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Abstract

Background: Malaria control in South America has vastly improved in the past decade, leading to a decrease in
the malaria burden. Despite the progress, large parts of the continent continue to be at risk of malaria transmission,
especially in northern South America. The objectives of this study were to assess the risk of malaria transmission
and vector exposure in northern South America using multi-criteria decision analysis.

Methods: The risk of malaria transmission and vector exposure in northern South America was assessed using
multi-criteria decision analysis, in which expert opinions were taken on the key environmental and population risk
factors.

Results: Results from our risk maps indicated areas of moderate-to-high risk along rivers in the Amazon basin,
along the coasts of the Guianas, the Pacific coast of Colombia and northern Colombia, in parts of Peru and Bolivia
and within the Brazilian Amazon. When validated with occurrence records for malaria, An. darlingi, An. albimanus
and An. nuneztovari s.l., t-test results indicated that risk scores at occurrence locations were significantly higher
(p < 0.0001) than a control group of geographically random points.

Conclusion: In this study, we produced risk maps based on expert opinion on the spatial representation of risk of
potential vector exposure and malaria transmission. The findings provide information to the public health decision
maker/policy makers to give additional attention to the spatial planning of effective vector control measures.
Therefore, as the region tackles the challenge of malaria elimination, prioritizing areas for interventions by using
spatially accurate, high-resolution (1 km or less) risk maps may guide targeted control and help reduce the disease
burden in the region.
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Background
Malaria continues to exact a toll in many developing
countries where it is endemic through the economic and
health burden it imposes. Malaria has historically con-
tributed to increased health costs, decreased productiv-
ity, and slow rates of economic growth in 80 developing
countries [1]. An estimation in 2013 showed that about
198 million cases and 584,000 deaths related to malaria
occurred globally [2]. Although sub-Saharan Africa bears

a disproportionately larger burden of the disease, South
America also bears a significant case burden, with ap-
proximately 427,000 confirmed cases and 82 deaths in
2013 [2]. Of these, the nine countries in northern South
America (NSA) accounted for ~ 90 % of the malaria
cases in the continent [3]. Despite these figures, there
have been vast improvements in malaria control in the
past decade [2], so much so that malaria elimination in
the NSA now seems feasible in the foreseeable future.
Global efforts to eliminate malaria such as the Roll

Back Malaria program aim to “shrink the malaria map
by progressively eliminating malaria from endemic mar-
gins inward” [4]. Achieving malaria elimination in the
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NSA, as in other region, will involve the systematic and
synergistic use of multiple strategies including targeting
areas for malaria interventions based on a stratifica-
tion of risk. Spatially accurate, high-resolution risk
maps delimiting areas of likely human-vector contact
would not only help prioritize areas for malaria inter-
vention, but also aid monitoring and evaluation of
such interventions [5].
The stratification of risk depends on how risk is de-

fined, yet there is currently no standard definition. Risk
definitions have been dependent on the subject matter
or purpose of the investigation [6]. Risk is broadly de-
fined in public health as “the probability of disease de-
veloping in an individual in a specified time interval” [7].
Malaria risk is however not clearly defined due to the
complexity of the disease that involves multiple hosts,
vectors, and pathogens. Malaria risk has been defined
using human cases (e.g. incidence and prevalence [8]),
probability of Plasmodium presence [9], intensity of
transmission [10], or its vectors (e.g. vector exposure
[5], vector presence [11], and habitat suitability of
vectors [12]). Thus, malaria risk is broadly considered
as an array of factors that relate to the presence and
density of vectors and parasites, all of which vary in
space and time.
The direct estimation of malaria risk often involves

malaria diagnosis and its relationship to populations at
risk [13], but periodic, field-based survey data are typic-
ally limited in space and time in developing countries.
Alternatively, in areas with limited data, malaria risk
may be estimated indirectly through environmental co-
variates, which often show strong associations with mal-
aria and mosquito distributions. The combination of
these environmental surrogates in geographic informa-
tion system (GIS) decision-support algorithms can reveal
unexpected spatial patterns of malaria risk at unprece-
dented spatial resolutions [5]. Many types of spatial data
derived from remotely sensed observations such as
digital elevation models from the Shuttle Radar Topog-
raphy Mission (SRTM) are now publicly available for
most parts of the world, thus facilitating the potential
estimation of malaria risk across large areas across mul-
tiple political units [5].
One method of mapping disease risk with limited

