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Abstract

Background: Recently, several tools have been designed for human leukocyte antigen (HLA) typing using single
nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) data. These tools provide high-throughput
and cost-effective approaches for identifying HLA types. Therefore, tools for downstream association analysis are highly
desirable. Although several tools have been designed for multi-allelic marker association analysis, they were designed
only for microsatellite markers and do not scale well with increasing data volumes, or they were designed for large-scale
data but provided a limited number of tests.

Results: We have developed a Python package called PyHLA, which implements several methods for HLA association
analysis, to fill the gap. PyHLA is a tailor-made, easy to use, and flexible tool designed specifically for the association
analysis of the HLA types imputed from genome-wide genotyping and NGS data. PyHLA provides functions
for association analysis, zygosity tests, and interaction tests between HLA alleles and diseases. Monte Carlo
permutation and several methods for multiple testing corrections have also been implemented.

Conclusions: PyHLA provides a convenient and powerful tool for HLA analysis. Existing methods have been
integrated and desired methods have been added in PyHLA. Furthermore, PyHLA is applicable to small and
large sample sizes and can finish the analysis in a timely manner on a personal computer with different
platforms. PyHLA is implemented in Python. PyHLA is a free, open source software distributed under the
GPLv2 license. The source code, tutorial, and examples are available at https://github.com/felixfan/PyHLA.
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Background
The human leukocyte antigen (HLA) loci on chromo-
some 6 (6p21.3) are the most polymorphic and gene-
dense region of the human genome. HLA proteins play
an important role in transplant rejection. Association of
variants in the HLA region and infectious, autoimmune
diseases and cancers has been established. Directly typ-
ing HLA using experiments is still laborious, expensive,
and time-consuming [1]. Several algorithms and pipe-
lines, such as HLA*IMP:02 [2] and MGAPrediction [3]
have been developed for HLA imputation using data
from genome-wide association studies (GWAS), whereas
OptiType [4], HLA-VBSeq [5] and HLAreporter [6] have

been developed for HLA typing using data from next-
generation sequencing (NGS) studies. All tools use HLA
allele sequences from the IMGT/HLA database [7] as
reference. These tools have provided us a cost-efficient,
high-throughput approach for HLA typing by using the
already available GWAS and NGS data.
Given the continuously increasing amounts of HLA

types being generated, integrating the workflow for their
downstream association analysis is highly desirable. Sev-
eral existing tools, such as CLUMP [8], PyPop [9] and
SKDM [10], can be used to analyze HLA types. These
tools are not ideal for association analysis of HLA types
inferred from GWAS and NGS data as they were de-
signed for analyzing microsatellite markers or provided
limited functions. In this study, we present PyHLA, a
Python-based standalone tool, for the association ana-
lysis between diseases and HLA types inferred from
GWAS and NGS data.
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Implementation
PyHLA is implemented in Python 2.7. The graphical user
interface is also provided. The source code, tutorial and ex-
amples are freely available at https://github.com/felixfan/
PyHLA. A demonstration is also available at https://github.
com/felixfan/PyHLA/tree/master/demo. Figure 1 shows an
overview of the methods applied to HLA types for finding
disease-associated HLA alleles.

Data summary (module 1)
Gene, allele and population level summary of the frequency
can be produced in the case and control populations.

Association analysis (module 2)
It is a simple and easy way to implement methods for
localization of susceptibility genes by comparing the al-
lele frequencies between cases and controls from the
same population. Usually, Pearson’s chi-squared test or
Fisher’s exact test is performed on a 2 × 2 contingency

table, which contains the counts of minor and major al-
leles for a single locus in cases and controls. As the most
polymorphic part of the human genome, HLA genes,
such as HLA-A, HLA-B and HLA-C, have several thou-
sand known alleles [7]. PyHLA performs Pearson’s chi-
squared test or Fisher’s exact test on the 2 × 2 contingency
table, which compares one allele with the other alleles
grouped together.
If the HLA-A gene has n common alleles in cases and

controls, then n tests are performed. In each test, one al-
lele is compared with the other n − 1 alleles grouped to-
gether. The allelic 2 × 2 contingency table for a specific
HLA allele contains the counts of this allele and the
counts of other n − 1 alleles in cases and controls. The
dominant and recessive models assume that each allele
is dominant and recessive to the other n − 1 alleles, re-
spectively. The dominant 2 × 2 contingency table for a
specific HLA allele contains the counts of individuals
with and without the allele in cases and controls. The

Fig. 1 PyHLA flowchart. PyHLA uses the imputed HLA types from several softwares (top-middle) as input. Four main functional modules of PyHLA
are: data summary (top-right), association analysis (top-left), zygosity test (bottom-left) and interaction test (bottom-right). For details of the manner
in which each module works, please see https://github.com/felixfan/PyHLA
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recessive 2 × 2 contingency table for a specific HLA al-
lele contains the counts of individuals with and without
two copies of this allele in cases and controls.

