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Abstract

Background: Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome
association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs.
Protein structure and interaction modelling are used to understand the functional effects of putative mutations
and provide insight into the molecular mechanisms leading to resistance.

Methods: To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium
tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR)
collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to
identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs.
In addition, the effect of identified candidate mutations on protein stability and interactions was assessed
quantitatively with well-established computational methods.

Results: The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid),
rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the
mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was
observed between the minimum inhibitory concentration values and the distance of the mutated residues in the
three-dimensional structures of rpoB and katG to their respective drugs binding sites.

Conclusions: Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent
evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further,
protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy
in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to
improve the design of tuberculosis control measures, such as diagnostics, and inform patient management.
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evolution
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Background
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb),
is an important global public health issue (>8.7 million new
cases, 1.4 million deaths each year [1]). The M. tuberculosis
phylogeny consists of four major lineages (L1 - Indo-
Oceanic, L2 - East-Asian, L3 - East-African-Indian, L4 -
Euro-American), which may vary in their propensity to
transmit and cause disease [2]. The Mtb genome (size
4.4 Mb, GC content 65.5 %) is relatively clonal compared
to most other bacteria, with no horizontal transfer, and low
mutation and recombination rates [3]. Mtb drug resistance
is a serious challenge to effective control [1]. Standard first-
line anti-TB therapy involves four drugs (rifampicin [RMP],
isoniazid [isonicotinic acid hydrazide] [INH], ethambutol
[EM]), pyrazinamide [PZA]), with streptomycin (SM) more
commonly used when treatment fails. Resistance to at
least RMP and INH is denoted as multi drug-resistance
(MDR-TB). It has been estimated that ~4 % of new
cases are MDR-TB [1], and without effective treatment
can remain a source of transmission [4]. Additional resist-
ance to any fluoroquinolone and second-line injectable
drug (e.g. amikacin, kanamycin, capreomycin), is denoted
as extensively drug resistance (XDR-TB), and such cases
have been reported in 100 countries [1].
In routine diagnostic practice susceptibility to anti-

tuberculosis drugs is assessed phenotypically by deter-
mining the proportion of bacteria that will grow at critical
concentrations of the drug [5]. For most anti-tuberculosis
drugs, a single concentration is used, but for some drugs
two concentrations are used to indicate high and low
levels of resistance, where increasing the patient dose may
be of clinical benefit. Tests may be performed on solid or
liquid media and drug concentrations used may vary ac-
cording to type of the media and method used. The use of
binary reporting (sensitive/resistant) of drug susceptibility,
whilst useful for programmic treatment does not inform
about the degree of resistance. Minimum inhibitory
concentrations (MICs) are determined in some research
laboratories where the bacilli are cultured over a range of
drug concentrations [6]. Variation in methods and the crit-
ical concentrations used creates some disparity between
laboratories, particularly for strains where the level of re-
sistance is close to the critical concentration for the drug.
Mtb drug resistance is predominantly conferred by the

accumulation of mutations (single nucleotide polymor-
phisms [SNPs], insertions and deletions [indels]) in genes
coding for drug-targets or -converting enzymes [7]. To
overcome a loss of fitness that arises during the accumula-
tion of such mutations, putative compensatory mechanisms
have been described [8–10]. Many mutations conferring
drug resistance have been characterized, especially to first-
line treatments [11], and their detection offers a means of
rapidly assessing susceptibility to anti tuberculosis drugs to
improve patient management [11, 12]. However, with the

exception of RMP and INH, current molecular tests for
resistance lack sensitivity [7]. RMP is a semisynthetic
antibiotic that binds to the RNA polymerase β subunit
encoded by rpoB, inhibiting transcription. Mutations in
rpoB can cause resistance to RMP [13]. Mutations occur
more frequently in an 81 bp region of the gene termed the
RMP resistance determining region [14, 15], and contrib-
ute to 96 % of resistance phenotypes (predominantly high
level), with S450L (M. tuberculosis nomenclature) being
the most prevalent mutation [16, 17]. It should be noted
however that not all mutations result in the same degree
of resistance. For example, substitution of histidine with
non-polar leucine (H445L) has a much reduced impact
compared to the negatively charged aspartate (H445D)
(MIC ~2 μg/ml vs. >150 μg/ml) [17]. While cross resist-
ance between RMP and other rifamycins, such as rifabutin
and rifapentine, has been recorded [18], the compound
structure of the drugs is different. This leads to subtle
interaction differences between the binding site and the
drugs, and could explain differential mutations causing
resistance [19]. Further investigation using similar pro-
tein modelling approaches could shed light onto the
mechanism of resistance to these drugs and highlight
the key residues required for resistance.
INH is a compound that inhibits mycolic acid biosyn-

thesis by binding to an enoyl-acyl carrier protein reduc-
tase encoded by the inhA gene. It is a pro-drug, which is
activated by a catalase-peroxidase enzyme encoded by
katG. Mutations in katG are more tolerated than those
in inhA, and more frequent in drug sensitive isolates.
The katG 315 mutations S315N/T account for the ma-
jority (60-80 %) of the INH resistance in clinical isolates
[20]. Mutations affecting inhA usually appear in the
promoter region of its operon (denoted inhA-promoter),
leading to increased transcription. Whilst mutations in
katG lead to moderate to high levels of resistance
(always >1 mg/L), those affecting inhA confer a lower
level of resistance [20] (<1 mg/L), and therefore if de-
tected could allow INH to play a further role in treat-
ment [21]. Computational initiatives involving protein
structure modelling have been applied to understand
better the molecular mechanisms of drug resistance,
especially where multiple mutations are present. It has
been established that the binding affinity of RMP-rpoB
is most altered by common S450L and H445Y mu-
tants, leading to less effective binding and resistance
[22]. Similarly, the S94A mutant leads to decreased af-
finity of the drug on INH-inhA binding, and increased
resistance [23].
SM is an aminocyclitol glycoside that binds to 16S

