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levels and in-hospital mortality in patients
with acute decompensated heart failure
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Abstract

Background: Hypoxia-inducible factor 1 (HIF-1) is a critical regulator for cellular oxygen balance. Myocardial
hypoxia can induce the increased expression of HIF-1α. Our goals were to evaluate the value of HIF-1α in
predicting death of patients with acute decompensated heart failure (ADHF) and describe the in vivo relationship
between serum HIF-1α and N-terminal–pro-brain natriuretic peptide (NT-proBNP) levels.

Method: We included 296 patients who were consecutively admitted to the emergency department for ADHF. The
primary end point was in-hospital death. The patients were categorized as HFrEF (patients with reduced systolic
function) and HFpEF (patients with preserved systolic function) groups.

Results: In our patients, the median admission HIF-1α level was 2.95 ± 0.85 ng/ml. The HIF-1α level was elevated
significantly in HFrEF patients and deceased patients compared with HFpEF patients and patients who survived. The
HIF-1α level was positively correlated with NT-proBNP and cardiac troponin T levels, and negatively correlated with
left ventricular ejection fraction and systolic blood pressure. Kaplan–Meier curves revealed a significant increase in
in-hospital mortality in ADHF patients with higher HIF-1α levels. Multivariable Cox regression analysis showed that
HIF-1α levels were not correlated with the short-term prognosis of ADHF patients.

Conclusions: This is the first study to evaluate the circulating levels of HIF-1α in ADHF patients. Serum HIF-1α levels
may reflect a serious state in patients with ADHF. Due to the limitations of the study, serum HIF-1α levels were not
correlated with the in-hospital mortality based on regression analysis. Further studies are needed to demonstrate
the diagnostic and/or prognostic role of HIF-1α as a risk biomarker in patients with ADHF.

Keywords: Hypoxia-inducible factor 1α, Acute decompensated heart failure, N-terminal–pro-brain natriuretic
peptide, In-hospital mortality

Background
Heart failure is a common cardiovascular disease. Car-
diac dysfunction may induce inadequate tissue perfusion,
which leads to hypoxic ischemia of many organs. When
myocardial cells are hypoxic, glucose serves as the sub-
strate for glycolysis and fatty acids are converted to
lipids [1, 2]; however, hypoxic myocardial cells cannot
produce sufficient adenosine triphosphate to maintain
cardiac function. The loss in efficacy of cardiac function
is characterized by a decrease in the ejection fraction,

an increase in left ventricular end-diastolic diameter
(LVEDD), and the emergence of clinical symptoms and
signs of heart failure [3, 4]. Intracellular tissue adapta-
tion to hypoxia is mediated by hypoxia-inducible factor
1 (HIF-1), which is a key mediator in the transform-
ation from oxidation to glycolysis [5]. In addition, the
conversion from fatty acids to lipids is also mediated by
HIF-1 [6].
HIF-1 is a transcription factor and a critical regulator

for cellular oxygen balance. HIF-1 is a heterodimer com-
prised of two sub-units (α and β). HIF-1α controls oxygen
transfer by regulating angiogenesis and vascular remodel-
ing [7]. Moreover, the utility of oxygen is also controlled
by HIF-1 via regulation of glucose metabolism and redox
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equilibrium [8]. A previous study showed that the expres-
sion of HIF-1α is increased significantly in patients with
myocardial hypoxia [9]. As a transcription factor, HIF-1α
mediates important physiologic responses during hypoxia
by regulating downstream target genes to make the body
produce compensatory adaptations to myocardial hypoxia.
Animal models have shown that HIF-1α has a critical
protective effect on the pathophysiology underlying is-
chemic heart disease [7, 10, 11] and pressure overload
heart failure [12].
B-type natriuretic peptide (BNP) is primarily synthe-