field-based epidemiological or vector data is multi-
criteria decision analysis (MCDA). This approach is pre-
ferred for its participatory framework, which employs
statistical methods and human intuition, allows expert
interaction, and accommodates non-linear relationships
common between disease organisms and the environ-
ment [14, 15]. MCDA allows the combination of mul-
tiple environmental factors in estimating disease risk by
employing decision rules derived from existing know-
ledge or hypothesized understanding of the causal

relationships leading to disease occurrence [5, 15]. The
output is a composite map which indicates lower or
higher potential of disease occurrence in a location rela-
tive to surrounding areas on the same map [16]. MCDA
has been useful in assessing risk of vector-borne diseases
such as predicting suitable areas for rift valley fever in
Africa [17], prioritizing areas of tsetse fly control in
Zambia [18], malaria vector control in Madagascar [19]
and risk of malaria vector exposure in parts of South
America [5]. Building on the work by Fuller et al. [5], we
set out in this study to evaluate malaria risk in the NSA
based on environmental factors to produce risk maps
that could guide targeted malaria interventions and po-
tentially accelerate the drive towards malaria elimination
in the region.

Methods
Study area
The NSA comprises of Colombia, Ecuador, French
Guiana, Guyana, Peru, Suriname, Venezuela, and parts
of Bolivia and Brazil (Fig. 1). The climate of the NSA is
predominantly tropical, i.e., hot, wet and humid,
especially within the Amazon rainforest and along the
Atlantic and Pacific coasts [20]. Areas in the East around
the Andes have high elevations (average height of 4,
000 m) and cooler weather (mean temperature range
18–22 °C) [21]. The vegetation follows a similar pattern:
the tropical rainy regions and the Amazon basin have
dense rainforests, while the savannas dominate in areas
of highly seasonal rainfall such as the Llanos of
Colombia and Venezuela and parts of central Brazil [22].
Vegetation along the humid slopes of the Andes also
vary as elevation increases, with tropical trees at lower
altitudes giving way to sub-tropical trees and finally
grasses at higher elevations [22]. The countries also ex-
hibit socio-economic differences which affect land use
patterns and invariably disease incidence. For example,
the large-scale soybean production in Brazil has not only
led to increased revenue from external trade, but also
higher deforestation [23], which has been linked to in-
creased malaria and mosquitoes [24, 25].
Amongst the reported malaria infections in the NSA,

Plasmodium vivax accounted for 75 %, followed by P.
falciparum (25 %) [2]. Although malaria control is firmly
established in the nine countries and reported cases are
declining, only Ecuador is currently in the pre-
elimination phase [2]. Many Anopheles vectors have
been implicated in malaria transmission in the region
[11, 26], and An. albimanus (Wiedemann 1820), An.
darlingi (Root 1926) and An. nuneztovari s.l. (Gabaldon
1940) are the dominant species. All three vectors can
transmit both P. falciparum and P. vivax [25, 27] and
are anthropophilic [28, 29]. They are night biters exhibit-
ing exophagic and exophilic feeding [27, 30–35]. They
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have been found in a wide range in the study area, in-
cluding Colombia [34, 36], Amazonian plains of Ecuador
[37], the Amazonian South and western Venezuela [38]
and Brazil [39].

Data sources
Sample locations for both parasite species were obtained
through the Malaria Atlas Project (MAP) website. The
data comprises surveys conducted by researchers and or-
ganizations between 1985 and 2009 in the various coun-
tries. Downloaded data also contained geo-referenced
location of cases, the diagnostic method used for detec-
tion, age, the number of individuals examined, and

number of individuals with parasites in the blood. Simi-
lar georeferenced data (Fig. 1) for the 3 vector species
were obtained through the Walter Reed Biosystematic
Unit [40] and the Global Biodiversity Information Facil-
ity [41]. These records included locations where both
larvae and adult An. darlingi, An. albimanus and An.
nuneztovari s.l had been sampled by different investiga-
tors between 1980 and 2007.