rRNA and inhibits protein synthesis. Mutations in the
S12 ribosomal protein encoded by rpsL have been linked
to resistance. These mutations change the tertiary struc-
ture of the 16S rRNA leading to decreased affinity to
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SM and high-level resistance. The majority (54 %) of SM
resistance in clinical isolates has been attributed to the
K43R mutation in rpsL [24]. Whilst mutations in rpsL
confer a high level of resistance [25], those in rrs (encoding
16S rRNA) are thought to contribute to moderate levels of
resistance [24, 26], and those in gidB confer low levels of
resistance [27, 28]. EMB is a first line drug targeting arabi-
nan synthesis, which affects the mycobacterial cell wall. It
targets members of the embCAB operon, which code for
arabinofuranosyl transferases involved in synthesising com-
ponents of the cell wall. Mutations in embB, especially at
codons 306, 406 and 497, are frequently observed and give
rise to a low level of resistance [29]. The observed range of
low to moderate resistance is mutation-specific [30] and
thought to differ from other drugs in that it is more a
step-wise process, with each mutation increasing the
level of resistance [29]. Mutations in embCAB, ubiA,
and aftA are thought to accumulate and can cause high
levels of resistance observed in some clinical isolates [29].
To improve knowledge of genetic determinants of drug

resistance, the use of whole genome association methods
has been suggested [31]. Here we undertook whole genome
analysis of 144 clinical isolates in the collection of the
Special Programme for Research and Training in Tropical
Diseases (TDR) [32], for which live material is available
to the research community (http://bccm.belspo.be).
The isolates were sourced from the TDR strain bank
and were selected to encompass diverse geographical set-
tings representing the four major M. tuberculosis lineages
[33], as well as include susceptible and resistance strains
within lineage. Drug susceptibility testing was performed
using RMP, INH, EMB, SM, kanamycin (KAN), capreomy-
cin (CAP), ethionamide (ETH), ofloxacin (OFL), and para-
aminosalisylic acid (PAS). No testing was performed for
pyrazinamide (PZA). The completeness of phenotypic
MICs was highest in first-line drugs. A genome-wide
association approach was used on 127 isolates to detect
genetic variants associated with drug resistance. Typically,
failing to account for population structure, in particular
the phylogenetic- or lineage-related clustering, potentially
involving outbreaks, may lead to false positive associations.
Adjusting for principal components and removing
lineage-informative mutations in regression analyses
have been used to control for these confounding effects.
The use of mixed regression models, which include a
SNP-based estimate of between sample kinship as a ran-
dom effect, is considered a more robust approach for iso-
lates that are highly related or with familial relationships
[34]. Application of these approaches identified established
resistance loci [35]. Many of the loci were supported by
evidence of evolutionary convergence, that is, the repeated
and independent emergence of mutations in phenotypic-
ally resistant strains, identified as homoplastic SNPs in a
phylogenetic tree [36].

Mutations in coding regions can have many different
effects on a protein structure and function [37–40].
Structural bioinformatics approaches for modelling and
mutation analysis were applied to the polymorphisms
identified in the rpoB and katG genes. The effect of
mutations on protein stability and interactions was
assessed quantitatively with well-established computa-
tional methods, shedding light on molecular mechanisms
giving rise to observed drug resistance. Whilst second-line
drug resistance was tested for only 40 isolates - not suffi-
cient to perform a genome-wide analysis - a number of
novel mutations in candidate genes were identified.

Methods
Isolates and phenotypic methods
Susceptibility testing was performed in the Antwerp
laboratory where the samples were stored as part of
the Special Programme for Research and Training in
Tropical Diseases (TDR) strain bank [32]. Isolated
Mtb strains were previously collected from various
geographical sites to create a diverse collection of well
characterised drug resistant strains to provide a resource
for the TB research community [32]. Single colonies were
selected and kept on Löwenstein-Jensen (LJ) culture for
drug susceptibility testing. Resistance patterns for the first
line drugs were determined using the proportion method,
with the critical concentrations 0.2 μg/ml INH, 40 μg/ml
RMP, 4 μg/ml SM, and 2 μg/ml EMB. MIC were also
investigated on LJ for RMP (10, 20, 30, 40, 80, and
120 μg/ml), INH (0.05, 0.2, 0.8, 1.6, and 3.2 μg/ml), SM
(1, 2, 4, 8, and 16 μg/ml), and EMB (1, 2, 4, and 8 μg/ml).
The critical thresholds of MIC for calling resistance were
0.2, 2, 4, and 40 μg/ml for INH, EMB, SM, and RMP, re-
spectively [32]. The MIC values were discretised into three
groups (susceptible, intermediate, and fully resistant) using
natural cut-offs in their empirical distributions.
For the second line drugs PAS was tested on LJ at

0.5 μg/ml. The other drugs were tested on Middlebrook
7H11 agar at the following concentrations: OFL 2 μg/ml,
KAN 6 μg/ml, CAP 10 μg/ml, and ETH 10 μg/ml. The
proportion method was used for all second line drugs
with a critical proportion of 1 %. Lyophilised isolates were
sent to the London laboratory where they were grown on
LJ prior to DNA extraction using the Bilthoven RFLP
methodology [41].