sized in ventricular cells [13, 14] and plays an important
role in maintaining fluid balance and adjusting blood
pressure [15]. Especially in patients with acute decom-
pensated heart failure (ADHF), an elevated admission
BNP level is a significant predictor of in-hospital mortal-
ity [16–18]. The synthesis of BNP is directly caused by
hypoxia mediated through a HIF-1α-independent mech-
anism not influenced by hemodynamics or stimulation
of neurohormones based on an in vitro ventricular myo-
cyte model system [19]. BNP appears to be part of the
protective program directed by HIF-1α in response to
oxygen deprivation [20]. Cumulative experimental data
have clearly shown that hypoxia is an independent factor
regulating the natriuretic peptide system [21]. Additionally,
hypoxia-response elements have been characterized from
the promoter sequences of the ANP and BNP genes
[20, 22, 23]; however, as an upstream regulation factor
of BNP, the role of HIF-1α in ADHF patients has not
been studied. In the current study we investigated
whether or not the admission HIF-1α level predicted
in-hospital mortality of ADHF patients and clarified the in
vivo relationship between N-terminal–pro-brain natriuretic
peptide (NT-proBNP).

Methods
Patients
Two hundred ninety-six patients with typical heart fail-
ure symptoms and signs were enrolled in the investiga-
tion conducted in conjunction with the Emergency
Department. The criteria recommended by the most re-
cent guidelines of the European Cardiology Society
(ESC) and the American College of Cardiology Founda-
tion/ American Heart Association (ACCF/AHA) were
adopted for the classification of patients enrolled in this
study [24, 25]. Specifically, the inclusion criteria were as
follows: patients had presented within the previous 24 h
with ADHF; diagnosed on the basis of the presence of at
least one symptom (dyspnea, orthopnea, or edema) and
one sign (rales, peripheral edema, ascites, or pulmonary
vascular congestion on chest radiography) of heart failure;
NYHA functional class III or IV, with an acute exacerba-
tion of symptoms of at least 1 class; evidence of systolic
and/or diastolic dysfunction by echocardiography; > 18 years

of age; and NT-proBNP ≥ 1800 pg/ml. The NT-proBNP
cut-off value of 1800 pg/ml was selected to increase
specificity. The exclusion criteria were as follows: patients
with tumors, unstable angina, or recent acute myocardial
infarction, current or past dialysis; and patients in shock
or without the company of a lineal relative and could not
sign the informed consent. This study complied with the
Helsinki Treaty. All participants signed the written in-
formed consent form. Our study was approved by the In-
stitutional Ethics Committee of Wuhan General Hospital
of Guangzhou Military Command.

Biochemical measurements
After patients signed the informed consent, blood samples
were obtained immediately. The blood samples were cen-
trifuged at 3000 rpm at 4 °C for 15 min. The supernatants
were decanted and frozen at −80 °C until assayed. Serum
creatinine, uric acid (UC), blood urea nitrogen (BUN), and
high-sensitive C-reactive protein (hs-CRP) levels were
determined in the hospital laboratory using standard
methods. Enzyme-linked immunosorbent assay (ELISA)
kits were used to measure serum levels of HIF-1α
(Abnova, Taiwan). Intra- and inter-assay coefficients of
variation for HIF-1α were 4.2 % and 7.6 %, respectively.
The lower limit of detection (LOD) was 0.041 ng/ml and
the reference value interval was 0.078–5.0 ng/ml. The
plasma levels of NT-proBNP were determined using the
Elecsys proBNP assay (Roche Diagnostics, Basel,
Switzerland) [26]. The intra-assay coefficients of variation
are 2.4 % and 1.8 % at 355 and 4962 pg/ml, respectively,
and the respective inter-assay coefficients of variation
were 2.9 % and 2.3 %, respectively. We measured TnT
levels using a commercial one-step enzyme immunoassay
(EIA) based on electrochemiluminescence technology
(fourth-generation TnT, Elecsys 2010; Roche Diagnostics).
The lower limit of detection of this assay was 10 ng/L,
with a recommended diagnostic threshold of 30 ng/L. At
this concentration, TnT concentrations can be measured
with a coefficient of variation (CV) of < 10 % [27].