Variable selections
Nine parameters associated with the environment, in-
cluding climate were chosen based on their association
malaria and its vectors (Table 1). These included factors

Fig. 1 Map of the NSA showing An. albimanus, An. darlingi, An. nuneztovari s.l. and malaria sample locations
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related to availability of vector breeding sites (wetlands,
precipitation and topographic wetness index -TWI,
which was derived from the digital elevation model),
thermal and altitudinal limits for parasites and vectors
(elevation and temperature), and access to blood
meals (population density, roads, urban areas and
deforestation).

Procedure
Risk map generation
Two data layers (elevation and TWI) were resampled to
1 km spatial resolution to maintain consistency with the
other layers originally provided at 1 km. Resampling was

carried out using the nearest neighbor algorithm, which
preserves original data values. A binary discrete raster
was created from the elevation layer to serve as a con-
straint, excluding areas with elevation >1800 m where
risk of transmission was assumed to be negligible [5].
Because the influence of categorical variables on risk of
malaria and vector exposure was based on access
(Table 2), we created distance layers measuring proxim-
ity to the features before further analyses.
The data layers contained variably scaled information;

hence, fuzzy functions were employed to standardize all
the layers to a common data range needed to facilitate
factor integration. Fuzzy functions measure the degree

Table 1 Risk factors and fuzzy membership functions used to create risk maps

Data Source Factor Control points Fuzzy function Rationale

Deforestation Global Forest change [54] Distance (km) 0, 5 Linear ↓ Vectors are found within 5 km of deforested areas

Elevation SRTM 90 m Elevation (m) 500, 1800 J-shaped ↓ Exposure to vectors decrease above 500 m and is
non-existent above 1800 m

Population LandScan Population density 2, 50, 100, 150 Sigmoidal ↑↓ Populations between 2 and 150/km2 are sufficient
for malaria transmission

Precipitation WorldClim Precipitation (mm) 0, 80 Linear ↑ Precipitation of 80 mm is suitable for vectors for
stable transmission to occur [43]

Roads DCW Distance (km) 0, 5 Linear ↓ Transmission occurs within 5 km of roads where
blood meals are available

Temperature WorldClim Temperature °C 18, 22, 32, 40 Sigmoidal ↑↓ Sporogony starts at 18 °C and is completed at 22 °C,
vector survival decreases above 32 °C and death
occurs at 40 °C [43]

TWI SRTM 90 m Soil Saturation (%) 0, 5 Linear ↑ An area requires about 5 % water saturation to
serve as breeding site

Urban areas DeLorme, Inc. Distance (km) 1, 10, 20, 30 Sigmoidal ↑↓ Vectors are absent in urban areas but found in the
urban periphery

Wetlands WWF Distance (km) 0, 3 Linear ↓ Vectors are found within 3 km of wetlands

Abbreviations and Symbols: SRTM Shuttle Radar Topography Mission, DCW Digital Chart of the World, WWF World Wildlife Fund. The ↑ arrows indicates an
increasing function, ↓ a decreasing function and ↑↓ a symmetric function

Table 2 Factor groupings and weights used for risk maps

Factor Factor groupings Factor weight

AHPa Equalb Access relatedc Environment/Climate relatedd

Distance from deforested patches Access 0.0996 ~0.11 0.14 0.06

Population density 0.0593

Distance from roads 0.0379

Distance from urban areas 0.0420

Distance from wetlands 0.1391

Elevation Environmental/Climatic 0.1680 0.075 0.175

Precipitation 0.1784

Temperature 0.2006

TWI 0.0751
aFactors weighed based on ecological relationship with mosquitoes and malaria
bNo difference in weighting
cAccess more important (group weight sum up to 0.70)
dEnvironment/Climate related factors more important (group weight sum up to 0.70)
TWI Topographic Wetness Index
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of membership of data cells in a layer through control
points that are set based on the relationship between the
layer and disease/vectors. These relationships determine
the shape (linear, sigmoidal or J-shaped) and direction
(increasing, decreasing or symmetric) of the fuzzy func-
tion (See Table 1), which were represented on an 8-bit
(0–255) scale in our analysis. For instance, we used a lin-
ear decreasing function to scale risk associated with ac-
cess to blood meals such as deforestation by assuming
highest risk when close and no risk when more than
5 km away from the feature.
Prior to use in the MCDA, each fuzzy layer was