Sequence data and variant calling
All DNA samples underwent Illumina sequencing on
the HiSeq 2000 platform at the KAUST genomic facility,
generating paired-end reads of 150 bp (Additional file 1:
Table S1, pathogenseq.lshtm.ac.uk/tdr, Additional file 1:
Table S2). All raw sequence data can be downloaded
from the ENA short read archive (accession number
PRJEB11653). For the raw sequence data, trimmomatic
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(v0.33) software [42] (parameters: LEADING:3 TRAIL-
ING:3 SLIDINGWINDOW:4:20 MINLEN:36) was used
to remove or truncate reads of low quality. High quality
reads were then mapped to the H37Rv reference genome
(Genbank accession: AL123456.3) using the BWA-mem
(v0.7.12) algorithm [43] (parameters: -c 100 -M -T 50).
From the resulting alignments, SAMtools (v1.3) [44] and
GATK (v3.5) [45] software (default parameter settings)
were used to call SNPs and small indels, and the inter-
action of variants between the methods retained. Mapp-
ability values were calculated along the reference genome
using GEM-Mappability software with a k-mer length of
50 bp and a 0.04 % substitution threshold [46]. Non-
unique SNP sites (mappability values greater than one)
were removed. Sample genotypes were called using the
majority allele (minimum frequency 75 %) in positions
supported by at least 20-fold total genome coverage,
otherwise they were classified as missing. Isolates or SNPs
with in excess of 10 % missing genotype calls were ex-
cluded. The final dataset included 144 isolates and 17,952
genome-wide SNPs.

Population structure and association analysis
The best-scoring maximum likelihood phylogenetic tree
rooted on Mycobacterium canetti was constructed by
RAxML (v8.2) software [47] (parameters: -T 10 -f a -x
12345 -m GTRGAMMA -p 12345 -N 100) using the
17,952 high quality SNP sites. M. canetti is a predecessor
of M. tuberculosis and therefore provides a convenient
root to map for both ancient and modern strains. Spoli-
gotypes were inferred in silico using SpolPred [48] and
matched perfectly with available experimental results.
Strain-types were determined using lineage-specific SNPs
[33]. Further population structure assessment was per-
formed using principal components analysis [49], leading to
covariates for adjustment in association analyses. Logistic
regression models were employed to estimate the strength
of association between the binary drug resistance outcome
(resistance vs. susceptible) and the aggregate number of
mutations by coding region, RNA loci, and intergenic
regions, as well as operons. Similarly, proportional odds
models were applied to a trichotomous phenotype
based on MIC values (susceptible, intermediate and full
resistance). As expected a number of genes would be
reported as significant due to a large amount of cross-
resistance between drugs, and we adjusted for the presence
of other resistance in the regression models. The main as-
sociation analysis using mixed models with a SNP inferred
kinship matrix as a random effect was implemented in
EMMA (v.1.1.2) [34]. The operons or functional units
containing clusters of genes under the control of the
same promoter were determined from TBDB [50]. Gene
function was extracted from Tuberculist [51]. Permutation
tests based on resampling MIC values were performed to

establish a statistical significance cut-off for each drug to
account for false positives arising from multiple locus
tests. The established cut-offs were RMP 1.58 × 10-5, INH
1.67 × 10-5, SM 2.73 × 10-5, and EMB 1.77 × 10-5. All statis-
tical analyses were performed using R (v3.2) software. To
identify SNPs enriched by convergent evolution, the phyC
approach [36] was employed using an available implemen-
tation [52].

Protein mutation modelling
An apo crystal structure for katG (1SJ2 [53]) was available
and downloaded from the Protein Data Bank (PDBe [54]).
A protein homology model for rpoB was obtained from the
Chopin database (http://mordred.bioc.cam.ac.uk/chopin).
Reliable models could not be found or generated for embB,
rpsL or other loci identified in our work. Structures of the
drug compounds INH and RMP where obtained from the
chemical components section of PDBe and used in Auto-
dock vina [55] to perform in silico drug docking. The
mCSM (http://structure.bioc.cam.ac.uk/mcsm) and DUET
(http://structure.bioc.cam.ac.uk/duet) web servers were
used to assess changes in protein stability and mCSM-PPI
(http://bleoberis.bioc.cam.ac.uk/mcsm/protein_protein) to
quantify effects on protein-protein interactions [56, 57].

Results
Genetic polymorphisms
The 144 isolates represented a broad global distribution,
sourced from 24 countries in four continents (Additional
file 2: Figure S1, Additional file 1: Table S1). All the African
isolates were lineage 4 strains, and only Asia contributed
lineage 1 strains. Across the isolates, 19,248 SNP sites were
identified, including 17,092 (89 %) in coding regions of the
genome (11,003 [(57 %] non-synonymous mutations). The
SNP allele frequency spectrum revealed, as expected, the
majority of variants were rare (12,244 [63.5 %] SNPs
present in only one isolate; Additional file 3: Figure S2).
Both a phylogenetic tree and a principal component ana-
lysis based on the ~19 k SNPs showed congruent clustering
by lineage (Additional file 4: Figure S3). The tree revealed a
cluster of nine Rwandan strains, which were separated
by low numbers of SNP differences (range 1-17 SNPs),
implying potential transmission. It also revealed one
sample reported as susceptible to EMB was likely to be
resistant due to its location on the tree within a cluster
of isolates with resistance.