Echocardiography
Patients were simultaneously evaluated with two-
dimensional echocardiogram using standard views and
protocols [28]. Pulsed-wave Doppler echocardiography
was performed by an experienced cardiologist with a
Hewlett Packard Sonos 1000 ultrasound system and a 2.5-
MHz transducer (Palo Alto, California, USA). The main
parameter which was evaluated was the left ventricular
ejection fraction (LVEF). The patients were categorized as
HFrEF (patients with reduced systolic function [LVEF ≤
40 %]) and HFpEF (patients with preserved systolic func-
tion [LVEF > 40 %]) groups [25]. Doppler echocardio-
graphic indices (e’, E/e’ ratio, left atrial volume index and
LV mass index) to measure diastolic dysfunction were
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evaluated as recommended by ESC and ACCF/AHA
guidelines [24, 25]. The diagnosis of HFpEF in our pa-
tients requires 3 conditions to be satisfied: typical symp-
toms and signs of HF, normal LVEF and LV not dilated,
left ventricular diastolic dysfunction.

Statistical analysis
SPSS version 18.0 (SPSS Inc, Chicago, Illinois) statistical
software was used for statistical analysis. Continuous
variables in a normal distribution were compared using
the Student’s t-test and ANOVA. Categorical variables

Table 1 Clinical and laboratory data for 296 patients with acute decompensated heart failure

Variable HFpEF HFrEF P Value

(n = 108) (n = 188)