assigned a weight indicating its importance in the risk
assessment. To facilitate the process of weighting, the
nine factors were combined into two logical groups: (i)
access-related factors relying on distance/proximity to
features; and (ii) environment/climate related factors
(Table 2). Weights were subsequently assigned in four
ways: (i) by weighing all factors equally; (ii) assigning
higher weights to access-related variables; (iii) scaling
environment/climate related factors higher (approxi-
mately three-quarters of total weights assigned to group
of factors with higher weighting in each case); and (iv)
assigning weights based on interaction between factors
and disease/vectors using the analytical hierarchical
process (AHP). The AHP assigns weights to each factor
by assessing the relative importance of factor pairs in a
pairwise matrix [42]. Pair comparisons were conducted
by evaluating the importance of each factor relative to
the other in a pair and assigning values ranging from 1
(extremely less important) to 9 (extremely more import-
ant). Evaluation for 6 of the factors were carried out by a
group of malaria experts in a risk mapping workshop in
Cali, Colombia (details of procedure published elsewhere
[5]). Our ranking of the other 3 factors was based on
literature searches by which we determined that
temperature, precipitation, and deforestation be ranked
in descending order [43]. The principal eigenvector was
subsequently used to determine the final weight of each
factor. The consistency of the pairwise matrix was evalu-
ated using a threshold of 0.1, a ratio above which the
pairwise matrix should be revised while values below
indicate acceptable consistency [42]. Table 2 shows all
factor weights assigned using the AHP and the other
methods.
Finally, the multi-criteria evaluation (MCE) module

was used to integrate all data layers to create com-
posite risk maps for the study area. A number of
user-specified options exist in the MCE module for
this purpose but for our analysis, we chose the
weighted linear combination (WLC). The WLC is a
linear function which combines fuzzy layers according
to their weight of importance (all factor weights add
up to 1) [5, 44, 45], producing final composite maps

of risk based on the four weighting methods. All
analyses were conducted using the raster-based GIS
software, Idrisi (Selva edition) [45].

Assessment of risk maps from sample points
Resulting risk maps were evaluated by comparing differ-
ences in mean risk scores between randomly generated
points (n = 1502) and the risk scores at the sample loca-
tions of An. darlingi (n = 168), An. albimanus (n = 38),
An. nuneztovari s.l. (n = 114) and malaria cases (n = 218)
respectively. Assuming normal distribution, differences
between the mean risk scores for each vector and mal-
aria occurrence points and random control points were
assessed using unpaired t-test. A one-way analysis of
variance (ANOVA) was used to compare the means of
the four groups of sample points. Both statistical ana-
lyses were performed in SPSS v. 21 software [46]. Spatial
autocorrelation of the sample points was tested using
the Moran’s I statistic in ArcGIS 10.2 software [47].
Moran’s I tests the null hypothesis that the attribute of
the feature of interest is randomly distributed where a
statistically significant Z-score indicates spatial autocor-
relation. To correct autocorrelation found in sample
points, we systematically excluded points until arriving
at a distribution that was spatially independent.

Results
Malaria risk distribution
The composite maps of risk produced using the four
weighting methods are presented in Fig. 2a–d. In Fig. 2a,
the risk map was produced by assigning an equal weight
of 0.11 to each of the twelve factors. The composite
layer in Fig. 2b included all the factors weighted through
AHP. All five access-related factors in Fig. 2c were
assigned equal weights, which summed up to 0.7, thus
giving access-related factors a higher weighting than
environment-related factors which had a total of 0.3. For
Fig. 2d these weightings were reversed; the four
environment-related factors were given a cumulative
value of 0.7 while access-related factors were assigned a
total of 0.3.
The different maps reveal noticeable differences in the

