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Abstract

Background: In neuromyelitis optica (NMO), one of the underlying pathogenic mechanisms is the formation of
antigen-antibody complexes which can trigger an inflammatory response by inducing the infiltration of neutrophils
in lesions. Epithelial neutrophil-activating peptide 78 (ENA 78), known as Chemokine (C-X-C motif) ligand 5 (CXCL5),
belongs to the ELR-CXCL family. It recruits and activates neutrophils. The aim of this study was to evaluate ENA 78,
IL-1β and TNF-α plasma levels in multiple sclerosis (MS) and neuromyelitis optica (NMO) patients.

Methods: ENA 78, IL-1β and TNF-α plasma levels were detected in 20 healthy controls (HC), 25 MS and 25 NMO
patients using MILLIPLEX® map Human High Sensitivity Cytokine/Chemokine Panels.

Results: Plasma levels of ENA 78 were significantly higher in NMO patients than in HC (P < 0.001) and MS patients
(P < 0.05). The NMO patients showed higher plasma levels of IL-1β compared with HC (P < 0.01). Further, increased
plasma levels of TNF-α were found in the MS (P < 0.05) and NMO patients (P < 0.001). In addition, NMO patients had
higher Expanded Disability Status Scale (EDSS) scores compared with MS patients (P < 0.05). EDSS scores were
correlated with plasma levels of ENA 78 in NMO patients (P < 0.05). There were no significant correlations between
EDSS scores and plasma levels of ENA 78 in MS patients (P > 0.05).

Conclusions: The overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α during the remission of
NMO activates ENA 78, which in turn leads to neutrophil infiltration in lesions. ENA 78 plasma levels were correlated
with EDSS scores in NMO patients. Elevated secretion of ENA 78 may be a critical step in neutrophil recruitment
during the remission of NMO.
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Background
Neuromyelitis optica (NMO, Devic’s syndrome) and
multiple sclerosis (MS) are autoimmune and degenera-
tive diseases characterized by demyelination of central
nervous system (CNS), potentially leading to paralysis
and other clinical symptoms [1–4]. NMO and MS are
two of the most common diseases causing neurological
disability in young adults [1, 5, 6]. Accumulating
evidence has shown that NMO pathogenesis differs from

MS, including aquaporin 4 (AQP4)-IgG increase and in-
filtration of granulocytes and macrophages [7, 8].
A significant feature distinguishing NMO from MS is

the relatively higher number of neutrophils, eosinophils,
macrophages and fewer T cells in the lesions [2, 8, 9].
Abnormal neutrophil aggregation in the lesions and
increased AQP4-IgG are the notable features distin-
guishing NMO from MS [8, 10]. Neutrophil protease in-
hibition reduces AQP4-IgG damage in the mouse brain,
which suggests that neutrophils play an important role
in NMO pathology [7]. Studies also suggest a tight regu-
lation of neutrophils and immune cell recruitment in
NMO [2]. The innate immune response is orchestrated
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by inflammatory cells as a cascade of events, and each
stage is associated with inflammatory cell recruitment
and infiltration. Neutrophil infiltration is triggered by
epithelial neutrophil-activating peptide 78 (ENA 78),
which plays a role in tissue repair, metabolism, microbial
killing, and angiogenesis [11, 12]. ENA 78 is a member
of CXC chemokines, which enhance leukocyte recruit-
ment and activation in autoimmune disorders and in-
flammatory diseases [13–15]. Its aberrant expression has
been detected in rheumatoid arthritis, psoriasis, autism,
bacterial meningitis, etc. [16–20]. ENA 78 is categorized
into sub-classes based on the sequence and function,
and characterized by the ELR (glutamic acid-leucine-
arginine) motif preceding the N-terminal Cys and
activating C-X-C chemokine receptor type (CXCR) 2 se-
lectively [21]. ENA 78 as a potent ELR+ CXC chemokine
attracts and activates polymorphonuclear leukocytes
(PMNLs) which are higher in patients with infections,
inasmuch as the PMNLs are among the first cells to
exist the peripheral blood and migrate to the inflamma-
tory site [16, 22, 23].
This study was the first to evaluate plasma levels of

ENA 78 and its relation to Expanded Disability Status
Scale (EDSS) scores in NMO patients.

