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Abstract

Background: Altered networks of gene regulation underlie many complex conditions, including cancer. Inferring
gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task
in computational systems biology and its translation to genomic medicine. Although diverse computational and
statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative
strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only
small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality.

Methods: We report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network
inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial
correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary
ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal
and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the
CancerResource and PharmGKB webtools and databases.

Results: We observe large differences in the accuracy with which these methods predict the underlying gene
regulatory network depending on features of the data, network size, topology, experiment type, and parameter
settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian
adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For
selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using
network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key
transcription factors in normal and cancer conditions. Druggabilty analysis of proteins encoded by the 10 highest-
confidence target genes, and by 15 genes with differential regulation in normal and cancer conditions, reveals 75%
to be potential drug targets.

Conclusions: Our study represents a concrete application of gene regulatory network inference to ovarian cancer,
demonstrating the complete cycle of computational systems biology research, from genome-scale data analysis via
network inference, evaluation of methods, to the generation of novel testable hypotheses, their prioritization for
experimental validation, and discovery of potential drug targets.

Background
Cancer is a disease not of single genes, but rather of
genomes [1] and/or networks of molecular interaction
and control [2]. Reconstructing gene regulatory net-
works (GRNs) in healthy and diseased tissues is

therefore critical to understanding cancer phenotypes
and devising effective therapeutics [3]. Conventional
experimental approaches are focused on individual
genes and consequently too time-consuming for
reverse-engineering the large number of interactions in
GRNs. By contrast, system-wide computational
approaches can deal with complex networks of interact-
ing molecules [4]. GRNs are typically represented as
graphs in which nodes represent genes (for example,
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encoding a transcription factor or its target gene), and
edges their regulatory interaction [3,5-7].
Advances in microarray and, more recently, next-gen-

eration sequencing technologies provide a wealth of data
for GRN inference (GRNI). Many diverse GRNI meth-
ods have been proposed, reflecting the enormous inter-
est in the field, and the richness of computational
mathematics, multivariate statistics and information
science. These methods can be classified into two cate-
gories, unsupervised and supervised [8,9]. In the former,
networks are inferred exclusively from the data (for
example, differential gene expression), whereas super-
vised methods require additional knowledge of regula-
tory interactions as a training set. Unsupervised
methods can largely be divided into two groups: those
based on correlation and those based on mutual infor-
mation [10,11]. The former tend to be algorithmically
simple and computationally fast but frequently assume
linear relationships among variables. In contrast, meth-
ods based on mutual information capture non-linear as
well as linear interactions but are applicable only to dis-
crete data and need to employ discretization methods,
which can be computationally demanding.
Given this diversity, it is critical that users understand

the relative strengths and limitations of GRNI methods.
To this end, DREAM (Dialogue for Reverse Engineering
Assessments and Methods), an annual open competition
in network inference, has been established [12]. Gene
expression (and other) data, but not the underlying
GRNs, are published, and teams apply GRNI technolo-
gies to reverse-engineer, as accurately as possible, the
underlying network. While overall performance is mod-
est and no clear winning approach is yet apparent, cer-
tain important themes have emerged [13-15].
First, GRNI methods perform differently on different

types of data. For instance, methods based on linear
models perform poorly on highly non-linear data such
as may arise from drastic perturbations like gene knock-
outs, whereas non-linear methods may perform well in
these scenarios [16]. Single-point or steady-state data
typically yield better predictions than do time-course
data [14]. Data size is often critical, with the low accura-
cies observed on genome-scale networks improved for
smaller subsets [13,17]. Less predictably, some methods
excel on networks of Erdös-Rényi topology, others on
scale-free networks [13].
Second, with the current GRNI methods, simpler

approaches (for example, correlation) often outperform
more-complicated ones even on synthetic data, presum-
ably because the methodological complications fail to
capture key complexities of the underlying models and/
or combinatorial regulation [18]. Further, prediction
accuracy is usually even lower with real-life data than
with simulated data, probably not only because the

former tend to be less complete and/or of lower quality,
and the underlying networks larger and of unknown
topology, but also because actual cellular systems
involve layers of regulatory control, including chromatin
remodeling, small RNAs and metabolite-based feedback
[3], that existing GRNI methods cannot adequately
model. Furthermore, tumors are heterogeneous and
involve non-standard or unique disruptions or regula-
tory interactions, rendering GRN inference even more
challenging [19].
Various measures of prediction accuracy have been

applied, including the F1 score, Matthews correlation
coefficient, and area under the receiver-operating char-
acteristic (ROC) curve (AUC) [20]. Each of these mea-
sures is expressed as a single numerical value that
integrates over all predicted interactions. Yet even a
GRN predicted with overall low accuracy may contain a
subset of predictions likely to be correct and therefore
worthy of subsequent investigation, potentially including
experimental validation.
Here we select from about 80 published GRNI meth-

