
The impending collapse of the genome informatics 
ecosystem
Since the 1980s, we have had the great fortune to work in 
a comfortable and effective ecosystem for the production 
and consumption of genomic information (Figure 1). 
Sequencing labs submit their data to big archival 
databases such as GenBank at the National Center for 
Biotechnology Information (NCBI) [1], the European 
Bioinformatics Institute EMBL database [2], DNA Data 
Bank of Japan (DDBJ) [3], the Short Read Archive (SRA) 
[4], the Gene Expression Omnibus (GEO) [5] and the 
microarray database ArrayExpress [6]. �ese databases 
maintain, organize and distribute the sequencing data. 
Most users access the information either through 
websites created by the archival databases, or through 
value-added integrators of genomic data, such as 
Ensembl [7], the University of California at Santa Cruz 
(UCSC) Genome Browser [8], Galaxy [9], or one of the 
many model organism databases [10-13]. Bioinforma ti-
cians and other power users download genomic data 
from these primary and secondary sources to their high 
performance clusters of computers (‘compute clusters’), 
work with them and discard them when no longer 
needed (Figure 1).

�e whole basis for this ecosystem is Moore’s Law [14], 
a long-term trend first described in 1965 by Intel co-
founder Gordon Moore. Moore’s Law states that the 
number of transistors that can be placed on an integrated 
circuit board is increasing exponentially, with a doubling 
time of roughly 18 months. �e trend has held up 

remarkably well for 35 years across multiple changes in 
semiconductor technology and manufacturing tech niques. 
Similar laws for disk storage and network capacity have 
also been observed. Hard disk capacity doubles roughly 
annually (Kryder’s Law [15]), and the cost of sending a bit 
of information over optical networks halves every 
9 months (Butter’s Law [16]).

Genome sequencing technology has also improved 
dramatically, and the number of bases that can be 
sequenced per unit cost has also been growing at an 
exponential rate. However, until just a few years ago, the 
doubling time for DNA sequencing was just a bit slower 
than the growth of compute and storage capacity. �is 
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Figure 1. The old genome informatics ecosystem. Under the 
traditional �ow of genome information, sequencing laboratories 
transmit raw and interpreted sequencing information across the 
internet to one of several sequencing archives. This information is 
accessed either directly by casual users or indirectly via a website run 
by one of the value-added genome integrators. Power users typically 
download large datasets from the archives onto their local compute 
clusters for computationally intensive number crunching. Under this 
model, the sequencing archives, value-added integrators and power 
users all maintain their own compute and storage clusters and keep 
local copies of the sequencing datasets.
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was great for the genome informatics ecosystem. The 
archival databases and the value-added genome distri bu-
tors did not need to worry about running out of disk 
storage space because the long-term trends allowed them 
to upgrade their capacity faster than the world’s 
sequencing labs could update theirs. Computational 
biologists did not worry about not having access to 
sufficiently powerful networks or compute clusters 
because they were always slightly ahead of the curve.

However, the advent of ‘next generation’ sequencing 
technologies in the mid-2000s changed these long-term 
trends and now threatens the conventional genome infor-
matics ecosystem. To illustrate this, I recently plotted 
long-term trends in hard disk prices and DNA sequenc-
ing prices by using the Internet Archive’s ‘Wayback 
Machine’ [17], which keeps archives of websites as they 
appeared in the past, to view vendors’ catalogs, websites 
and press releases as they appeared over the past 20 years 
(Figure  2). Notice that this is a logarithmic plot, so 
exponential curves appear as straight lines. I made no 
attempt to factor in inflation or to calculate the cost of 
DNA sequencing with labor and overheads included, but 

the trends are clear. From 1990 to 2010, the cost of 
storing a byte of data has halved every 14 months, 
consistent with Kryder’s Law. From 1990 to 2004, the 
cost of sequencing a base decreased more slowly than 
this, halving every 19 months - good news if you are 
running the bioinformatics core for a genome sequencing 
center.

