a similar trend in architectural performance in the
567 taxa case, thus underscoring the importance of

managing resource contention and communication
overhead in relation to performance. However, with
the increased bipartitions present in the 567 taxa case,
we see an markedly increased amount of speedup, with a
maximum amount of speedup of 18.4 attainable with 32
cores using a 16 × 2 cluster configuration. The maximum
speedup corresponds to an average running time of
36.93 seconds. In comparison, it took the serial
execution of MrsRF an average of 680.9 seconds to
compute the RF matrix, while it took HashRF and
HashRF(p, q) an average of 1913.22 and 1657.75
seconds respectively. Our results show that MrsRF is a
very scalable approach for computing the all-to-all RF
Matrix, with performance increasing with large problem
sizes. Figure 7 shows that Phase 2 of the MrsRF(p, q)
approach exhibits linear speedup. Overall speedup of
MrsRF increases (decreases) when Phase 2 (Phase 1) of
MrsRF(p, q) dominates the computation time. Once
again, the differences in speedup that we observe with
different N × c configurations suggest that multiple
cluster configurations should be run to achieve the
maximum speedup.

RF matrix application: Visually summarizing
tree collections
The fundamental question we address here is “what do
the gathered trees tell us about the Bayesian analyses that
produced them?” To answer this, we partitioned our t × t
RF matrix based on the MrBayes run that generated the
tree. Figure 8 shows a heatmap of our 20, 000 × 20, 000
RF matrix broken up into a 2 × 2 matrix, where each
entry (i, j) shows the average RF rate between the trees
from run i and run j of MrBayes. For this dataset, two
MrBayes runs were used to create the entire collection of
20, 000 trees, where each run consisted of 10, 000 trees.
Figure 9 shows the 33, 306 × 33, 306 RF matrix broken
up into a 12 × 12 matrix. For this dataset, twelve MrBayes

Figure 6
Speedup of MrsRF algorithm on various N × c multi-
core cluster configurations. (a) shows the speedup of
MrsRF on various N × c configurations over MrsRF (1-core)
for 150 taxa and 20,000 trees. (b) shows the speedup of
MrsRF on various N × c configurations over MrsRF (1-core)
for 567 taxa and 33,306 trees.

Figure 7
Performance of Phase 1 and Phase 2 of MrsRF(p, q)
on 567 taxa and 33,306 trees. Here, the 567 taxa - 33,306
tree set is of interest. (a) shows the speedup of Phase 1 of
the MrsRF algorithm run on different N × c configurations
over Phase 1 of MrsRF (1-core). (b) shows the speedup of
Phase 2 of the MrsRF algorithm run on different N × c
configurations over Phase 2 of MrsRF (1-core).

BMC Bioinformatics 2010, 11(Suppl 1):S15 http://www.biomedcentral.com/1471-2105/11/S1/S15

Page 7 of 9
(page number not for citation purposes)



runs were used to create the entire collection of 33, 306
trees, where each run consisted of 2, 000 to 3, 000 trees.

In Figures 8 and 9, heatmap cell (i, j) is colored
according to how similar (lower RF rates) the trees are
across runs i and j. Hot regions, colored in shades of red,
denote highly similar trees. Cool regions, colored in
shades of green, denote dissimilar trees. Cell (run1,
run1) in Figure 8 shows an average RF rate of about 20%
while (run1, run2) show an average RF rate of around
24%. In Figure 9, cell (run6, run10) shows an average RF
rate of about 18% while these runs compared to
themselves (i.e., cells (run6, run6) and cells (run10,
run10)) show higher levels of similarity with an average
RF rate of around 11%. Finally, the histogram in the
color key represent the number of cells with a particular
RF value.

Hierarchical clustering, using the hclust function in R, is
used to cluster highly similar cells in the heatmap to each
other. For the 150 taxa tree collection, the trees from one
run are not similar to trees in the other run suggesting that
two different summaries are required to encapsulate the
evolutionary relationships among the trees (see Figure 8).
For the 567 taxa trees, the heatmap (in Figure 9) shows
regions of high similarity among the trees within a run,
and regions of dissimilarity across runs. The clustering

also shows that runs 0, 6, 10 exhibit trees with high levels
of similarity among them. One conclusion is that these
runs converged to similar areas of tree space in the
phylogenetic search and the trees from those runs can be
summarized by a single tree (such as a consensus tree).
This is also true for runs 1, 5, 7, and 8. The clustering of the
other runs (runs 2 and 3) and (runs 0, 6, 11) have lower
levels of similarity.

Overall, the clusterings in Figures 8 and 9 suggest that
there exist several well-supported partitions of the trees
and that each partition should be summarized separately
in order to minimize information loss. Moreover, the
data suggests that the various Bayesian runs among the
150 and 567 taxa trees did not converge to the same
place in tree space. One of the greatest benefits of
convergence is reliability of the trees found by a
phylogenetic heuristic. Hence, RF matrices could be
used as a method to detect convergence between runs.

Conclusion
In this paper, we evaluate the applicability of the
MapReduce framework for developing multi-core phy-
logenetic applications. We design a new algorithm called
MrsRF for computing the all-to-all RF matrix using the
MapReduce framework. An open-source implementation
of our MrsRF algorithm is available from the web [9].

Figure 8
A heatmap illustrating the clustering of the biological
trees across MrBayes runs for the 150 taxa and
20,000 tree set.

Figure 9
A heatmap illustrating the clustering of the biological
trees across MrBayes runs for the 567 taxa and
33,306 tree set.

BMC Bioinformatics 2010, 11(Suppl 1):S15 http://www.biomedcentral.com/1471-2105/11/S1/S15

Page 8 of 9
(page number not for citation purposes)



One of the novelties of computing an RF matrix in a
MapReduce context is that the size of the input (t
evolutionary trees) is much smaller than the size of the
output (t × t RF matrix). Our results show that we
achieve a significant speedup using MrsRF over the
fastest sequential algorithm. On our largest problem size
(567 taxa and 33,306 trees), we attain a maximum
speedup of 18.4 on 32 cores. Our results suggest that
MrsRF is a very scalable approach with increased
performance resulting from larger collections of trees.
Furthermore, our results show the usefulness of running
an algorithm on multiple N × c multi-core cluster
configurations to ensure that the best performance is
attained. Finally, we show an application for RF matrices
related to summarizing a collection of trees and
detecting convergence of a phylogenetic analysis.

Additionally, our results suggest that the storing the hash
table is a better alternative to storing the large RF
matrices, which are not sparse. Since the hash table
contains a list of shared, unique bipartitions, it is much
smaller than the final t × t RF matrix. For example,
storing the hash table of the 33, 306 × 33, 306 RF matrix
takes only 102 MB of storage compared to the 3.3 GB
necessary to store the full matrix (see Table 1). Given the
speed of the MrsRF(p, q), especially in Phase 2, one could
store the hash table and compute the resulting t × t RF
matrix on the fly as needed.

Overall, our results show that MapReduce is an exciting
approach for developing multi-core phylogenetic appli-
cations. Future work includes studying the performance
of MrsRF on larger clusters and tree collections. Finally,
we intend to design additional MapReduce phylogenetic
applications—especially as it relates to reconstructing
more accurate phylogenetic trees efficiently.
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