ods [21-28] one supervised and eight unsupervised
methods that together represent a diversity of mathema-
tical formalisms. Our selection was guided by whether
the software is documented, supported and could be
installed, and its perceived importance or popularity in
the field [14]. For the unsupervised methods, we explore
how different parameters and parameter-value variations
influence accuracy. We identify the type of simulated
data best suited to assess these methods, and show that
properties of the generative network, especially its size,
significantly influence prediction accuracies of the meth-
ods. We also evaluate these methods using empirical
microarray data from normal ovarian tissue. Finally, we
compare the best-performing unsupervised methods
with the supervised method using simulated datasets
obtained from the DREAM3 and DREAM4 competitions
[15,29] and datasets generated using the SynTReN soft-
ware [30]. We selected SynTReN rather than GeneNet-
Weaver (the simulator used in DREAM3 and DREAM4)
because the former is computationally more efficient
and allowed us to vary independently the numbers of
samples and network nodes.
We measure prediction accuracy by the AUC. Other

measures, including sensitivity, specificity, precision,
Matthews correlation coefficient and F1 score, have also
been used [31-33]. In contrast to AUC, however, these
measures require the selection of a threshold that trans-
forms edge weights into interactions and non-interac-
tions, essentially defining a point on the ROC curve.
This raises the question of how (at what point on the
ROC curve) to define the threshold. Various approaches
have been proposed [20,34,35], but since the range and
distribution of network weights is method-dependent, a
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fair comparison of methods is guaranteed only for indi-
vidually optimized thresholds, for example, maximized
F1 score. AUC allows unbiased comparison without the
need to optimize a threshold, and has the added advan-
tage of facilitating the comparison of our results with
those from DREAM.
Using the best-performing method, we infer normal as

well as ovarian cancer GRNs, and seek independent sup-
port in the literature and via computational prediction
of transcription factor (TF) binding sites (TFBSs). For
interactions with a confidently predicted TFBS but with-
out independent literature support, we develop mechan-
istically detailed case studies that imply novel testable
hypotheses of genetic regulation in normal and cancer-
ous ovaries. We perform a topological analysis of the
inferred network, revealing a large number of interac-
tions disrupted in cancer and implicating a regulatory
switch controlling angiogenesis in ovarian cancer.
Finally, we conduct druggability analysis of gene pro-
ducts from high-confidence target genes and angiogen-
esis-specific genes.

Materials and methods
Gene regulatory network inference methods
We selected for comparison eight state-of-the art unsu-
pervised GRNI methods: Relevance Networks (RN) [36],
Minimum Redundancy/Maximum Relevance Networks
(MRNET) [33], Context Likelihood Relatedness (CLR)
[37], The Algorithm for the Reconstruction of Accurate
Cellular Networks (ARACNE) [38], Partial Correlation
and Information Theory (PCIT) [39], Weighted Gene
Co-expression Network Analysis (WGCNA) [40], Gene
Network Inference with Ensemble of Trees (GENIE3)
[41], and CORRELATIONS [42]. We also worked with
one supervised method, Supervised Inference of Regula-
tory Networks (SIRENE) [43]. All unsupervised methods
are implemented in the R language, and SIRENE in
MATLAB. For descriptions of the underlying mathema-
tical formalisms, the methods themselves, and the para-
meters we found useful for optimization, see
supplemental material and Table S1 in Additional file 1.

Datasets
We downloaded simulated knock-down and multifactor-
ial gene expression datasets (each with 100 genes and
100 samples) from the DREAM3 and DREAM4 compe-
titions, along with the associated reference networks
[14,15,29]. These data were generated using GeneNet-
Weaver version 2.0 [29]. The knock-down data contain
steady-state expression levels for wild type and for
knock-downs of every gene in the network. The multi-
factorial dataset contains steady-state levels obtained by
applying multifactorial perturbations to the original net-
work, and is thought to resemble a real dataset in which

each sample is a genome-wide expression profile from a
different patient [14,15].
We generated a second set of simulated datasets using

SynTReN (Synthetic Transcriptional Regulatory Net-
work) generator version 1.1.3 [30]. It samples from
known Saccharomyces cerevisiae and Escherichia coli
networks to create sub-networks, for which it simulates
expression data based on Michaelis-Menten and Hill
kinetics. Using SynTReN we generated 12 benchmark
datasets (3 node numbers × 4 sample numbers) from
each of the three topologically different source networks
using default parameter settings (Tables S2 and S3 in
Additional file 1). The source networks, two from E. coli
(large and small) and one from S. cerevisiae, have differ-
ent topological properties. Specifically, the networks dif-
fer in their numbers of nodes, numbers of interactions,
average directed path lengths, and average clustering
coefficients. The E. coli large network has more nodes
and interactions, a longer average directed path length
and a higher average clustering coefficient than the S.
cerevisiae or the E. coli small source networks (Table S4
in Additional file 1) [30]. While the sub-networks we
extract have identical numbers of nodes, the number of
edges varies based on the source network; for example,
the 50-node sub-network extracted from E. coli-small
contains 101 edges, whereas the network of the same
size extracted from E. coli-large contains 171 edges. For
each sub-network, we used SynTReN to simulate multi-
factorial expression datasets with 10, 50, 100 and 200
samples.
The ovarian cancer microarray dataset (NCBI Gene