Pearson’s Chi-squared test
Pearson’s chi-squared test statistic can be calculated
using the following formula:

χ2 ¼
Xr

i¼1

Xc

j¼1

Oi;j−Ei;j
� �2

Ei;j
; ð1Þ

where χ2 is the chi-square critical value with a degree of
freedom equals to 1. Oi,j and Ei,j are the observed and
expected frequencies of the cell in row i and column j,
respectively. r is the number of rows and c is the number
of columns; both are 2 for the 2 × 2 contingency table.

Fisher’s exact test
Fisher’s exact test first calculates the exact probability of
the 2 × 2 contingency table of the observed values using
the following formula:

Pcutoff ¼ r1!r2!c1!c2!

N !
Y

i;j
Oi;j!

; ð2Þ

where Oi,j is the observed frequency of the cell in row i
and column j. ri and ci are the rows and columns of
marginal totals, respectively. N is the grand total. Pcutoff
is the exact probability of obtaining such set of observed
values. Then, the probability for all possible tables with
the same marginal totals is calculated. The two-sided p
value for the Fisher’s exact test is calculated by summing
all probabilities less than or equal to Pcutoff.

Logistic and linear regression
Logistic and linear regressions were also implemented
for disease trait and quantitative trait, respectively. These
two regression methods allow for multiple covariates
when testing for allele and amino acid (AA) association.
The covariates can be either continuous or binary. A
genotype will be coded as 0, 1, or 2, depending on the
number of effect allele it carries and the tested genetic
model (Table 1).

The logistic regression without additional covariates is
defined by the following formulas:

θ xð Þ ¼ Pr y ¼ 1jxf g; ð3Þ

log
θ xð Þ

1−θ xð Þ ¼ β0 þ β1x; ð4Þ

where y is the binary outcome. 1 and 0 represent the
disease and normal, respectively. x is the codes of geno-
types. β0 is the constant term, and β1 is the coefficient of
x. When extra covariates was added, the logistic regres-
sion is extended as follows:

θ xð Þ ¼ Pr y ¼ 1jx; cov1; cov2;⋯covkf g; ð5Þ

log
θ xð Þ

1−θ xð Þ ¼ β0 þ β1xþ β2cov1 þ β3cov2 þ ⋯þ βkþ1covk ;

ð6Þ

where covk is the kth covariate and βk+1 is the coefficient
of the kth covariate.
The simple linear regression with one dependent vari-

able and one independent variable is defined by the fol-
lowing formula:

y ¼ β0 þ β1xþ ε; ð7Þ

where y is the dependent variable, x is the independent
variable, β0 is the constant term, β1 is the coefficient of
x, and ε is the error term. The ordinary least squares
method was used to estimate the parameters. When one
or multiple covariates are added to the model, the linear
regression model is defined by the following formula:

y ¼ β0 þ β1xþ β2cov1 þ β3cov2 þ⋯þ βkþ1covk þ ε;

ð8Þ

where covk is the kth covariate and βk+1 is the coefficient
of the kth covariate.

Multiple testing correction
The p values can be adjusted by using the Bonferroni
correction or false discovery rate (FDR) correction. The
empirical p-values can also be calculated using a permu-
tation test, which randomly shuffles the phenotypes for
individuals, while keeping the HLA alleles unchanged.

Amino acid association analysis
PyHLA can perform not only allele level association ana-
lysis but also the AA level association analysis. The
aligned AA sequences were retrieved from the IMGT/
HLA database [7]. Fisher’s exact test or Pearson’s chi-
squared test can be conducted to investigate AA occur-
rence that are significantly associated with a disease.

Table 1 Genotype coding for additive, dominant, and recessive
models, with D being the risk allele

Genotype Code

Additive Dominanta Recessiveb

DD 2 1 1

Dd 1 1 0

dd 0 0 0
aD is dominant over d
bD is recessive to d
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Zygosity test (module 3)
Three tests were performed to investigate homozygous,
heterozygous, and zygosity associations. These three
tests evaluate the frequency difference of subjects carry-
ing the homozygous and heterozygous alleles and the
absence of a particular allele/AA in cases and controls.
An individual carrying two same alleles is considered
homozygous in the allele level test. An individual carry-
ing two identical alleles or an individual carrying two
different alleles that code for the same AA residue is
considered homozygous in the AA level test. Fisher’s
exact test or Pearson’s chi-squared test for a 2 × 2 con-
tingency table can be used for the zygosity test.