However, from 2005 the slope of the DNA sequencing 
curve increases abruptly. This corresponds to the advent 
of the 454 Sequencer [18], quickly followed by the Solexa/
Illumina [19] and ABI SOLiD [20] technologies. Since 
then, the cost of sequencing a base has been dropping by 
half every 5 months. The cost of genome sequencing is 
now decreasing several times faster than the cost of 
storage, promising that at some time in the not too 
distant future it will cost less to sequence a base of DNA 
than to store it on a hard disk. Of course there is no 
guarantee that this accelerated trend will continue 
indefinitely, but recent and announced offerings from 
Illumina [21], Pacific Biosystems [22], Helicos [23] and 
Ion Torrent [24], among others, promise to continue the 
trend until the middle of the decade.

Figure 2. Historical trends in storage prices versus DNA sequencing costs. The blue squares describe the historic cost of disk prices in 
megabytes per US dollar. The long-term trend (blue line, which is a straight line here because the plot is logarithmic) shows exponential growth 
in storage per dollar with a doubling time of roughly 1.5 years. The cost of DNA sequencing, expressed in base pairs per dollar, is shown by the 
red triangles. It follows an exponential curve (yellow line) with a doubling time slightly slower than disk storage until 2004, when next generation 
sequencing (NGS) causes an inflection in the curve to a doubling time of less than 6 months (red line). These curves are not corrected for inflation 
or for the ‘fully loaded’ cost of sequencing and disk storage, which would include personnel costs, depreciation and overhead.
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This change in the long-term trend overthrows the 
assumptions that support the current ecosystem. The 
various members of the genome informatics ecosystem 
are now facing a potential tsunami of genome data that 
will swamp our storage systems and crush our compute 
clusters. Just consider this one statistic: the first big 
genome project based on next generation sequencing 
technologies, the 1000 Genomes Project [25], which is 
cataloguing human genetic variation, deposited twice as 
much raw sequencing data into GenBank’s SRA division 
during the project’s first 6 months of operation as had 
been deposited into all of GenBank for the entire 30 years 
preceding (Paul Flicek, personal communication). But 
the 1000 Genomes Project is just the first ripple of the 
tsunami. Projects like ENCODE [26] and modENCODE 
[27], which use next generation sequencing for high-
resolution mapping of epigenetic marks, chromatin-
binding proteins and other functional elements, are 
currently generating raw sequence at tremendous rates. 
Cancer genome projects such as The Cancer Genome 
Atlas [28] and the International Cancer Genome 
Sequencing Consortium [29] are an order of magnitude 
larger than the 1000 Genomes Project, and the various 
Human Microbiome Projects [30,31] are potentially even 
larger still.

Run for the hills?
First, we must face up to reality. The ability of laboratories 
around the world to produce sequence faster and more 
cheaply than information technology groups can upgrade 
their storage systems is a fundamental challenge that 
admits no easy solution. At some future point it will 
become simply unfeasible to store all raw sequencing 
reads in a central archive or even in local storage. 
Genome biologists will have to start acting like the high 
energy physicists, who filter the huge datasets coming 
out of their collectors for a tiny number of informative 
events and then discard the rest.

Even though raw read sets may not be preserved in 
their entirety, it will remain imperative for the assembled 
genomes of animals, plants and ecological communities 
to be maintained in publicly accessible form. But these 
are also rapidly growing in size and complexity because 
of the drop in sequencing costs and the growth of 
derivative technologies such as chromatin immuno-
precipitation with sequencing (ChIP-seq [32]), DNA 
methylation sequencing [33] and chromatin interaction 
mapping [34]. These large datasets pose significant 
challenges for both the primary and secondary genome 
sequence repositories who must maintain the data, as 
well as the ‘power users’ who are accustomed to down-
loading the data to local computers for analysis.

Reconsider the traditional genome informatics 
ecosystem of Figure 1. It is inefficient and wasteful in 

several ways. For the value-added genome integrators to 
do their magic with the data, they must download it from 
the archival databases across the internet and store 
copies in their local storage systems. The power users 
must do the same thing: either downloading the data 
directly from the archive, or downloading it from one of 
the integrators. This entails moving the same datasets 
across the network repeatedly and mirroring them in 
multiple local storage systems. When datasets are 
updated, each of the mirrors must detect that fact and 
refresh their copies. As datasets get larger, this process of 
mirroring and refreshing becomes increasingly cumber-
some, error prone and expensive.