Expression Omnibus GSE14407) [44] is based on 12 nor-
mal surface epithelial cell samples and 12 unmatched
cancerous epithelial cell samples isolated by laser-capture
microdissection from human serous papillary ovarian
adenocarcinoma [44]. We performed data processing and
statistical analyses using CARMAweb [45], and 282 dif-
ferentially expressed genes (P < 0.05) identified using
SAM [45,46] were input to SIRENE for network infer-
ence. In the absence of a reference ovarian GRN, we
derived a network from experimentally validated regula-
tory interactions in TRANSFAC [47] by mapping indivi-
dual genes from the ovarian cancer dataset onto the
reference network, yielding a network of 6,330 interac-
tions among 280 TFs and 2,170 targets (Additional file 2).
To validate our results on the ovarian cancer dataset

described above, we also applied SIRENE to a dataset by
Tothill et al. [48] downloaded from NCBI Gene Expres-
sion Omnibus (GSE9891). This dataset was likewise cre-
ated on the Affymetrix HG_U133_plus2 platform and is
composed of 285 patient samples. This dataset does not
contain data from normal ovary tissue. We selected
patient samples with serous adenocarcinoma stage 3
with grade 2 or 3, resulting in a reduced dataset with
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158 patients (98 grade 3 and 60 grade 2). We obtained
the expression profiles for the 282 differentially
expressed genes from the 158 patients selected, and
employed SIRENE to infer the regulatory network for
this dataset.

Evaluation
To measure prediction accuracy against a corresponding
reference network, we used the AUC [20], a single mea-
sure that summarizes the trade-off between true positive
rate and false positive rate [20]. An AUC value of 0.5
corresponds to a random prediction, while a value of 1
indicates perfect prediction.
To investigate whether evidence for interactions exists

in the literature, we queried GeneGO [49], Ingenuity
Pathway Analysis [50] and PubMed abstracts, the latter
via PubGene (now Coremine) [51]. For GeneGO and
IPA, we uploaded the set of target genes as a list,
retrieved all regulatory interactions without restricting
the search, and looked for regulatory interactions identi-
fied in our predicted network. For PubGene, we queried
with predicted TF-target gene pairs, searching across
human and other species.
For each predicted regulatory interaction (TF-target

gene pair) we applied Genomatix MatInspector [52] to
determine whether a TFBS for that TF is present
upstream of the target gene. For each TFBS match, this
algorithm assigns a matrix similarity score ranging from
0 to 1 (exact match). We queried MatInspector using
Entrez Gene Identifiers and a promoter sequence length
2,000 bp upstream of the transcriptional start site.
Functional enrichment analysis of gene lists was per-

formed using the DAVID webtool [53,54]. For any Gene
Ontology (GO) term, a modified Fisher exact test was
applied to determine whether the number of genes
annotated with a particular GO term is enriched in the
gene list compared to the number with that GO term in
the background. We set the HG-U133 Plus 2.0 array, as
well as genes present in the network, as background.

Network inference
To generate the normal and the cancer GRNs, the 282
differentially expressed genes and associated reference
TF-target networks with 115 interactions, between 9 TF
and 106 target genes, obtained from TRANSFAC were
input to SIRENE. Parameters used for network genera-
tion are provided as Table S5 in Additional file 1. The
resulting networks were visualized and analyzed using
Cytoscape 2.8 [55]. Network interactions were rendered
according to evidence.

Druggability analysis
Druggability analysis of 178 proteins encoded by all
genes in the predicted ovarian network (above) was

conducted using the CancerResource [56] and
PharmGKB [57] webtools and databases.

Results
Comparative evaluation
Parameter settings affect accuracy of GRNI methods
Most of the eight unsupervised methods evaluated here
can be tuned by selection of parameter values. To study
the effect of parameter variation on performance, and to
optimize parameter values, we used the DREAM4 multi-
factorial simulated expression data [29].
Figure 1 shows, for each method, the range of predic-

