Appendix A: Tiling selection code

In order to track the highest scoring tiling along with its score, let us associate a set of tiles and a score in an ordered pair \(s = (a, T) \). Here, \(a \) is the score and \(T \) is a (possibly partial) tiling, meaning that it is a set of non-overlapping tiles. When the tiling is partial, the tiles do not tile the entire space. The notation \(s_{\text{score}} \) and \(s_{\text{tiling}} \) will be used to refer to the elements of the ordered pair. The notation \(T(x, R_L, R_H, C_L, C_H) \) will be used to represent a tile with outbreak state \(x \) (0 or 1) and boundaries \(R_L, R_H, C_L, C_H \). \(\emptyset \) denotes the empty set.

Tiling selection algorithm:

1. For a grid of size \(R \times C \)
2. Track best hypotheses: best\(R \), best\(C \)
3. Keep caches \(rCache \), \(cCache \)
4. Init:
 - \(rCache[0] \leftarrow (1, \emptyset) \)
 - \(cCache[0] \leftarrow (1, \emptyset) \)
5. for \(R_H \) from 1 to \(R \)
6. best\(R \) \leftarrow (0, \emptyset)
7. for \(C_H \) from 1 to \(C \)
8. for \(C_L \) from 1 to \(C_H \)
9. \(x \leftarrow \arg \max_{x \in \{0, 1\}} \text{score}(x, R_L, R_H, C_L, C_H) \)
10. \(s \leftarrow (\text{score}(x, R_L, R_H, C_L, C_H), \{T(x, R_L, R_H, C_L, C_H)\}) \)
11. if \(\text{bestC}_{\text{score}} < cCache[C_L - 1]_{\text{score}} \cdot s_{\text{score}} \) then
12. \(\text{bestC} \leftarrow (cCache[C_L - 1]_{\text{score}} \cdot s_{\text{score}}, cCache[C_L - 1]_{\text{tiling}} \cup s_{\text{tiling}}) \)
13. end if
14. end for
15. end for
16. if \(\text{bestR}_{\text{score}} < rCache[R_L - 1]_{\text{score}} \cdot \text{bestC}_{\text{score}} \) then
17. \(\text{bestR} \leftarrow (rCache[R_L - 1]_{\text{score}} \cdot \text{bestC}_{\text{score}}, rCache[R_L - 1]_{\text{tiling}} \cup \text{bestC}_{\text{tiling}}) \)
18. end if
19. \(rCache[R_H] \leftarrow \text{bestR} \)
20. end for
21. return best\(R \)