Methods
Study populations
Written informed consent was obtained from all partici-
pants. The study protocol was approved by the local
ethics committee (IRB of Beijing Tiantan Hospital Affili-
ated to Capital Medical University, No. KY2015-003-02).
MS and NMO patients were recruited from Beijing
Tiantan Hospital, Capital Medical University. This study
was conducted between May and July 2015 on 20
healthy controls (HC), 25 patients with MS and 25 pa-
tients with NMO. Plasma samples were obtained from
MS patients, NMO patients and 20 HC recruited from
the general population without immune diseases. Infec-
tions were ruled out by full blood count in all subjects.
The MS diagnosis was determined according to the

2010 revised McDonald criteria [24] and the NMO
diagnosis was based on the revised diagnostic criteria
for NMO [25]. The interviews, neurological examina-
tions and EDSS scores of the MS and NMO groups
were conducted in an MS cohort study. All the NMO
patients had optica neuritis and myelitis and met at
least 2 of the 3 supporting criteria (Brain MRI-, AQP4-
IgG+, negative for MS).

Plasma chemokine and cytokines levels
To exclude the effect of different time points and other
factors on the level of chemokines and cytokines, all
blood samples (2 mL each) were obtained at 9:00 a.m
using disposable Ethylenediaminetetraacetic acid (EDTA)

vacuum blood collection tubes (BD, USA) and tested
over 8 h. After 2 h of standing at 4 °C, the supernatant
was pipetted into EP tubes and stored at −80 °C. Plasma
ENA 78, IL-1β and TNF-α were measured using MILLI-
PLEX® map Human High Sensitivity Cytokine/Chemo-
kine Panels (Cat. No. HCYP2MAG-62 K; Cat. No.
HCYTOMAG-60 K), according to the manufacturer’s
instructions.

Statistical analysis
Statistical analysis was performed using GraphPad Prism
version 5 (GraphPad Software, Inc., California) and the
data were reported as Means ± SEM. Mann–Whitney U
and Kruskal-Wallis tests were used to compare 2 to 3
groups, respectively. Pearson’s test was used to perform
correlations. A P value of < 0.05 was considered statisti-
cally significant.

Results
Clinical demographics
The subjects included 20 HC, 25 MS and 25 NMO pa-
tients. No significant age differences were found in the
three groups. Age of onset, disease duration and annual
relapse rate (ARR) of MS and NMO patients also
showed no significant differences. All the subjects were
aged between 10 and 60 years. There was a significant
difference between the MS and NMO groups in EDSS
scores (P < 0.05) (Table 1).

Increased plasma ENA 78, IL-1β and TNF-α levels in NMO
patients
ENA 78 expression was higher in NMO plasma than in
HC (P < 0.001) and MS (P < 0.05) (Fig. 1a). The cytokine
IL-1β potentially induces ENA 78 secretion. As shown

Table 1 Demographic and clinical data of HC, MS and NMO

HC (n = 20) MS (n = 25) NMO (n = 25)

Gender F/M 15/5 19/6 23/2

Age (year) Range 25–54 16–59 14–55

Mean ± SE 32.30 ± 1.80 33.84 ± 2.31 36.80 ± 2.45

Age at onset
(year)

Range - 6–57 13–53

Mean ± SE - 29.84 ± 2.28 30.24 ± 2.34

Disease duration
(year)

Range - 0–12 0–21

Mean ± SE - 3.92 ± 0.53 6.04 ± 1.01

ARR Range - 0.35–12.00 0.01–12.00

Mean ± SE - 1.61 ± 0.47 1.69 ± 0.47

EDSS Range - 0–3.5 1–6.5

Mean ± SE - 1.92 ± 0.28 3.24 ± 0.35*

HC healthy controls, MS multiple sclerosis, NMO Neuromyelitis optica, EDSS
expanded disability status scale, ARR annual relapse rate
*P < 0.05
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in (Fig. 1b), the IL-1β level in NMO was higher than in
HC (P < 0.01) with no significant difference between MS
and HC, MS and NMO. The cytokine TNF-α levels were
higher in NMO than in HC (P < 0.001) (Fig. 1c).

Correlation between ENA 78 gradients and EDSS scores in
the MS and NMO groups
ENA 78 plasma levels were not correlated with EDSS
scores in MS (Fig. 2a). Significant correlation existed
between ENA 78 gradients and EDSS scores in NMO
(P < 0.05) (Fig. 2b).