level and distribution of risk. For instance, the distribution
of risk in Fig. 2c is more heterogeneous compared to the
other maps. In this composite layer, the Amazonian areas
of Brazil, Venezuela, Colombia, the Guianas, and Peru, as
well as southern Brazil and areas on the fringes of the
Andes display low risk scores relative to areas outside
the Amazon basin. The relatively higher weight given
to access-related factors may account for this distri-
bution particularly in the Amazon, as the area is as-
sociated with low population density and limited
access via roads and rivers, hence the lower imputed
risk. Areas of relatively moderate to high risk on this
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map were found mostly along stretches of rivers in
the Amazon basin, along the coasts of the Guianas,
in the seasonally flooded wetlands around the Llanos,
in patches around south-western Brazil, in areas west
of the Andes in Peru and Bolivia, along the coasts of
Ecuador and Colombia, and in northern Colombia.
The areas delineated as moderate to high risk loca-

tions in Fig. 2c are common to all the maps; however,
additional areas of high risk are highlighted in the
other maps. Contrary to what was shown in Fig. 2c,
the Amazon forest had elevated risk of transmission,
particularly in the AHP guided map (Fig. 2b), which
displays moderate risk relative to the other maps. In
the equally weighted map (Fig. 2a), moderate to low
risk can be seen especially throughout the Amazon
basin, Southern Venezuela, and central Brazil. Al-
though the AHP and the environment -related maps
(Fig. 2b and d respectively) appear similar because
the total weight assigned to environmental factors in
both maps was similar (0.6221 and 0.7 respectively),
differences in the maps are evident. High risk areas
in Fig. 2b are displayed along the rivers in the
Amazon basin, the wetlands, and along the coasts in
the study area whereas risk is depicted in a spatially
homogeneous fashion in Fig. 2d. Overall, similar areas
of low risk are displayed in central Brazil, southern

Venezuela and the Andean fringe while the high risk
areas identified in all the maps are consistent with
current understanding of malaria risk in the region
[48, 49].

Validation of risk maps from sample points
The test for spatial autocorrelation showed that vector
occurrence points for An. darlingi (Moran’s I = 0.036,
z = 0.07, p = 0.94) and An. albimanus (Moran’s I =
0.458, z = 0.68, p = 0.39) were spatially random within
the study area. Autocorrelation was detected in An.
nuneztovari s.l (Moran’s I = 0.758, z = 2.902, p = 0.03)
and malaria (Moran’s I = 747, z = 8.632, p = 0.00)
occurrence points. The z-scores however remained
significant after systematically reducing the number of
sample points (n = 90 and 172 for An. nuneztovari s.l
and malaria respectively), thus suggesting that spatial
dependence did not significantly influence results.
Figure 3 shows the means from the MCE risk maps for
the validation points. The t-test results indicated that
mean cell-level risk scores at the occurrence locations
were significantly different and higher (p < 0.0001)
than risk scores of the random points (Table 3). Out-
put from the one-way ANOVA test performed on 467
observations (Table 3: between and within group df )
showed no significant difference in mean risk scores

Fig. 2 Risk maps derived from weighted linear combination of 9 factors. Higher values indicate relatively higher risk scaled from 0 to 255. a Each
factor assigned an equal weight of 0.11; b Factors weighed according to ecological relationship with mosquitoes and malaria through AHP;
c Access was assigned more weight (0.7 out of 1); d Environmental/Climatic factors was given more weight (0.7 out of 1)
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among occurrence points, suggesting that the occur-
rence points may be pooled into a single sample. Fur-
ther analysis with t-test indicated that the pooled
vector points were significantly different and higher
(p < 0.0001) than randomly distributed points
(Table 3).

Discussion
Spatial distribution of vector exposure and malaria risk
Using publicly available environmental, vector, and case
data, our study elucidates the spatial distribution of mal-
aria and potential vector exposure risk and provides im-
portant spatial information that may guide targeted

malaria interventions in the region. Although the envir-
onmental parameters typically change very little or grad-
ually over time [5], the inclusion of a deforestation
measure reflects a highly dynamic landscape variable
that is strongly associated with malaria risk. This is ex-
emplified in our four composite maps, which show most
areas in the Amazon and southern Brazil where defor-
estation has been most pronounced in the past decade
[50] as having moderate-to-high risk of malaria.
Although there are common areas with moderate to

high risk on all four maps, there are also areas of model
over-estimation. While the risk surface in Fig. 2b aligns
relatively well with known malaria risk [48, 49], the