tion accuracies we observed by varying parameter
values. For the mutual information (MI)-based methods
(RN, MRNET, CLR and ARACNE) we examined three
parameters: MI estimators, discretization methods and
bin size. We optimized four different MI estimators (mi.
empirical, mi.mm, mi.shrink, and mi.sg) and three dis-
cretization methods (equal frequency, equal width, and
global equal width). For each discretization method we
furthermore varied the bin number between 2 and 95
(from 2 to 10 with increment 1, and thereafter with
increment 5). Thus, in total, for each method we exam-
ined 312 parameter values (4 MI estimators × 3 data
discretization methods × 26 bin sizes). For PCIT,
WGCNA and CORRELATIONS we evaluated three cor-
relation methods: Pearson, Spearman and Kendall-Tau.
In addition, for WGCNA we varied the softpower para-
meter [40] between 7 and 17. For each of PCIT, COR-
RELATIONS and WGCNA we examined 3, 3, and 33
parameter values, respectively. RN showed the largest
variation in prediction accuracy and WGCNA and
CORRELATIONS showed the least. GENIE achieved the
best prediction accuracy on these data, as it did in
DREAM4 [41]. We found that bin numbers between 3
and 6 gave the best performance irrespective of the
combination of GRNI, MI estimator and discretization
method (Figure S1 in Additional file 3). To examine the
robustness of parameter optimization, we repeated the
optimization process on other datasets (Table S6 in
Additional file 1) and found that the optimal parameter
values changed with different datasets, that is, there is
no ‘one size fits all’ set of parameter values.
Data type is critical for performance of all GRNI methods
To investigate the influence of data type on perfor-
mance, and to identify the most-informative type of
simulated data, we tested all methods on two different
DREAM data types (knock-down and multifactorial
[29]) and on multifactorial data generated using SynT-
ReN (Figure 2). All methods were run using optimal
parameter settings obtained for the respective dataset.
We found the prediction accuracies of all methods
extremely low on the knock-down data, implying that
these data are less informative, and reasonably high
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(AUCs around 0.8 for most methods) on the multifac-
torial data. ARACNE achieved low accuracies in general
and PCIT worked only well for SynTReN data. Between
the two multifactorial datasets, accuracies are generally
higher on the SynTReN data than DREAM, suggesting
that not only the experimental type but also the process
of simulation can affect performance.

Network properties influence accuracy
Because network properties, including number of nodes,
edges and network motifs, may influence the performance
of GRNI methods [13,15,29], we evaluated each method
against sub-networks of sizes 50, 100 and 200 nodes gen-
erated from three source networks using SynTReN (Mate-
rials and methods), and using optimized parameter value

Figure 1 Parameter optimization of methods. Comparison of unsupervised GRNI (gene regulatory network inference) methods using the
DREAM4 multifactorial dataset. Each boxplot represents variation in prediction accuracy over the different parameter values used for
optimization. With GENIE (Gene Network Inference with Ensemble of Trees), no parameter was found useful for optimization, so it was used with
default settings. For information on the complete parameter sweep see Figure S1 in Additional file 3.

Figure 2 Accuracies of gene regulatory network inference methods on two different data types. Comparison of unsupervised GRNI
methods on two different data types, knockdown, and multifactorial with 100 genes and 100 samples.

Madhamshettiwar et al. Genome Medicine 2012, 4:41
http://genomemedicine.com/content/4/5/41

Page 5 of 15



settings for each method. Figure 3 shows, for each GRNI
method, the range of prediction accuracies achieved. We
observed that the median accuracies of all methods are
significantly higher on sub-networks extracted from the E.
coli-small and S. cerevisiae source networks than on the E.
coli-large networks (Mann-Whitney U-test, P < 0.0003
with Bonferroni correction, significance threshold a =
0.01). Accuracies do not differ significantly on the E. coli-
small and S. cerevisiae networks (Mann-Whitney U-test, P
> 0.0003 with Bonferroni correction, a = 0.01) (Table S7
in Additional file 1). For comparison of prediction accura-
cies on individual datasets, see Figure S2 in Additional file
4. The consistently lower accuracies for the large E. coli
network in comparison to E. coli-small may result from
the existence of more-complicated regulatory motifs and
the higher edge density within the former [31,58].
Performance of unsupervised GRNI methods on empirical
data
To assess the performance of GRNI methods on real
datasets and evaluate their potential in analyzing cancer
expression data, we examined their application to two
subsets of an ovarian microarray dataset [44] with 12

samples and 2,450 genes (Figure 4a) and 282 genes (Fig-
ure 4b), respectively. We found prediction accuracies of
all the methods to be extremely low on these datasets,
particularly on the larger dataset, most likely due to the
very small number of samples in relation to genes. Only
RN and MRNET showed some predictive power on the
smaller dataset for optimal parameter settings.
Comparison of best unsupervised methods with a
supervised method
Table 1 compares prediction accuracies of unsupervised
and supervised GRNI methods on simulated and empiri-
cal data. The best-performing unsupervised method for
each dataset is compared with the supervised method
SIRENE. We found that SIRENE always performs better
than the best-performing unsupervised method except
on the DREAM4 dataset. The highest accuracy of SIR-
ENE is seen when the method is applied to the small
normal ovarian dataset (AUC = 0.86).

Application of GRN inference to ovarian cancer data
The above evaluation gives us some confidence that
GRNI methods can predict small GRNs (Figures 1 to 3).