Discussion
The perivascular presence of neutrophils is one of the
primary histological differences between MS and NMO,
as reported in NMO patients as well as in mouse and
rat models [2, 7, 26]. Neutrophils are elevated about
20 % in the CSF during remission of NMO patients [27].
In mouse models of NMO, tissue damage was amelio-
rated by eliminating neutrophils, whereas increased neu-
trophils exacerbated tissue damage [7, 28]. ENA 78 is
one of the ELR+ chemokines specifically inducing neu-
trophil migration, with the ability to interact with che-
mokine receptors CXCR1 and CXCR2 [29, 30]. ENA 78
stimulates neutrophil directed chemotaxis by promoting
the intracellular level of elastase and free calcium and

inducing neutrophil pro-adhesive activity [31, 32]. In
addition, inhibitors of neutrophil elastase, which are in-
volved in neutrophil migration and neutrophil-mediated
tissue damage, have been tested in experimental trials
such as Sivelestat [7, 33–35]. Other studies also
indicated that the increased ENA 78 amplified the pro-
inflammatory cytokine response, which had a direct
chemo-attracting effect on neutrophils [36–39].
Therefore, we studied ENA 78 and found that it was
dramatically increased in the NMO patients (vs. HC,
P < 0.001; vs. MS, P < 0.05). Studies proved that ENA
78 was detected in eosinophils, which also aggregated
in the NMO lesions [2, 8, 40], suggesting that eosino-
phils recruit and activate CXCR2+ cells such as neu-
trophils by secreting ENA 78. In the present study,
we found that the plasma ENA 78 gradient was
correlated with EDSS in NMO patients rather than in
MS (P < 0.05). ENA 78 causes neutrophil aggregation
and hyperactivation around the lesions in NMO
resulting in demyelination, which is different from the
pathophysiological mechanisms of MS. The higher
ENA 78 gradient in the blood leads to increased neu-
trophil aggregation around the lesions, causing severe
clinical symptoms.
Although the precise mechanism involving ENA 78 up-

regulation is not fully understood, factors involved in

Fig. 1 Comparison of chemokine and cytokine levels among the HC, MS and NMO groups. HC = healthy controls; MS =multiple sclerosis; NMO =
neuromyelitis optica. a Comparison of plasma ENA 78 levels among the HC, MS and NMO. b Comparison of plasma IL-1β level among the HC,
MS and NMO. c Comparison of plasma TNF-α level among the HC, MS and NMO. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 2 Each data point represents an individual subject. a Correlation between ENA 78 and EDSS scores in the MS. b Correlation between ENA 78
and EDSS scores in the NMO
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modulating ENA 78 expression at the transcriptional level
and signaling pathways are known in different types of
cells [41–43]. Neutrophil chemoattractant chemokines be-
longing to ELR-CXCL family, especially ENA 78 binding
with chemokine receptor CXCR2, mediate the IL-1β
driven cell recruitment [43, 44]. ELR+ chemokines, includ-
ing CXCL1, CXCL2 and ENA 78, are triggered by IL-1β
[45–47]. IL-1β inducing ENA 78 expression by activating
cAMP-response element binding protein (CREB) and NF-
kB promoter of ENA 78 is part of the inflammatory re-
sponse in vitro and in vivo [39, 43, 48–50]. IL-1β induces
leukocyte rolling, adherence and emigration associated
with an increase in kinin B1 receptor mRNA expression,
which plays a role in neutrophil recruitment [44]. This
current study results showed that increased IL-1β levels in
NMO patients matched the higher ENA 78 levels in the
periphery compared with the HC (P < 0.01). TNF-α, which
induces neutrophil influx, exacerbates the lesions in ex
vivo spinal cord and optical nerve of NMO [28, 51].
Our findings, herein, show that NMO and MS patients
had higher plasma levels of TNF-α compared with HC
(P < 0.001; P < 0.05, respectively). Further, TNF-α poten-
tially increases the adhesion-molecule expression in the
brain suggesting a role for anti-TNF therapies in NMO
[8, 52, 53]. The overexpression of IL-1β and TNF-α
might be one of the factors inducing severe lesions in
NMO, exacerbating the damage mediated by higher
ENA 78 levels.

Conclusions
In summary, the overproduction of pro-inflammatory
cytokines such as IL-1β and TNF-α during remission of
NMO might result in activation of ENA 78. High levels
of ENA 78 may play a critical role in neutrophil infiltra-
tion during NMO inflammation. And these might lead
to increased neutrophils aggregation around the lesion,
causing severer clinical symptoms once NMO relapse.
ENA 78 plasma levels were also correlated with EDSS
scores in NMO remission. The current study enables the
therapy of NMO patients.
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