A less obvious inefficiency comes from the need of the 
archives, integrators and power users to maintain local 
compute clusters to meet their analysis needs. NCBI, 
UCSC and the other genome data providers maintain 
large server farms that process genome data and serve it 
out via the web. The load on the server farm fluctuates 
hourly, daily and seasonally. At any time, a good portion 
of their clusters is sitting idle, waiting in reserve for 
periods of peak activity when a big new genome dataset 
comes in, or a major scientific meeting is getting close. 
However, even though much of the cluster is idle, it still 
consumes electricity and requires the care of a systems 
administration staff.

Bioinformaticians and other computational biologists 
face similar problems. They can choose between building 
a cluster that is adequate to meet their everyday needs, or 
build one with the capacity to handle peak usage. In the 
former case, the researcher risks being unable to run an 
unusually involved analysis in reasonable running time 
and possibly being scooped by a competitor. In the latter 
case, they waste money purchasing and maintaining a 
system that they are not using to capacity much of the 
time.

These inefficiencies have been tolerable in a world in 
which most genome-scale datasets have fit on a DVD 
(uncompressed, the human genome is about 3 gigabytes). 
When datasets are measured in terabytes these 
inefficiencies add up.

Cloud computing to the rescue
Which brings us, at last, to ‘cloud computing.’ This is a 
general term for computation-as-a-service. There are 
various different types of cloud computing, but the one 
that is closest to the way that computational biologists 
currently work depends on the concept of a ‘virtual 
machine’. In the traditional economic model of 
computation, customers purchase server, storage and 
networking hardware, configure it the way they need, and 
run software on it. In computation-as-a-service, 
customers essentially rent the hardware and storage for 
as long or as short a time as they need to achieve their 
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goals. Customers pay only for the time the rented systems 
are running and only for the storage they actually use.

This model would be lunatic if the rented machines 
were physical ones. However, in cloud computing, the 
rentals are virtual: without ever touching a power cable, 
customers can power up a fully functional 10-computer 
server farm with a terabyte of shared storage, upgrade the 
cluster in minutes to 100 servers when needed for some 
heavy duty calculations, and then return to the baseline 
10-server system when the extra virtual machines are no 
longer needed.

The way it works is that a service provider puts up the 
capital expenditure of creating an extremely large compute 
and storage farm (tens of thousands of nodes and 
petabytes of storage) with all the frills needed to maintain 
an operation of this size, including a dedicated system 
administration staff, storage redundancy, data centers 
distributed to strategically placed parts of the world, and 
broadband network connectivity. The service provider 
then implements the infrastructure to give users the ability 
to create, upload and launch virtual machines on this 
compute farm. Because of economies of scale, the service 
provider can obtain highly discounted rates on hardware, 
electricity and network connectivity, and can pass these 
savings on to the end users to make virtual machine rental 
economically competitive with purchas ing the real thing.

A virtual machine is a piece of software running on the 
host computer (the real hardware) that emulates the 
properties of a computer: the emulator provides a virtual 
central processing unit (CPU), network card, hard disk, 
keyboard and so forth. You can run the operating system 
of your choice on the virtual machine, log into it remotely 
via the internet, configure it to run web servers, 
databases, load management software, parallel compu-
tation libraries, and any other software you favor. You 
may be familiar with virtual machines from working with 
consumer products such as VMware [35] or open source 
projects such as KVM [36]. A single physical machine 
can host multiple virtual machines, and software running 
on the physical server farm can distribute requests for 
new virtual machines across the server farm in a way that 
intelligently distributes load.

The experience of working with virtual machines is 
relatively painless. Choose the physical aspects of the 
virtual machine you wish to make, including CPU type, 
memory size and hard disk capacity, specify the operating 
system you wish to run, and power up one or more 
machines. Within a couple of minutes, your virtual 
machines are up and running. Log into them over the 
network and get to work. When a virtual machine is not 
running, you can store an image of its bootable hard disk. 
You can then use this image as a template on which to 
start up multiple virtual machines, which is how you can 
launch a virtual compute cluster in a matter of minutes.