A B

C D

Fig. 3 Mean risk scores for MCE models validated with vectors and malaria data points. a Equal weights for all 9 factors; b Factors weighed
according to ecological relationship with mosquitoes and malaria using AHP; c Access factors have higher weighting; d Environmental/Climatic
factors have higher weighting. Mean scores for all vectors and malaria points are statistically different from random at p < 0.0001

Table 3 Validation of risk maps using t- test and One-way ANOVA

Models Validation points

t statistic ANOVA

Between groups (df) 3

Within group (df) 464

An. albimanusa An. darlingia An. nuneztovaria Malariaa Pooled vectorsa F statisticb p-value

AHP 6.12 15.44 9.35 13.47 18.23 1.94 0.12

Equal 8.61 17.70 12.05 15.32 21.67 1.15 0.33

Access 9.77 18.57 13.33 15.49 23.06 1.84 0.14

Environment/Climatic 5.05 12.77 7.57 12.20 15.04 1.51 0.21
aStatistically different from random at p < 0.0001
bComparison of means for An. albimanus, An. darlingi, An. nuneztovari and Malaria cases
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result of the access-related grouping is similar to that
produced by Fuller et al. [5] for parts of the study area.
Overall, based on Figs. 2 and 3, A and C provide a more
realistic depiction of risk; however, it should be noted
that malaria transmission does not occur along the
Atlantic Coast of Brazil south of the Amazon basin;
therefore, what the maps depict is more likely a better
representation of risk of vector exposure than actually
malaria transmission. Risk was however over-estimated
in all four maps in areas around central and along the
Atlantic Coast of Brazil south of the Amazon Basin
where urbanization, transportation infrastructure, and
environmental factors have favored vector control.
The consistently higher mean risk scores for An. dar-

lingi and An. albimanus may also reflect their import-
ance in malaria transmission in the region [25, 27, 51].
While An. darlingi is the predominant vector in the
study area [27], An. albimanus is more wide spread par-
ticularly in Colombia and the northern-most portions of
the study region [51].

Comparison with previous studies
Further, whereas many previous risk-mapping exercises
focus on individual political units, these maps show how
risk is represented across political boundaries, whether
national or local [48, 49]. While previous malaria risk
maps show current risk based on actual malaria cases
aggregated by municipalities [48, 49], our composite
maps the effects of environmental and climatic condi-
tions and their perceived degree of association with vec-
tors and malaria transmission [5, 52]. Our approach
avoids limitations of aggregating cases by municipality
(e.g. giving no indication of the location of transmission
or clustering of cases) by producing a continuous risk
surface with high spatial detail and clearly defined risk
gradients.
Unlike the weak relationship reported between malaria

cases represented by municipalities and mean risk scores
in Fuller et al. [5], mean risk scores for malaria points
used in this study were consistently higher than at ran-
dom locations. This may be the result of employing geo-
referenced malaria point locations as this is more easily
relatable to pixel-level risk scores than political units
represented as polygons.

Study limitations
The subjective nature of the MCDA approach in
assigning fuzzy functions and weights undoubtedly
produces some biased outcomes as well as probable
inflation of risk scores when correlated variables are
used [5, 15]. We also acknowledge the possibility of
temporal and geographical bias in the sampling of oc-
currence points as a result of multiple collectors and
the variable time of collection. Moreover, the dearth

of up-to-date secondary and tertiary road network
data for the study area may also have limited the esti-
mation of risk based on access to roads, particularly
in the northern parts of the study area.

Conclusion
We evaluated the exposure of the NSA to malaria risk
given current access-related and environmental/climatic
conditions using MCDA. We produced high-resolution
composite maps showing gradients of risk which were
validated with geo-coded occurrence points for malaria
and three dominant vector species. These new map
products represent an improvement upon previously
published map of malaria risk in the region, which was
highly generalized and constrained by political boundar-
ies [50, 53]. The incorporation of a deforestation layer
representing land-use change, provided additional detail
to the risk maps relative to past studies that have
employed MCDA for malaria vector exposure risk [5].
This also revealed that our depiction of risk produced
was related to malaria occurrence points. Despite limita-
tions of the knowledge-based approach to risk mapping,
our 1 km maps provide information to the public health
decision makers/policy makers to give additional atten-
tion to the spatial planning of effective vector control
measures. This may increase the potential for malaria
elimination in the region in the near future.
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