Age (years) 74.0 ± 10.2 73.3 ± 10.5 0.599

Male n, (%) 77(71.3 %) 118(62.8 %) 0.161

History

Coronary artery disease n, (%) 58(53.7 %) 96(51.25 %) 0.717

Hypertension n, (%) 79(73.1 %) 132(70.2 %) 0.689

Previous heart failure n, (%) 62(57.4 %) 90(47.9 %) 0.118

Diabetes mellitus n, (%) 49(45.4 %) 100(53.2 %) 0.227

COPD/asthma n, (%) 27(25 %) 40(21.3 %) 0.474

Atrial fibrillation n, (%) 35(32.4 %) 55(29.3 %) 0.601

Chronic renal insufficiency n, (%) 22 (20.4 %) 44 (23.4 %) 0.883

Cardiac valvular disease n, (%) 30(27.8 %) 39(20.7 %) 0.199

Intravenous medications during hospitalization

Diuretics n, (%) 97(89.8 %) 172(91.5 %) 0.677

Cedilanid n, (%) 38(35.2 %) 89(47.3 %) 0.051

Nitroglycerin n, (%) 10(9.3 %) 59(31.4 %) 0.522

Nitroprusside n, (%) 10(9.3 %) 23(12.2 %) 0.565

Oral medications during hospitalization

ACE inhibitors n, (%) 61(56.5 %) 121(64.4 %) 0.215

ARB n, (%) 23(21.3 %) 30(16.0 %) 0.272

Beta-blocker n, (%) 73(67.6 %) 141(75 %) 0.180

Calcium channel blocker n, (%) 19(17.6 %) 42(22.3 %) 0.372

Digoxin n, (%) 47(43.5 %) 110(58.5 %) 0.016

Diuretics n, (%) 68(63.0 %) 38(20.2 %) 0.462

Warfarin n, (%) 25(23.1 %) 50(26.6 %) 0.579

Death n, (%) 6(5.6 %) 15(8.0 %) 0.490

Admission SBP (mmHg) 155.0 ± 28.5 144.6 ± 29.7 0.003

Admission DBP (mmHg) 80.4 ± 15.2 78.3 ± 13.8 0.556

BMI (kg/m2) 23.5 ± 2.8 23.1 ± 2.6 0.354

HR (bpm) 90.0 ± 17.2 89.4 ± 19.0 0.677

HIF-1α(ng/ml) 2.70 ± 0.78 3.37 ± 0.79 0.001

NT-proBNP(ng/L) 6826.7 ± 7049.4 9297.7 ± 8359.8 0.007

TnT(ng/L) 85.5 ± 163.5 143.4 ± 241.1 0.015

hs-CRP (mg/l) 8.5 ± 5.7 9.2 ± 7.1 0.059

D-dimer (ng/ml) 294.4 ± 486.8 242.7 ± 312.3 0.302

Creatinine (ummol/l) 98.0 ± 45.4 100.8 ± 56.6 0.744

UA (ummol/l) 407.3 ± 137.4 389.2 ± 147.4 0.644

BUN(mmol/L) 10.2 ± 4.5 9.8 ± 5.1 0.521

Abbreviations: SBP systolic blood pressure, DBP diastolic blood pressure, BNP B-type natriuretic peptide, hs-CRP high sensitivity C-reactive protein, cTNI cardiac
troponin I, HR heart rate, TC total cholesterol, HDL highdensity lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, UA uric acid
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were analyzed using the chi-squared test. Pearson correl-
ation analysis was used to assess the correlation between
HIF-1α level and other cardiovascular disease risk fac-
tors. In order to clear whether the HIF-1α levels can
predict the in-hospital mortality of ADHF patients,
multivariate logistic regression models was used for the
analysis. In the logistic regression models, we per-
formed log-transformation of NT-proBNP and TnT.
Survival curves were estimated according to the
Kaplan-Meier method and compared by the log-rank
test. Additionally, receiver operating characteristic ana-
lysis was performed to determine the cut-off value for
HIF-1α in predicting type of ADHF with high sensitiv-
ity and specificity. P value <0.05 was considered statis-
tical significant.

Results
A total of 296 ADHF patients were enrolled between
January 2011 and March 2014 at 4 clinical sites (Wuhan,
China). Meanwhile, we also enrolled 52 healthy volun-
teers (mean age: 43.8 ± 18.5; male: 67.3 %) as control
group. Of these ADHF patients, 21(7.1 %) died in hos-
pital. In Table 1, baseline characteristics of patients are
described. Among them, 195(65.9 %) cases were male.
The mean age was 73.5 ± 10.4 years old. There were 188
(63.5 %) patients with HFrEF (median LVEF 35 %) and
108 (36.5 %) patients with HFpEF (median LVEF 52 %).
In our ADHF patients, the mean HIF-1α level was

2.95 ± 0.85 ng/ml and significantly higher than healthy
subjects (1.31 ± 0.47 ng/ml, p < 0.001). However, serum
HIF-1α levels in the HFrEF patients were significantly
higher than the HFpEF patients (3.37 ± 0.79 vs 2.70 ±

0.78 ng/ml, P = 0.001, Table 1 and Fig. 1). During the
study period, 21 patients died in hospital. In our find-
ings, the HIF-1α concentrations were significantly higher
in death than in survival patients (3.54 ± 0.81 vs 2.89 ±
0.83 ng/ml, p < 0.001, Fig. 2). HIF-1α levels positively
correlated with NT-proBNP (r = 0.337, P < 0.001), TnT
(r = 0.357, P < 0.001), and negatively correlated with
LVEF (r = −0.332, P < 0.001) and SBP(r = −0.145, P =
0.013) but did not correlate with age, gender, hs-CRP,
creatinine and HR (Fig. 3).
In the present study the in-hospital mortality was