Drug resistance
The drug susceptibility test MIC values for the four first
line drugs were available for 144 isolates, and 17 strains
were removed due to poor sequence coverage and qual-
ity. For the remaining 127 isolates, similar numbers of
sensitive and resistant strains were present (Fig. 1). For
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the trichotomised MIC values, the intermediate resistance
group comprised less than 20 % of isolates across drugs
(see Fig. 1 for breakpoints). There was a high correlation
between INH and other drug MIC values (Spearman’s
rho >0.31, p <0.006), and in total there were 14 distinct
drug resistance combinations across the four first-line
drugs, in keeping with the step-wise and combination
nature of therapies. Twelve (9.4 %) isolates were pan-
resistant, 38 (29.9 %) pan-susceptible, and 42 (33.1 %)
multi-drug resistant (using dichotomised values, Additional
file 1: Table S3). The TB profiler [11] was used to infer drug
resistance profiles in silico from known drug resistance
mutations. Assuming the drug susceptibility tests as the
reference standard, the computationally inferred resist-
ance profiles were highly accurate for RMP (sensitivity/
specificity: 0.962/1.000) and INH (0.908/0.935), sug-
gesting the sequencing result would be of clinical value
for detecting MDR-TB. The performance for SM (sensi-
tivity/specificity: 0.511/0.960) and EMB (0.971/0.839)
was less accurate. High predictive values will be needed
to guide the use of SM and EMB in patients with MDR
and XDR-TB. It would appear that the repertories of
mutations and loci for these drugs still need to be eluci-
dated and that intermediate resistance with MIC values
close to the resistance cut-offs could pose problems using

binary outcome values when correlating genotype and
phenotype. Mutations in the gid gene are not included
in TB Profiler as they cause only intermediate levels of
SM resistance. We observed twenty gid markers and
their incorporation increased the SM sensitivity to
82 %. Further, it was predicted that 14 (11 %) isolates
were likely to be PZA resistance. In particular, each of
the 14 isolates had at least one known drug resistance
conferring mutation in the pncA gene (Ala171Pro,
Arg121Pro, Asp8Ala, Gln10Pro, His57Pro, His82Asp,
Ile31Ser, Ser66Pro, Thr76Pro [n = 2], Trp68Ser, Tyr103His,
and Val125Gly [n = 2]).
In an attempt to search for new mutations involved in

drug resistance a genome wide association analysis was
performed on both trichotomous MIC and binary resist-
ance phenotypes. Both single SNP and locus-wide asso-
ciation testing were considered. Similar to a rare variant
analysis, the number of (non-synonymous) mutations
per sample, per gene and operon was calculated, and
correlated with the phenotype. In addition to association
analysis, the complementary phyC approach was applied.
This approach aims to identify loci under convergent
evolution in resistance branches of the tree. A summary
of all statistically significant results is presented (Table 1),
and we focus on each drug separately.

Fig. 1 The distribution of MIC values for rifampicin, isoniazid, streptomycin, and ethambutol. The red vertical line is the standard susceptible-resistance
threshold (rifampicin 40 μg/ml, isoniazid 0.2 μg/ml, streptomycin 4 μg/ml, ethambutol 2 μg/ml). The two blue vertical lines define the three
levels (susceptible, intermediate and full resistance): rifampicin (10, 120 μg/ml), isoniazid (0.05, 3.2 μg/ml), streptomycin (1, 16 μg/ml) and ethambutol
(1, 8 μg/ml). MICminimum inhibitory concentrations
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Rifampicin
Genome-wide analysis using both binary trait or MIC
values revealed, as expected, that the rpoB gene (p <1 ×
10-20) and its operon (p <1 × 10-10) were associated with
RMP resistance. One tri-allelic SNP in rpoB at position
761,155 (codon 450: S450L 30/127, S450W 2/127) was
associated with the majority of RMP drug resistance
(60 %). There were six significant SNPs under conver-
gent evolution (p <0.05) in rpoB (codons 450, 445 (x2),
435, 400, and 491), one in rpoC (N416S mutation, two
isolates, a known compensatory mechanism) and one in
lldD2 (codon 2 synonymous, 16 isolates). Fifty isolates
(93 % of RMP resistant strains) had at least one muta-
tion in the rpoB gene in the RMP resistance determining
region (codon range 400-491) (Fig. 2a). Three isolates
had two mutations in this region. Two isolates had muta-
tions in codons 400 and 450 and one strain had mutations
in codons 450 and 491. All except four isolates with a mu-
tation in rpoB had MIC values of at least 120 μg/ml and
the remaining four had values of 80 μg/ml.

Isoniazid
The association analysis revealed the Rv1907c-furA
operon (p <1 × 10-13), which contains the katG gene
(p <1 × 10-9) as the most significant association (Fig. 2b).
Other loci identified included the fabG1-hemZ operon
(contains the inhA gene and promoter). Using MIC values,
the Rv1907c-furA (p <2 × 10-5) operon and katG and
Rv1979c genes were found to be associated with INH
resistance. A SNP-based GWAS revealed a single poly-
morphism association in katG (position 2,155,168,
S315T/N, P <4.33 × 10-18). This SNP was supported by
phyC analysis, which also revealed another site under
convergent evolution in inhA promoter. Overall, 47
(75 % of INH resistant) strains have a SNP in position
2,155,168 (S315T 41 isolates, S315N four strains), of
which 43 have an MIC value of at least 3.2 μg/ml, while
the remaining two had values of 0.8 and 1.6 μg/ml.
Twenty-one isolates have a SNP in the fabG1-hemZ

operon, with MIC values ranging from 0.8 to ≥3.2 μg/ml.
Of the 16 isolates that only have one SNP in the fabG1-
hemZ operon, half had MIC values in excess of 0.8 μg/ml.
The three isolates with mutations at both the fabG1 pro-
moter and inhA had an MIC value in excess of 1.6 μg/ml.
Three (of six) isolates with a mutation in the promoter
and an MIC of at least 3.2 μg/ml also have the katG
S315T mutation. One mutation in the katG promoter
region was found in a drug sensitive sample.