For the field of genome informatics, a key feature of 
cloud computing is the ability of service providers and 
their customers to store large datasets in the cloud. These 
datasets typically take the form of virtual disk images that 
can be attached to virtual machines as local hard disks 
and/or shared as networked volumes. For example, the 
entire GenBank archive could be (and in fact is, see 
below) stored in the cloud as a disk image that can be 
loaded and unloaded as needed.

Figure 3 shows what the genome informatics ecosystem 
might look like in a cloud computing environment. Here, 
instead of there being separate copies of genome datasets 
stored at diverse locations and groups copying the data to 
their local machines in order to work with them, most 
datasets are stored in the cloud as virtual disks and 
databases. Web services that run on top of these datasets, 
including both the primary archives and the value-added 
integrators, run as virtual machines within the cloud. 
Casual users, who are accustomed to accessing the data 
via the web pages at NCBI, DDBJ, Ensembl or UCSC, 
continue to work with the data in their accustomed way; 
the fact that these servers are now located inside the 
cloud is invisible to them.

Power users can continue to download the data, but 
they now have an attractive alternative. Instead of moving 
the data to the compute cluster, they move the compute 
cluster to the data. Using the facilities provided by the 

Figure 3. The ‘new’ genome informatics ecosystem based on 
cloud computing. In this model, the community’s storage and 
compute resources are co-located in a ‘cloud’ maintained by a large 
service provider. The sequence archives and value-added integrators 
maintain servers and storage systems within the cloud, and use 
more or less capacity as needed for daily and seasonal fluctuations in 
usage. Casual users continue to access the data via the websites of 
the archives and integrators, but power users now have the option of 
creating virtual on-demand compute clusters within the cloud, which 
have direct access to the sequencing datasets.
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service provider, they configure a virtual machine image 
that contains the software they wish to run, launch as 
many copies as they need, mount the disks and databases 
containing the public datasets they need, and do the 
analysis. When the job is complete, their virtual cluster 
sends them the results and then vanishes until it is 
needed again.

Cloud computing also creates a new niche in the eco-
system for genome software developers to package their 
work in the form of virtual machines. For example, many 
genome annotation groups have developed pipelines for 
identifying and classifying genes and other functional 
elements. Although many of these pipelines are open 
source, packaging and distributing them for use by other 
groups has been challenging given their many software 
dependencies and site-specific configuration options. In 
a cloud computing environment these pipelines can be 
packaged into virtual machine images and stored in a way 
that lets anyone copy them, run them and customize 
them for their own needs, thus avoiding the software 
installation and configuration complexities.

But will it work?
Cloud computing is real. The earliest service provider to 
realize a practical cloud computing environment was 
Amazon, with its Elastic Cloud Computing (EC2) service 
[37] introduced in 2005. It supports a variety of Linux 
and Windows virtual machines, a virtual storage system, 
and mechanisms for managing internet protocol (IP) 
addresses. Amazon also provides a virtual private network 
service that allows organizations with their own compute 
resources to extend their local area network into 
Amazon’s cloud to create what is sometimes called a 
‘hybrid’ cloud. Other service providers, notably Rack-
space Cloud [38] and Flexiant [39], offer cloud services 
with similar overall functionality but many distinguishing 
differences of detail.

As of today, you can establish an account with Amazon 
Web Services or one of the other commercial vendors, 
launch a virtual machine instance from a wide variety of 
generic and bioinformatics-oriented images and attach 
any one of several large public genome-oriented datasets. 
For virtual machine images, you can choose images 
prepopulated with Galaxy [40], a powerful web-based 
system for performing many common genome analysis 
tasks, Bioconductor [41], a programming environment 
that is integrated with the R statistics package [42], 
GBrowse [43], a genome browser, BioPerl [44], a compre-
hensive set of bioinformatics modules written in the Perl 
programming language, JCVI Cloud BioLinux [45], a 
collection of bioinformatics tools including the Celera 
Assembler, and a variety of others. Several images that 
run specialized instances of the UCSC Genome Browser 
are under development [46].