7.9 % (21 cases). The median hospital stay was 10.5 ±
8.9 days. Univariate Cox regression model results
showed that the serum HIF-1α level predicts the risk of
in-hospital mortality for ADHF patients (HR, 1.996;
95 % CI, 1.252–3.182, P = 0.004 [Table 2]); however, the
final multivariate Cox regression model was performed
using a stepwise method starting with variables that in
univariate analysis were not associated with HIF-1α level
and the risk of in-hospital mortality (Table 3). We di-
chotomized patients into two groups according to the
HIF-1α median level. We found that the in-hospital
mortality in the above median group was higher than
the below median group (16 deaths vs. five deaths;
10.8 % vs. 3.4 %, p = 0.022). The Kaplan–Meier curves
stratified according to the mean HIF-1α level are shown
in Fig. 4. Log-rank testing revealed a significant increase
in in-hospital mortality in the above median group as
compared with the below median group (p = 0.043).
We performed receiver operating characteristic ana-

lysis to determine the cut-off value of HIF-1α, NT-
proBNP and TnT in evaluating the type of ADHF of all

Fig. 1 Comparison of HIF-1α values between HFrEF and HFpEF groups
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Fig. 2 Comparison of HIF-1α values between survival and death groups

Fig. 3 Scatter plots for the correlations between HIF-1α and NT-proBNP, TnT, LVEF and SBP
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patients. The best cut-off value with HIF-1α, NT-
proBNP and TnT were 2.998 ng/ml (95 % CI: 2.357–
2.998; sensitivity: 71.30 %; specificity: 67.02 %, P <
0.0001), 5573 ng/L (95 % CI: 2547–6587; sensitivity:
62.04 %; specificity: 59.04 %, P = 0.0005) and 86 ng/L
(95 % CI: 47–180; sensitivity: 52.17 %; specificity:
74.73 %, P < 0.0001). The area under the curve were
0.730(95 % CI: 0.676–0.780, P < 0.0001), 0.617(95 % CI:
0.559 to 0.672, P = 0.0005) and 0.662(95 % CI: 0.605–
0.715, P < 0.0001) for HIF-1α, NT-proBNP and TnT, re-
spectively (Table 4 and Fig. 5).

Discussion
This is the first study to measure serum HIF-1α levels in
ADHF patients. We confirmed that HIF-1α exists in the
peripheral circulation of ADHF patients. The serum
HIF-1α level was associated with NT-proBNP, TnT, and
LVEF. The level of HIF-1α was elevated significantly in
HFrEF and deceased patients compared with HFpEF and
surviving patients. Kaplan–Meier curves revealed a signifi-
cant increase in in-hospital mortality in ADHF patients
with increased HIF-1α levels. Based on a univariate Cox
regression model, there was an association between HIF-
1α and the risk of in-hospital mortality; however, multi-
variate Cox regression analysis showed that HIF-1α can-
not predict the short-term prognosis of ADHF patients.
Our study confirmed that the level of HIF-1α was ele-

vated significantly in HFrEF and deceased patients com-
pared with HFpEF and surviving patients. This finding
reflects more serious hypoxia in HFrEF and deceased pa-
tients. The significant reduction in cardiac systolic func-
tion, as well as inadequate blood perfusion of various
organs, eventually led to severe hypoxia and a disordered
internal environment. The previous study showed that
myocardial hypoxia leads to increased expression of
HIF-1α [9, 29]. HIF-1α induces the transcriptional activ-
ity of the downstream regulatory target gene, BNP [20].
Another in vitro study result showed that hypoxia in-
creases the synthesis of AC16 cells and secretion of BNP
through a HIF-1α-independent mechanism [19]. The
current study was the first to confirm that there is a sig-
nificant correlation between HIF-1α and NT-proBNP in
ADHF patients in vivo. Due to dysfunction of cardiac
constriction, the levels of HIF-1α and NT-proBNP were

Table 2 Univariate Cox regression analysis for the identification
of predictors of death