Streptomycin
The association analysis identified the rpsL-rpsG operon
and the rpsL gene as being associated with SM resistance
(Fig. 2c). The rpsL locus was also found by analysing MIC
values, and a SNP-based approach identified one mutation
(position 781,687, K43R, 11 isolates, 26 % of resistant
strains) within the gene. The phyC method identified two
SNPs in the rRNA gene rrs (514 A- > C, four isolates; 517
C- > T, three strains). All isolates, except one, had an MIC
of greater than 16 μg/ml. One sample with the 1,472,362
C- > T mutation had an MIC of 8 μg/ml.

Ethambutol
A binary phenotype analysis identified the embA-embB
operon (p <1 × 10-10) and the embB gene (p <1 × 10-13)
(Fig. 2d). This result was confirmed in an analysis of the
MIC phenotype (operon p <1 × 10-10, gene p <1 × 10-8).
A SNP-based association analysis revealed one in the
embB gene (position 4,248,003) and one in the promoter
of cadI, where the latter was also found using the phyC
method (four isolates) (Fig. 2e) The phyC approach iden-
tified seven SNPs in embB (codons 306 [x2, 22 isolates],
354 [four resistant isolates], 406 [x2, 12 isolates], 497
[seven isolates], and 1024 [two isolates]). Three isolates
had mutations in two of these positions and all others
had only one mutation. There was a great range of MIC
values in isolates containing these mutations with some
codons having both sensitive and resistant strains. For

Table 1 First-line drug related SNPs identified in association and convergent evolution analysis

Drug Gene SNP mutations (% in resistant isolates)

Rifampicin rpoB T400A (3.8), D435V (9.4), H445D/Y (11.3),

H445R (5.7), S450W/L (60.4), I491V/F (3.8)

Isoniazid katG S315N (69.2)

Isoniazid Rv1482c-fabG1 (inhA-promoter) C-15 T (24.6)

Streptomycin rpsL K43R (24.4)

Ethambutol embB C12T (5.9), M306I (14.7*), M306V (17.7*), D354A (11.8), G406S/C (11.8),
G406D/A (11.8**), Q497P/R (17.7***), D1024N (8.8)

Ethambutol cadI C-39 T (8.8)

The genes were identified using aggregated mutation mixed models. The SNPs were identified using the phyC method and those also found using the GWAS
mixed model approach are highlighted in bold
SNP single nucleotide polymorphism, GWAS genome-wide association study
*observed in “sensitive” strains at frequency 3.2 %; **4.3 %; ***1.1 %; all P < 1 × 10-5 from association analysis

Phelan et al. BMC Medicine  (2016) 14:31 Page 6 of 13



example, 6/22 isolates with mutations in codon 306 had
MIC values of at most 2 μg/ml. Mutations in the embA
promoter were also present, but not found to have a
consistent effect on the MIC values when combined with
mutations in embB. The additive effect of mutations in
the candidate genes embB, embA, embA promoter, embC,
embR, and ubiA correlated modestly with MIC values
(rho = 0.24, Additional file 5: Figure S4). The aggregated
mutation approach revealed that the pncA gene may be
associated with EMB resistance, but this was most likely

due to cross-resistance from the predicted PZA resistant
cases (n = 14).

Use of MIC values
The correlation between association p-values using bin-
ary resistance (susceptible, resistant) and trichotomous
MIC was modest (RMP 0.386, INH 0.311, EMB 0.309,
and SM 0.360), but led to near identical strongest hits.
However, there were some discrepancies in the findings
for EMB and SM. The majority of isolates (11/15) that

Fig. 2 SNPs in candidate genes in isolates with a single mutation in each locus. The bars represent the allele frequency of the SNPs, and are
coloured according to the MIC value. Black dots under bars represent non-synonymous mutations. Blue and red crosses represent mutations that
have been found to be significant in the association and the convergent evolution phyC analyses, respectively. Structural data are available only
for rpoB and katG (bottom panels). The protein stability and protein-protein interaction changes induced by the SNP as calculated by mCSM
software are represented by the red and blue points, respectively, and magnitude is represented on the right y-axis. The distance of each mutated
codon from the docked drug (left y-axis) is denoted by the black crosses. a Rv0667 rpoB (rifampicin). b Rv1908c katG (isoniazid). c Rv0682 rpsL
(streptomycin). d Rv3795 embB (ethambutol). e Rv2641 cadI (ethambutol). SNPs single nucleotide polymorphisms, MIC minimum inhibitory concentration
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were EMB phenotypically susceptible, but with known
drug resistance mutations, had an MIC value of 2 μg/ml.
This value is on the upper bound of the sensitive range,
but low-level resistance may be predicted as they had
known EMB drug resistance mutations. The majority of
SM false negative (15/22) isolates had an MIC value of
8 μg/ml, which is on the lower limit of the resistance
cut-off. Mutations in gid are known to cause low levels
of resistance, and the majority (19/22) of false negative
strains contained mutations in that gene. The additive ef-
fect of mutations in both EMB and SM candidate genes
correlated with increasing MIC value (EMB: rho = 0.24,
slope = 0.29, p = 0.003; SM: rho = 0.48, slope = 3.59, p =
1.65 × 10-8; Additional file 6: Figure S5), and may provide
some evidence of accumulating low resistance mutations.
An exciting prospect is the use of MIC values to infer