In addition to these useful images, Amazon provides 
several large genomic datasets in its cloud. These include 
a complete copy of GenBank (200 gigabytes), the 30X 
coverage sequencing reads of a trio of individuals from 
the 1000 Genomes Project (700 gigabytes) and the genome 
databases from Ensembl, which includes the annotated 
genomes of human and 50 other species (150 gigabytes of 
annotations plus 100 gigabytes of sequence). These 
datasets were contributed to Amazon’s repository of 
public datasets by a variety of institutions and can be 
attached to virtual machine images for a nominal fee.

There are also a growing number of academic compute 
cloud projects based on open source cloud management 
software, such as Eucalyptus [47]. One such project is the 
Open Cloud Consortium [48], with participants from a 
group of American universities and industrial partners; 
another is the Cloud Computing University Initiative, an 
effort initiated by IBM and Google in partnership with a 
series of academic institutions [49], and supplemented by 
grants from the US National Science Foundation [50], for 
use by themselves and the community. Academic clouds 
may in fact be a better long-term solution for genome 
informatics than using a commercial system, because 
genome computing has requirements for high data read 
and write speeds that are quite different from typical 
business applications. Academic clouds will likely be able 
to tune their performance characteristics to the needs of 
scientific computing.

The economics of cloud computing
Is this change in the ecosystem really going to happen? 
There are some significant downsides to moving 
genomics into the cloud. An important one is the cost of 
migrating existing systems into an environment that is 
unlike what exists today. Both the genome databases and 
the value-added integrators will need to make significant 
changes in their standard operating procedures and their 
funding models as capital expenditures are shifted into 
recurrent costs; genomics power users will also need to 
adjust to the new paradigm.

Another issue that needs to be dealt with is how to 
handle potentially identifiable genetic data, such as that 
produced by whole genome association studies or disease 
sequencing projects. These data are currently stored in 
restricted-access databases. In order to move such 
datasets into a public cloud operated by Amazon or 
another service provider, they will have to be encrypted 
before entering the cloud and a layer of software 
developed that allows authorized users access to them. 
Such a system would be covered by a variety of privacy 
regulations and would take time to get right at both the 
technological and the legal level.

Then there is the money question. Does cloud comput-
ing make economic sense for genomics? It is difficult to 
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make blanket conclusions about the relative costs of 
renting versus buying computational services, but a good 
discussion of the issues can be found in a technical report 
on Cloud Computing published about a year ago by the 
UC Berkeley Reliable Adaptive Distributed Systems 
Laboratory [51]. The conclusion of this report is that 
when all the costs of running a data center are factored 
in, including hardware depreciation, electricity, cooling, 
network connectivity, service contracts and administrator 
salaries, the cost of renting a data center from Amazon is 
marginally more expensive than buying one. However, 
when the flexibility of the cloud to support a virtual data 
center that shrinks and grows as needed is factored in, 
the economics start to look downright good.

For genomics, the biggest obstacle to moving to the 
cloud may well be network bandwidth. A typical research 
institution will have network bandwidth of about a 
gigabit/second (roughly 125 megabytes/second). On a 
good day this will support sustained transfer rates of 5 to 
10 megabytes/second across the internet. Transferring a 
100 gigabyte next-generation sequencing data file across 
such a link will take about a week in the best case. A 
10  gigabit/second connection (1.25 gigabytes/second), 
which is typical for major universities and some of the 
larger research institutions, reduces the transfer time to 
under a day, but only at the cost of hogging much of the 
institution’s bandwidth. Clearly cloud services will not be 
used for production sequencing any time soon. If cloud 
computing is to work for genomics, the service providers 
will have to offer some flexibility in how large datasets get 
into the system. For instance, they could accept external 
disks shipped by mail the way that the Protein Database 
[52] once accepted atomic structure submissions on tape 
and floppy disk. In fact, a now-defunct Google initiative 
called Google Research Datasets once planned to collect 
large scientific datasets by shipping around 3-terabyte 
disk arrays [53].

The reversal of the advantage that Moore’s Law has had 
over sequencing costs will have long-term consequences 
for the field of genome informatics. In my opinion the 
most likely outcome is to turn the current genome analysis 
paradigm on its head and force the software to come to the 
data rather than the other way around. Cloud computing is 
an attractive technology at this critical juncture.
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