Interaction test (module 4)
Interaction test performs eight tests for detecting the
strongest association. These tests involve tests for inde-
pendence, differential association, combined association,
linkage disequilibrium, and interaction [10, 11]. Each of
the eight tests is based on a 2 × 2 contingency table.
Fisher’s exact test or Pearson’s chi-squared test can be
used for the interaction test.

Results
Since it is hard to find a publicly available real dataset. A
simulated data set with 1000 cases and 1000 controls
was used to demonstrate the usage of PyHLA. Detailed
commands, inputs and outputs are available on https://
github.com/felixfan/PyHLA/tree/master/demo.
Association test suggested that the two most signifi-

cant alleles are HLA-A*01:01 (P = 4.03E-24, OR = 2.15)
and HLA-DQB1*05:02 (P = 3.32E-11, OR = 1.58). Zygos-
ity test further showed that the susceptibility to disease
between homozygote and heterozygote of these two al-
leles are different (P = 2.46E-11 and P = 1.10E-7 for
HLA-A*01:01 and HLA-DQB1*05:02, respectively.). The
heterozygotes are individually associated with the disease
(P = 1.21E-19 and P = 6.60E-8 for HLA-A*01:01 and
HLA-DQB1*05:02, respectively.). Finally, the interaction
test suggested that HLA-A*01:01 and HLA-DQB1*05:02
are in linkage disequilibrium in cases; their combined
action is contributory to disease susceptibility.

Discussion
PyHLA provides an integrated pipeline for detecting
HLA association in antigen (two-digit allele level), pro-
tein (four-digit allele level) and AA levels. Zygosity tests
will examine the homozygous, heterozygous, and zygos-
ity associations once the associated alleles and AAs are
identified. In addition, interaction test examines the in-
dependence, differential association, combined associ-
ation, interaction, and linkage disequilibrium between
two factors.

In addition to identifying alleles and AA residues that
are significantly associated with the disease, PyHLA also
tests whether the increased HLA homozygosity or het-
erozygosity contributes to the increased susceptibility to
a disease. When several factors are associated with the
disease, the interaction test identifies the strongest one
between each pair of the two factors. The factor with the
strongest association is more likely to be the causative
factor that truly contributed to the disease [11].
In this work, Pearson’s chi-squared test and Fisher’s exact

test performed on a 2 × 2 contingency table were imple-
mented in PyHLA. Linear and logistic regressions were also
included to consider multiple covariates simultaneously.
Bonferroni adjustment and correction via FDR estima-

tion are widely used for multiple testing corrections.
Bonferroni correction assumes that all tests are inde-
pendent and is conservative in genetic association ana-
lysis, whereas FDR is less stringent [12–15]. In addition,
the empirical p values can also be calculated using the
permutation test, which randomly shuffle the pheno-
types for individuals while keeping the HLA alleles un-
changed. The permutation test preserves the correlation
structure among HLA alleles but requires a large num-
ber of random shuffles. Given that the number of HLA
alleles is relatively smaller than the number of SNPs in
the genome, the computing time and resources needed
for the permutation test are significantly less. PyHLA
can perform these analyses on a single modern personal
computer in a timely manner.
Four chi-squared tests were implemented in CLUMP

[8] to test the association between disease and alleles at
highly polymorphic loci, and Monte Carlo imputation
was performed to estimate the significance level. CLUMP
is mainly designed for analyzing microsatellite markers
in qualitative trait studies (case-control study), but not
in quantitative trait studies. CLUMP cannot perform
residual level tests as well. SKDM [10] is specialized in
case-control HLA analysis through the identification
and subsequent dissection of AA association; it is not
designed for quantitative studies. Only the Fisher’s
exact test is available for association test, and only
Bonferroni correction is available for multiple testing
adjustment. PyPop [9] is designed to handle large sam-
ple sizes for population statistics, haplotype frequency
estimation and linkage disequilibrium significance test-
ing. PyHLA is designed to supplement and extend these
existing software. PyHLA can handle both qualitative
and quantitative trait studies in both amino acid level
and different resolutions of allele levels. Both chi-
squared test and Fisher's exact test are implemented to
test the association, and both Bonferroni correction
and FDR are available for multiple testing adjustment.
Monte Carlo imputation is also implemented to estimate
the significance level. Moreover, logistic regression and
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linear regression implemented in PyHLA can also include
covariates in the association analysis.

Conclusions
In summary, PyHLA is a user-friendly tool for HLA as-
sociation analysis. Existing methods are integrated and
additional desired methods are included in PyHLA.
PyHLA is applicable to small and large sample sizes and
can complete the analysis in a timely manner on a personal
computer. PyHLA is designed for case-control studies.
PyHLA is currently unable to analyze family-base datasets.
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