the additive and interaction effects of each mutation.
Unfortunately, the relatively small sample size did not
allow a rigorous statistical approach to look for interac-
tions. However, the frequencies of combinations of mu-
tations for RMP, INH, EMB, and SM, and their MIC
values are presented (Additional file 1: Table S4). Using
these data, statistical models were fitted with all mutations
included, to allow an assessment of the MIC variation ex-
plained and their independent effects in the presence of
others (Additional file 6: Figure S5). For RMP and INH, a
high proportion of MIC variation is explained by single mu-
tations (RMP: rpoB 450, 48.4 %, INH: katG 315, 73.8 %).
However, for EMB and SM, single mutations explained at
most ~30 % (SM: rpsL codon 43 – 32.4 %, EMB: embB
codon 306 – 30.0 %), with the largest proportion due to
unknown factors (SM: 44.0 %, EMB: 37.4 %). This ana-
lysis further supports that other variants need to be
identified for EMB and SM drugs.
We compared the association results from the mixed

models using all available data to regression-based ap-
proaches that adjusted for the principal components
(explained ~60 % of variation) and removed 414
lineage- and clade-specific markers and eight highly
related Rwandan strains (Additional file 4: Figure S3).
There was a moderate level of correlation between the
approaches for all outcomes (minimum rho - RMP:
0.66, INH: 0.54, SM: 0.20, EMB: 0.34). This correlation
translated into identical top hits for association (Table 1),
except for the cadI gene, which was identified only by the
mixed model approach at the stringent significance cut-
off. CadI is a protein that can be induced by cadmium,
and is thought to possess similar functions to the
metallothioneins and protects the bacterium against
metal toxicity (http://tuberculist.epfl.ch).

Second-line drugs
Forty-four (35.8 %) isolates were tested for second line drug
resistance, and the polymorphism in known candidates was

considered (Table 2). Of the six isolates that were resistant
to PAS, mutations at candidate genes (folC, ribD, thyA, and
thyX) were observed in all isolates (folC E40G, I43G,
D135G; thyA Y94C, Q97R, V135F; and thyX promoter
G-16A (n = 2), T-43G). Seven isolates had ETH resistance,
of which all had mutations in drug resistance candidate
genes (ethA R469P, n = 1; ethR-fabG1 promoter region C-
15 T, n = 6; and inhA gene S94, n = 1). Three isolates had
resistance to OFL, with known mutations in the gyrA gene
(D94G, n = 2; N499D, n = 1). Two isolates had resistance
to CAP, with unreported mutations in candidate genes (rrs
A1205G, n = 1; tlyA gene G196E, n = 1). No indels were
identified in these genes.

Effects on protein structure and function
The availability of structural information for katG and
rpoB genes allowed us to assess the potential functional
effects of the mutations identified and their ability to
predict drug resistance. The respective INH and RMP
drugs were computationally docked into the models,
delimiting the residues of the drug binding site. The
mCSM and DUET servers were used to quantify the in-
fluence of mutations on protein stability and protein-
protein interactions (measured by the change in Gibbs
free energy ΔΔG between the wild-type and mutant
structures). These factors, individually or combined could
lead to drug resistance. The predictions obtained are
summarized in Additional file 1: Table S5.
Across the eleven RMP resistance codons analysed in

rpoB and ten INH resistance codons of katG, no strong
correlation of the changes in protein stability with the
proportion of drug resistant isolates with each mutation
was observed (rho < 0.05, p >0.05). There was weak evi-
dence that drug resistant isolates had mutations that were
more destabilizing (p <0.10). The mutations in katG were
not located near the homodimer interface, while further
structural information is necessary to characterise the
rpoB interactions. However, across both drugs there was a
strong association between (a shorter) distance of the mu-
tation to the ligand in the protein structure and resistance

Table 2 Second-line drug related mutations in candidate genes

Drug No.
resistant

Locus (codon [no. isolates])

Para-aminosalisylic acid 6 folC (E40G[1], I43G[1], D135G[1]);

thyA (Y94C[1], Q97R[1], V135F[1]);

thyX promoter (G16A [2], T43G [1]).

Ethionamide 7 ethA (R469P[1]);

ethR-fabG1 promoter (C15T[6]);

inhA (S94[1])

Ofloxacin 3 gyrA (D94G [2]; N499D [1]).

Capreomycin 2 rrs (A1205G[1]); tlyA (G196E [1])

Previously unreported in bold
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(greater MIC values) (rpoB rho = -0.79, p = 8.1 × 10-6; katG
rho = -0.72, p = 0.0012) (Fig. 3). For RMP, isolates with
MIC values of at least 80 μg/ml had mutations located
close to the drug binding site (median distance of 5.77 Å,
all values less than 10 Å) as depicted in Fig. 4, compared
to isolates with MIC values of ≤10 μg/ml (median distance
of 37.08 Å). For INH, isolates with MIC resistance values
of at least 3.2 μg/ml had mutations directly interacting
with the drug (median 2.15 Å) (Fig. 4), whilst isolates with
intermediate resistance (1.6 μg/ml) mutations located fur-
ther away (median 9.93 Å), and mutations in susceptible
strains (MIC values less than 0.8 μg/ml) were even more
remote (median 53.97 Å). Additional file 7: Figure S6
shows the molecular interactions established by mutated
residues in katG and rpoB, with most of the effects of

mutations influencing interactions established directly
with the drug molecule, by destabilizing the surrounding
region via loss of interactions or the introduction of steric
clashes. Whether we can predict the resistance of a mu-
tation using its distance to a ligand site will have to be
verified using other protein structure models, when they
become available.