(a) (b) (c)

Figure 3 Accuracies of gene regulatory network inference methods on different networks. (a-c) Comparison of accuracies (AUCs) of
unsupervised GRNI methods on the sub-networks extracted from three source networks: E. coli large (a), E. coli small (b), and S. cerevisiae (c).
Each boxplot represents variation in the accuracy of that method obtained using optimal parameter settings for each of the 12 datasets
generated by SynTReN. The highest accuracies were achieved on the small E. coli networks.
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We now apply the best-performing method, SIRENE, to
ovarian cancer data with 282 differentially expressed
genes and predict GRNs for normal and cancerous ovar-
ian epithelial tissue. We evaluate all predicted interac-
tions, as well as the network itself, to determine if GRNI
yields novel insights.
Structural variation between normal and cancer networks
Figures 5 and 6 show structural variation between the
normal and the cancer GRNs inferred using SIRENE

(the full networks are provided as Additional files 5
and 6). SIRENE assigns positive weights to indicate
interactions, and negative weights to indicate absence
of interactions, while the absolute weight reflects the
confidence in the prediction. From Figure 5, we see
that more interactions (144) are predicted in the nor-
mal than in the cancer network (108), and that the
interaction weights are larger in the former. In total,
SIRENE predicted 205 interactions, 97 specific to nor-
mal, 61 specific to cancer, and 47 present in both net-
works (Figure 6).
Literature validation and computational prediction of TF
binding sites
We next asked whether any of these 205 predicted
interactions had previously been reported in the litera-
ture. Using PubGene and the manually curated Gen-
eGo and IPA data sources, we found prior evidence for
93 of our predicted interactions (Additional file 7).
Promoter analysis of the 205 target genes using Geno-
matix MatInspector revealed upstream TFBSs for 124
interactions (Additional file 6), 67 of which had no
previous literature evidence. Combining these results,
we see that 78% of the interactions predicted by SIR-
ENE have supporting evidence either from literature or
from TFBS prediction. These results are only slightly
lower than the accuracy rate calculated for SIRENE on
the normal ovarian data (as assessed using an indepen-
dent reference network), and slightly higher than

(a) (b)

Figure 4 Accuracies of gene regulatory network inference methods on empirical data. Accuracies (AUCs) of unsupervised GRNI methods
on normal ovarian microarray data. (a) Prediction accuracy of methods on normal ovarian data with 2,450 genes and 12 samples. (b) Prediction
accuracy of methods on normal ovarian data with 282 differentially expressed genes and 12 samples.

Table 1 Accuracies of unsupervised and supervised GRNI
methods on different datasets

Unsupervised
method

SIRENE

Datasets Method AUC AUC

DREAM3 (knockdown): genes 100, samples
100

MRNET 0.59 0.71

DREAM4 (multifactorial): genes 100, samples
100

GENIE 0.79 0.69

Ovary-normal: genes 2,450, samples 12 RN 0.55 0.62

Ovary-normal: genes 282, samples 12 RN 0.70 0.86

Comparison of accuracies (AUC) of unsupervised and supervised Gene
Regulatory Network Inference (GRNI) methods on different datasets. For each
dataset, the best-performing unsupervised method was selected for
comparison with SIRENE.

AUC, area under the receiver-operating characteristic curve; DREAM, Dialogue
for Reverse Engineering Assessments and Methods; GENIE, Gene Network
Inference with Ensemble of Trees; MRNET, Minimum Redundancy/Maximum
Relevance Networks; RN, Relevance Networks; SIRENE, Supervised Inference of
Regulatory Networks.
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expected based on the performance of SIRENE on the
synthetic DREAM datasets.
Prediction of novel interactions
We examined in detail the ten interactions most confi-
dently (weight ≥ 0.5) predicted interactions confidently
predicted by SIRENE but not reported in the literature
(Table S8 in Additional file 1). For seven of these we
predict a high-quality TFBS; below, for two of these, we
propose a role and mechanism of action in normal ovar-
ies, or in ovarian cancer.
E2F1 and DKK1
E2F1 is a member of the E2F family of transcription fac-
tors best known for regulating cell-cycle progression. In
ovarian cancer, up-regulation of E2F1 contributes to
uncontrolled cell proliferation. E2F1 is regulated by the
WNT/b-catenin/Tcf pathway [59]. Importantly, E2F1
itself can repress the WNT pathway by direct up-regula-
tion of proteins such as AXIN1/2 and SIAH1, indicating
the presence of a feedback loop between E2F-1 and the
WNT pathway [60,61]. WNT signaling plays important
roles in development, differentiation and cell prolifera-
tion, and activated WNT signaling has been implicated
in a wide range of cancers [62]. DKK-1 is a secreted gly-
coprotein that acts as a specific antagonist of WNT sig-
naling; up-regulation of this pathway due to down-
regulation of DKK-1 has been implicated in several can-
cers, and inhibition of WNT signaling by DKK-1 inhi-
bits ovarian carcinoma cell proliferation [63].