OR 95 % CI P Value

Age(years) 0.984 0.950–1.020 0.388

Male 0.992 0.407–2.415 0.985

History of hypertension 1.170 0.890–1.537 0.261

History of DM 1.252 0.481–3.258 0.645

Previous heart failure 1.425 1.119–4.449 0.115

Abnormal ECG 1.042 0.949–1.144 0.391

Admission SBP 1.003 0.989–1.017 0.711

Admission DBP 0.989 0.975–1.004 0.141

HR 0.980 0.957–1.003 0.093

Nitroglycerin 0.874 0.801–0.967 0.754

Digoxin 1.027 0.871–1.315 0.249

Diuretics 1.354 1.047–2.649 0.321

ACE inhibitors 1.144 0.977–2.042 0.219

Beta-blocker 0.907 0.865–1.141 0.476

HIF-1α (ng/ml) 1.996 1.252–3.182 0.004

Type of ADHF 3.946 1.613–9.652 0.003

LVEF 0.930 0.886–0.977 0.004

Maximal aortic diameter 1.037 0.997–1.079 0.073

TnT (ng/L) 1.270 0.223–7.220 0.788

hs-CRP (mg/l) 0.983 0.921–1.049 0.606

Creatinine (ummol/l) 0.993 0.979–1.007 0.342

BUN (mmol/L) 1.085 1.019–1.155 0.215

UA (ummol/l) 0.996 0.987–1.006 0.444

Table 3 HIF-1α levels predict the risk of in-hospital mortality for
Cox regression model

HIF-1α HR (95 % CI) P Value

Unadjusted 1.996 (1.252–3.182) 0.004

Model 1 1.633 (0.999–2.672) 0.051

Model 2 1.724 (1.024–2.904) 0.040

Model 3 1.128 (0.594–2.140) 0.713

Model 1 age, type of ADHF and sex, Model 2 Model 1 + SBP, LVEF and HR,
Model 3 Model 2+ creatinine, hs-CRP, NT-proBNP and TnT

Fig. 4 Cumulative hospitalization-free survival according to serum
HIF-1α level (median: 2.95 ± 0.85 ng/ml)
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increased synchronously in HFrEF patients. Receiver op-
erating characteristic (ROC) curve analysis indicated the
value of HIF-1α in predicting that the type of ADHF is
superior to the NT-proBNP and TnT levels. These re-
sults provide evidence that HIF-1α is tightly associated
with ADHF.
Oxygen balance plays an important role in maintaining

internal environment homeostasis. The oxygen concen-
tration of cells is controlled precisely. This ingenious
balance can be destroyed by heart disease, cancer, cere-
brovascular disease, and chronic obstructive pulmonary
disease [30]. As a transcription factor, HIF-1 is a key fac-
tor in maintaining oxygen balance in the human body
[7, 11, 30]. In hypoxic conditions, HIF-1 is widely
expressed in histocytes, mediates the hypoxic response,
and induces gene expression related to the hypoxic
response.
HIF-1α is an intracellular protein. The current study

first detected HIF-1α in the peripheral circulation of
ADHF patients. Under normal oxygen conditions, HIF-
1α is extremely unstable with a half-life of 10 min [31];
however, under hypoxic conditions, intracellular hy-
drolysis of protein is prevented because proline and as-
paragine residues in HIF-1α are not hydroxylated [32],
which provides the possibility for intracellular to extra-
cellular transfer. It has been reported that the level of

expression of HIF-1 can be maintain and is not de-
creased under sustained hypoxic conditions [33]. In
ADHF patients, the level of expression of HIF-1α in-
creased greatly due to hypoxia and ischemia caused by
hypoperfusion. In our previous study, the HIF-1α level
in patients with type II diabetes mellitus and coronary
calcifications was measured [34]. We presumed that cir-
culating HIF-1α may be due to local cell apoptosis,
which was induced by hypoxia. The potential underlying
mechanism was likely high-mobility group box 1
(HMGB1), which reflects necrosis [35]. Under hypoxic
conditions, HIF-1α initiates expression of TNF-α in cardi-
omyocytes [36]. We assumed that the increase in the cir-
culating HIF-1α level reflects the severity of myocardial
damage. Our findings indicate that there is a positive cor-
relation between HIF-1α and TnT.
HIF-1α as a conditional knockout in myocardial cells