Discussion
Early characterisation of drug resistance mutations would
assist TB patient management and avoid treating individ-
uals with inefficacious toxic regimens [11]. Current testing
for resistance to most anti-tuberculosis drugs, as applied
to isolates in TDR, involves isolation and culture of the
bacteria followed by exposure to the drug, a process that
takes weeks or months [11]. However, the direct sequen-
cing of M. tuberculosis from sputum from suspected drug
resistant patients [58] and the development of rapid strain
profiling tools, suggests that culture-free approaches have
a role in the management of TB [11]. For some drugs,
such as RMP and INH, resistant mutations are well
characterised, but for others such as SM, EMB and
second-line treatments, existing databases lack specifi-
city and sensitivity [11]. We performed a genome-wide
association approach on SM and first-line treatments
and assessed its ability to confirm existing, and identify
new, variants that cause drug resistance. Whilst genome-
wide association methods have become established for
disease susceptibility studies in humans, their application in
pathogens is still in its infancy [31]. Population structure
can confound analyses and lead to false positive results. For
TB, widespread drug resistance may be over represented in
particular lineages or clades, causing lineage specific SNPs
that confound analyses. This confounding was handled by a
mixed model, but alternative approaches were considered,
in particular, removal of all lineage- and clade-specific
markers or inclusion of principal components as surrogates
for lineages within the regression model. These approaches
led to near identical top association hits, in part reflecting
the strong signal of the resistance-related mutations across
clades, the dominant clustering of discrete lineages in the
phylogeny, and the modest number of highly related or
outbreak-based isolates (e.g. Rwandan strains). Our work
suggested that the use of kinship matrices within mixed
models may avoid the removal of lineage-informative SNPs
and highly related strains, especially those involved in an
outbreak or transmission study. This observation is sup-
ported in human GWAS studies with familial relationships,
where mixed models have been found to be more robust
to false positive associations than principal components
adjustment [59].
A limitation of the study was the representation of

geographic origins and lineages, as we were restricted by
availability of strains collected for this extremely well

Fig. 3 Boxplot showing the distributions of the distance of the
mutated codon to the drug for all the SNPs in each MIC level in (a)
RMP-rpoB and (b) INH-katG. Vertical red line is the resistance cut-off.
SNP single nucleotide polymorphism, MIC minimum inhibitory
concentration, RMP rifampicin, INH isoniazid
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characterized collection. A second limitation was the
small sample size, especially for analyses of second-line
drugs, where a genome-wide approach could not be im-
plemented. However, where sample sizes were sufficient
our genome-wide analysis reported genes known to be
involved in first-line RMP, INH, SM, and EMB drug
resistance. The use of MIC values has been advocated
as a more sensitive measure, but the potential lack of
a symmetric distribution of values (as shown in our data)
could lead to invalidation of assumptions for linear
models. We took the pragmatic approach of discretising
the values into three natural groups (resistant, sensitive,
and intermediate) allowing an alternative modelling
strategy (proportional odds model) to be employed. The
correlation between association analysis p-values using
both binary and trichotomised MIC values was modest
(range: 0.31-0.39). Some isolates with intermediate SM
resistance had no known drug resistance mutations in
rpsL and rrs, and even after inclusion of gid mutations,
additional causal mutations or genes to explain phenotypic
variation remained unidentified. Larger sample sizes
would facilitate the use of raw MIC values and therefore
advance the detection of variants that confer intermediate
resistance. Many of the results were also confirmed using
convergent evolution methods, which require smaller
sample sizes than genome-wide approaches, and should
prove to be a powerful and robust method to detect drug
resistance mutations in M. tuberculosis, and possibly other
pathogens. There are a number of isolates that have very
high levels of resistance to both EMB and SM but do not
present any mutations in known candidate genes. It is
evident that there are rare SNPs occurring in unknown
genes that confer EMB resistance. Similarly, there are
many isolates with more than one mutation in candi-
date genes and high levels of susceptibility. Not all mu-
tations in these genes will have an effect on resistance
levels, and interactions between the drug and its target
should be considered.

The use of protein structures determined by X-ray
crystallography or as homology can provide extra valid-
ation and an insight into the mechanism of drug resist-
ance conferred by mutations. It has been shown that
mutations in the RMP binding site can cause resistance
due to disturbance of the active site both in Mtb and in
other bacteria [22]. An exciting finding was the strong
correlation between the MIC values and the distance in
the three-dimensional structure of the mutated residue
to the drug docking ligand. This observation seems
novel to Mtb. If it holds for other genes as their protein
structures become available, then potential drug resist-
ance mutations could be predicted in silico in a genome-
wide screen. The binding sites of the rifamycins have
been shown to be in similar locations and these observa-
tions would be expected to be similar for closely related
drugs [60]. It could also provide a future high through-
put way of integrating genomic and protein structure
data to make predictions about drug resistance muta-
tions. In particular, rare SNPs with low allele frequencies
may not be detected in association analyses; however,
prediction of the distance of the mutated codon to a ligand
or its effect on overall stability or protein-protein interac-
tions can provide a complementary approach to identify
new drug resistance conferring mutations. Indeed, variants
such as the rpoB V170F mutant are present in only one iso-
late in our dataset but it was flagged up as an interesting
SNP due to its proximity to the docked RMP ligand in the
homology model. This rpoB SNP has been attributed to
drug resistance by earlier studies12.