Our GRNI analysis suggests that E2F1 interacts with
DKK-1 in the normal ovary, but that this interaction is
lost in ovarian cancer. Furthermore, our analysis of the
ovarian cancer data indicates that E2F1, and direct
downstream targets of the WNT pathway (survivin, ID2
and vimentin) critical in cell-cycle progression, are up-
regulated. We hypothesize that in normal ovarian
epithelia, E2F1 turns on expression of DKK-1, which in
turn inhibits the WNT pathway, which ultimately stops
the expression of cell-cycle genes, whereas in ovarian
cancer, disruption of E2F1 regulation of DKK1 results in
loss of DKK1 expression and corresponding activation
of the WNT pathway, ultimately resulting in activation
of cell-cycle genes.
E2F1 and HSD17B2
Increased estrogen levels contribute to the risk of ovar-
ian cancer, but the exact mechanism is poorly under-
stood. Estradiol is the most potent biologically active
form of estrogen in ovarian tissue. Estradiol is mito-
genic, and evidence suggests that an increase in intra-
tumoral estradiol may play a causative role in tumori-
genesis [64]. 17b-Hydroxysteroid dehydrogenase type 2
(HSD17B2), a member of a family of enzymes that regu-
late intra-tissue estrogen synthesis by catalyzing the
interconversion of estradiol with the weakly estrogenic
estrone, is critical for normal endometrial growth and
differentiation [64]. The inactivation of estradiol by
HSD17B2 protects against over-proliferation in

Figure 5 Structural variation between the normal and cancer networks. Comparison of interaction weights predicted by SIRENE for normal
and cancer.
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Figure 6 The ovarian gene regulatory network. The ovarian network inferred using SIRENE, showing target genes (rectangles) and
transcription factors (circles). Two clusters of genes (shaded blue, in the centre of the figure) switch regulators between the two conditions,
controlled by SP3 or NF�B1 in normal and by E2F1 in cancer. Bold nodes are known to have protein products that are targeted by anti-cancer
drugs. Edge colors: green, normal; orange, cancer; blue, both. Edge line type: bold, literature and TFBS; solid, literature; dashed, TFBS; dotted, no
evidence.
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estradiol-responsive tissues. The mechanism of regula-
tion for this enzyme is not known. Previous studies have
shown abnormally elevated levels of estradiol in cancer
tissue, causing cell proliferation and tumor growth [65].
In addition to the involvement of E2F1 in WNT sig-

naling, E2F1 is also involved in the estrogen-triggered
regulation of cell proliferation [66]. E2F1 is a direct tar-
get of ESR1, which promotes cell proliferation through
E2F1 target genes. Knock-down of E2F1 blocks estrogen
regulation of E2F1 target genes, implying that E2F1 is
critical for estrogen-regulated proliferation of cancer
cells [66]. We see that E2F1 expression is elevated in
ovarian cancer, while HSD17B2 expression is reduced.
Thus, we predict that E2F1 negatively regulates
HSD17B2 in ovarian cancer and that reduced HSD17B2
results in an excess of estradiol, which in turn activates
cell-proliferation genes through the activation of ESR1.
The predicted ovarian gene regulatory network
The ovarian network, including regulatory interactions
predicted for both normal and cancerous ovarian data,
is presented in Figure 6. This network includes seven
TFs and 171 TF-target genes. Judged by number of con-
nections, by far the most influential TF in the network
is E2F1, which interacts with 134 other genes, including
five of the remaining six TFs. Two other TFs, SP3 (51
targets) and NF�B1 (18 targets), also engage in many
regulatory interactions, while the remaining TFs
(HOXB7, PGR, SMAD6 and HLF) together account for
only 10 regulatory interactions.
Topological analysis of the network reveals a set of 15

target genes that are regulated by SP3 or NF�B1 in nor-
mal cells, but by E2F1 in ovarian cancer (Figure 6). GO
enrichment analysis, using these 15 target genes against
the HG-U133 Plus 2.0 array gene sets as a background
in DAVID, revealed angiogenesis as a broad enrichment
for the nine SP3 targets, and mesenchymal cell prolifera-
tion for the six NF�B1 targets. As mesenchymal cell
proliferation is involved in angiogenesis [67], this set of
15 genes (Table S9 in Additional file 1) constitutes an
angiogenic sub-network, or program, whose transcrip-
tional regulation is dramatically altered in ovarian can-
cer. The full results of the enrichment analysis are
presented in Additional file 8. E2F1, SP3 and NF�B1
have well-documented roles in angiogenesis [68-70].
Neither angiogenesis nor the transcription factors

E2F1, SP3 and NF�B1 were identified in the original
analysis of the ovarian cancer data [44]. The specific
role(s) of these TFs in ovarian cancer is poorly under-
stood, and we find no reports implicating a switch in
regulation of angiogenesis in ovarian cancer. These
results highlight the novel insights and hypotheses that
can result from application of GRNI to cancer microar-
ray data.