will influence the maintenance of vascular endothelial
growth factor (VEGF) expression [37] and angiogenesis
[38]. It is essential for angiogenesis to increase oxidation
transfer to compensate for hypertrophy. HIF-1α defi-
ciency will accelerate the onset of heart failure in TAC
after 3 weeks [12]. In pressure overload-induced heart
failure, HIF-1α can protect heart failure [7]. The effect
of HIF-1 has a complex pathophysiologic mechanism.
During the development of cardiac hypertrophy, HIF-1
may have a protective effect and angiogenesis-promoting
effect [39]; however, HIF-1 also has a pathogenic effect
in terminal heart failure. As mediated by metabolism,
heart failure is activated [7]. It has been reported that
the cardiac function of HIF-1α+/− is damaged [40] or
improved [6] relative to wild-type mice. These contro-
versial results may reflect the complexity of the adaptive
response mediated by HIF-1.
In our study population the univariate Cox regression

model and Kaplan—Meier curve results showed that
HIF-1α is a biomarker for predicting the risk of in-
hospital mortality in ADHF patients; however, the final
multivariate Cox regression model indicated that the
HIF-1α level cannot predict the risk independently. Sev-
eral hypotheses may explain this result. First, although
HIF-1α can sustain the level of expression under hypoxic
conditions, HIF-1α, as an intracellular protein in the
peripheral circulation, may be not stable. Second, previ-
ous studies have shown that digitalis can inhibit the syn-
thesis of HIF-1α [41]. In our patients, the administration
of digitalis before admission and during hospitalization

Table 4 Diagnostic value of HIF-1α, TnT and NT-proBNP for type of ADHF

AUC Cut-off value Sensitivity (%) Specificity (%) 95 % CI p Value

HIF-1α 0.730 3.62 35.2 90.0 0.676–0.780 <0.0001

TnT 0.662 0.12 42.6 82.5 0.598–0.725 <0.0001

NT-proBNP 0.502 19283 15.7 94.2 0.434–0.570 0.955

Fig. 5 Diagnostic value of HIF-1α, TnT and NT-proBNP for type
of ADHF
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may affect the prognostic role of HIF-1α. Finally, oxygen
inhalation during treatment in the hospital affects the
expression of HIF-1α. With the improvement in the
state of hypoxia, HIF-1α levels may decline rapidly.
Overall, HIF-1α can provide an immediate reflection of
tissue oxygenation at ADHF patients; however, we failed
to demonstrate that HIF-1α is a biomarker for predicting
the risk of ADHF.

Study limitations
Our study had limitations. The sample scale and short
follow-up time were disadvantages. Furthermore, to re-
duce patient discomfort, we did not perform arterial
blood gas analysis. Moreover, we evaluated the degree of
hypoxia in patients, so we did not detect HIF-1α mRNA
levels. Finally, the present study was a multicenter study.
Even though all patients had received standard treat-
ment according to the guidelines during the hospital
stay, there were some minor differences in treatment be-
tween each study center, such as oxygen concentration
and flow rate, as well as the dose of diuretics. These dif-
ferences may have resulted in statistical bias.

Conclusion
The present study was the first to evaluate circulating
levels of HIF-1α in ADHF patients. HIF-1α, as an intra-
cellular protein, was originally shown to exist in the cir-
culation of ADHF patients. Serum HIF-1α levels may
reflect a serious state in patients with ADHF. Within the
limitations of the study, serum HIF-1α levels were not
correlated with patient outcome. The HIF-1α level may
become a prognostic biomarker of heart failure; how-
ever; this potential role needs to be validated by means
of further prospective studies in the future.
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