Conclusions
Overall, our work has demonstrated the potential of the
genome-wide association and selection approaches to
identify mutations and genes associated with resistance.
We have also shown that if protein structures are avail-
able, then the effects of mutations in genes on resistance
may be predicted in silico. This could facilitate the

Fig. 4 Mutations in binding site regions. a depicts the spatial distribution of mutated residues in the rpoB-RMP complex while (b) shows the
residue Ser315 in katG-INH complex (residues depicted with carbons in green). The distance between the residues and the ligands (depicted with
carbons in dark grey) vary from 2.1 to 5.7 Å. RMP rifampicin, INH isoniazid
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prediction of the effects of mutations on novel drugs
and potential resistance. Ultimately, such insights will
assist with patient treatment and management, and dis-
ease control.

Availability of data and materials
All raw sequence data can be downloaded from the ENA
short read archive (accession number PRJEB11653).

Additional files

Additional file 1: Table S1. The isolates according to geographic
location and phenotypic drug resistance. CAR Central African Republic; DRC
Democratic Republic of Congo, L1-L4 lineages 1 to 4, (first line drugs)
RMP = rifampicin, INH = isoniazid, SM= streptomycin, EMB = ethambutol;
(second line drugs) OFL = ofloxacin, KAN = kanamycin, CAP = capreomycin,
Et = ethionamide, P = Para-aminosalisylic acid. Table S2. The isolate
ENA accession numbers and MIC values. RMP rifampicin, INH isoniazid,
SM streptomycin, EMB ethambutol. Table S3. Drug susceptibility profiles for
rifampicin, isoniazid, streptomycin and ethambutol. R = resistance, S = sensitive;
13 different profiles were identified across 127 independent isolates;
Multi-drug resistant in italics. Table S4. Combinations of mutations and
their frequency (N) in drug resistance candidate genes. a) Rifampicin. b)
Isoniazid. c) Streptomycin. d) Ethambutol. * single mutation, ** double
mutations, *** triple mutations; SNP mutations in a single sample have
been aggregated into a “rare” column. Table S5. Predicted effects of
mutations. (DOCX 55 kb)

Additional file 2: Figure S1. The global distribution of geographic
origin and lineage of the isolates. Lineages one to four are represented
by blue, green, purple, and red, respectively. (PNG 265 kb)

Additional file 3: Figure S2. SNP allele frequency spectrum. A large
number of rare variants are observed. Peaks with higher allele frequency
reflect the presence of lineage and sub-lineage specific SNPs. (PNG 33 kb)

Additional file 4: Figure S3. Population structure analysis of the 144
isolates show clustering by lineage (Lineages one to four are represented
by blue, green, purple, and red points, respectively). (a) A phylogenetic
tree rooted with M. canetti. (b) First two principal components represent
33 % and 30.5 % of the variation explained between isolates, respectively.
(ZIP 105 kb)

Additional file 5: Figure S4. The relationship between the total
number of non-synonymous SNPs in candidate loci and the MIC values.
The size of the circle represents the number of isolates. a) Ethambutol
(embB, embA, embA promoter, embC, embR and ubiA). b) Streptomycin
(rpsL, rrs). The size of the circles is proportional to the frequency. The MIC
values tend to increase with the number of non-synonymous mutations
(ethambutol: rho = 0.24, slope = 0.29, p = 0.003; streptomycin: rho = 0.48,
slope = 3.59, p = 1.65 × 10-8). The horizontal blue lines refer to the resistance
cut-offs. (ZIP 92 kb)

Additional file 6: Figure S5. Percentage of the variation in MIC values
explained by each mutated codon in candidate genes. Bars in red represent
significant independent associations with increased MIC (p < 0.05). a)
Rifampicin. b) Isoniazid. c) Streptomycin. d) Ethambutol. (ZIP 231 kb)

Additional file 7: Figure S6. Molecular interactions established by
wild-type residues in katG and rpoB residues. (A) The interactions established
by Ser315 in katG. Given the proximity of the residue to the ligands INH and
HEM, mutations to Asn and Thr, with slightly larger side chains, would
potentially cause steric clashes. (B) The interactions of Asp435 in rpoB. It
directly interacts with RMP via polar interactions that would be disrupted by
mutations to Val. (C) Thr400 in rpoB is at the end of an alpha helix establishing
intra molecular interactions. Giving its distance to RMP, it would be expected
that its mutation to Ala would be a lower impact, which would arise from
alosteric changes. (D) Ser450 establishes strong intra molecular interactions in
the RMP binding site. Mutations to larger residues (Trp and Leu) could disrupt
the packing of the region and therefore binding. (E). Ile491 performs
hydrophobic interactions with RMP and its neighbouring residues.

Mutations to Phe or Val would compromise packing, either inducing
steric clashes or compromising packing. (F). His445 performs strong
intra molecular interactions, including a donor-pi (blue dashes) and
hydrogen bond (red dashes). Mutations to residues Asp, Tyr or Arg
would imply in the loss of the pi interaction as well as potential intro-
duction of steric clashes. (PNG 749 kb)
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