Validation on an independent dataset
To validate the results achieved on the ovarian cancer
dataset, we also employed SIRENE to infer a GRN from
a second, larger (158 sample) dataset derived from a
dataset used by Tothill et al. [48]. The inferred ovarian
cancer GRN is provided as Additional file 9. Edge over-
lap analysis between this GRN and the ovarian cancer
GRN inferred previously (above) shows 64% edge over-
lap overall, and 85% edge overlap for the 20 interactions
predicted with highest confidence. This level of agree-
ment strongly indicates that most of the interactions
were reliably identified.
Druggability analysis of protein products of target genes
We conducted druggability analysis of the proteins cor-
responding to genes in our predicted ovarian GRN
using CancerResource [56], a comprehensive knowledge-
base of experimentally validated drug-target relation-
ships. To identify the proteins regarded as anti-cancer
drug targets, we input all 178 proteins from our GRN to
CancerResource. We find that 61% of the proteins from
our network are targeted by at least one anticancer drug
(Figure 6; Additional file 10). In many cases a single
drug targets multiple proteins, or conversely multiple
drugs target a single protein (Additional file 10). Here
we present the results for 24 genes: 10 genes involved in
the interactions most confidently predicted (weight
≥0.5) by SIRENE (Table S8 in Additional file 1), and 15
angiogenesis-specific genes (described above) that are
differentially regulated in normal ovary and ovarian can-
cer (Figure 6). One gene, NPY1R, is common to both
sets. Table 2 shows drugs identified as targeting the pro-
tein products of these genes. Of the 24 gene products,
16 are targeted by anti-cancer drugs. Two additional
genes (NPY and NPY1R) produce products targeted by
other classes of drugs (selective serotonin reuptake inhi-
bitors and selective beta-2-adrenoreceptor agonists).
Overall, our analysis indicates that 18 of these 24 pro-
teins can be targeted by approved (including experimen-
tally approved) drugs. Products of six genes (AGA,
NTNG1, ADAMTS3, DACH1, FGL2 and PAPSS2) are
not known to be drug targets.

Discussion
In this study we have undertaken a comparative evalua-
tion of the performance of eight unsupervised and one
supervised methods of GRNI, using synthetic and
empirical cancer datasets. How reliably these methods
perform on real data is a vital consideration for cancer
researchers. Our application of the best-performing
method, SIRENE, to real ovarian cancer data demon-
strates that GRNI can be reliable (as evidenced by
experimentally based literature not used in our infer-
ence) and predict novel interactions that are biologically
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and mechanistically reasonable (hence worthy of priori-
tization for laboratory-based experimental validation).
Parameter settings are crucial for optimal performance

of GRNI methods, and indeed we usually observe large
variations in accuracy when parameter values are chan-
ged. While parameter-value optimization can be time-
consuming, we strongly recommend it as part of com-
putational protocols including GRNI.
We observe higher accuracies on simulated multifac-

torial than on knock-down data. As the former are con-
sidered to resemble empirical gene-expression data
more closely than do other types of synthetic data, this
gives reason for optimism that GRNI methods can use-
fully be applied to clinical data. The evaluation of GRNI
methods on real data is difficult, since a true reference
network is usually lacking. Here we used TRANSFAC to
estimate the true transcriptional network for ovarian
data; even so, the TRANSFAC-based network is likely to
contain interactions not present in ovarian epithelium,
and potentially misses ovary-specific regulatory interac-
tions. Integrating available networks with tissue-specific
transcriptional interactions generated using techniques
like ChIP-seq or ChIP-chip has the potential to improve

training and evaluation of GRNI methods on real data
in the near future.
In agreement with others [14,31,71], we find that

GRNI methods are typically more accurate on simulated
than on real data. This may be due in part to topologi-
cal or other mismatch with the reference network
(above), but the presence of multilayered direct and
indirect regulatory controls, including chromatin remo-
deling, microRNAs and metabolite-based feedback in a
real GRN [3], is likely to make the network inference
problem more challenging.
In agreement with other studies [8], we found SIRENE

to be a more accurate predictor than the unsupervised
methods evaluated (Table 1), presumably because super-
vised methods take advantage of known regulatory data
in the training process. One of the major difficulties in
adopting supervised methods has been the lack of a true
or known network. Here we trained on a network of
regulatory interactions extracted from TRANSFAC;
others have used regulation data from RegulonDB [43]
or KEGG (Kyoto Encyclopedia of Genes and Genomes)
[72]. Nonetheless, such approaches do not capture a
true tissue-specific GRN, which, if available, would

Table 2 Druggability analysis results

Gene name Gene type Targeted drugs

Top 10 target genes

BCHE Enzyme Bicalutamide, genistein, choline, isoflurophate, hexafluorenium, demecarium bromide,
echothiophate iodide, butyric acid

CDK7 Protein kinase Lycopene, genistein, flavopiridol

DKK1 Receptor ligand Decitabine

CCR7 GPCR Decitabine

TPI1 Enzyme Fluorouracil, quercetin

HSD17B2 Enzyme NADH

HBB Transporter Iron-dextran complex

Angiogenesis genes:
SP3 targets

TIMP3 Binding protein Salinomycin, decitabine, sulindac, adaphostin

CAV1 Binding protein Decitabine, progesterone, mifepristone

CALB2 Binding protein Oxaliplatin, fluorouracil

LAMB1 Receptor ligand Benzamidine, carebastine, anistreplase, tenecteplase

DPYD Enzyme Oxaliplatin, gemcitabine, docetaxel, s1(combination), capecitabine, cisplatin, fluorouracil, tegafur,
carboplatin, paclitaxel, genistein, enfuvirtide, raltitrexed, amifostine, irinotecan, methotrexate,
mitoguazone, uracil

Angiogenesis genes:
NF�B1 targets

KDR Receptor with
enzyme activity

Epigallocatechin gallate, resveratrol, sorafenib, sunitinib, bevacizumab, sirolimus, conivaptan,
zonampanel, SU6668, vatalanib, vandetanib, axitinib, cediranib, trapoxin, motesanib, E-7080,
erlotinib, Ca0456456, geldanamycin

FGF13 Receptor ligand Bicalutamide

PRRX1 Transcription factor Alitretinoin

AOX1 Enzyme Isovanillin, norcantharidin, NSC336628

Genes and anti-cancer drugs targeting their products were obtained using Cancer Resource and PharmGKB webtools and databases. GPCR, G-protein-coupled
receptor.
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probably further improve the accuracy of supervised
methods on large-scale data.
Topological analysis of the combined networks

revealed that many predicted interactions are disrupted
in cancer, with E2F1, SP3 and NF�B1 emerging as
major regulators (Figure 6). Interestingly, we predict
that the hormone-responsive TF progesterone receptor
plays only a minor role in the regulation of differentially
expressed genes. Annotating nodes for druggability adds
an additional dimension to the interpretation of the net-
work, specifically identifying TFs (that is, E2F1, SP3,
NF�B1, PGR and SMAD6) that can be targeted by
approved anti-cancer drugs, presenting the possibility
for intervening pharmaceutically to change the activity
of these regulatory sub-networks.
Topological analysis of the complete network also sug-

gests cross-regulation of angiogenesis-specific genes
through SP3, NF�B1 and E2F1 in the normal and ovar-
ian cancer networks, and we hypothesize that deregula-
tion of these angiogenic genes may be associated with
oncogenesis. Indeed, key interactions in this sub-net-
work include the regulation of KDR and VIM by E2F1.
KDR is a key player in initiating angiogenesis and a
drug target in several cancers, including ovarian carci-
noma [73], while VIM is a marker of the epithelial-
mesenchymal transition, and there is growing evidence
of its involvement in epithelial cancers [74].
Based on our structured survey of published literature,

we propose functional models for two potential novel
interactions: E2F1 with DKK1 via WNT signaling, and
E2F1 with HSD17B2 via estrogen synthesis. Independent
of our analysis, there is evidence supporting the pre-
sence of an E2F1-binding site in the DKK1 promoter
[75], which further supports our prediction. This illus-
trates the ability of GRNI to reveal interactions that
have not yet been validated.

Conclusions
Our study represents a concrete application of GRNI to
ovarian cancer, demonstrating how this approach can
discover novel gene regulatory interactions and uncover
deregulation of critical processes, such as angiogenesis,
which otherwise may not be detected by classical micro-
array data analysis. We present the complete cycle of
computational systems biological research, from gen-
ome-scale data analysis via GRNI and evaluation of
methods, to prediction of novel, testable hypotheses and
generation of new insight. Especially when integrated
with experimental validation, GRNI can be a powerful
tool in understanding how regulatory networks are dis-
rupted and rewired, identifying novel regulatory interac-
tions as well as broader systemic disruptions in key
oncogenic processes.

Additional material

Additional file 1: Supplemental methods and results. Supplemental
methods and results [76-91].

Additional file 2: TRANSFAC network. Reference network derived from
TRANSFAC database for ovarian cancer microarray data.

Additional file 3: Figure S1 - prediction accuracies of MI-based
methods on the multifactorial DREAM4 data. Prediction accuracies of
MI based methods on the multifactorial DREAM4 data for all the
parameter values investigated.

Additional file 4: Figure S2 - prediction accuracies of methods on
datasets generated from three different source networks. Prediction
accuracies of methods on 12 different datasets generated from three
different source networks: E. coli large, S. cerevisiae and E. coli small.

Additional file 5: Normal and ovarian cancer network. The normal
and cancerous ovarian GRN inferred using SIRENE.

Additional file 6: Visualization of ovarian network. Cytoscape file for
the network visualization. Nodes and edges loaded with attributes.

Additional file 7: Literature and TFBS evidence for predicted
interactions. Validations of predicted interactions in normal and ovarian
cancer network inferred using SIRENE.

Additional file 8: DAVID enrichment analysis results. Functional
enrichment analysis results of angiogenesis-specific genes using DAVID.

Additional file 9: Ovarian cancer GRN inferred using a second,
independent dataset. Ovarian cancer GRN inferred using SIRENE.
Expression data from 158 serous ovarian adenocarcinoma patients were
extracted from Tothill et al. [48].

Additional file 10: Druggability analysis results. Genes and anti-
cancer drugs interaction matrix obtained from the druggability analysis
of all target genes in the ovarian GRN. The analysis was conducted using
CancerResource webtool and database.
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