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Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis
(ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed
for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms
governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on
the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal
life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review
summarizes both the animal and human studies describing various environmental stimuli to which an individual or an
animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs
mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are
suggested for effective intervention.
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Background
Early life plays an important role in health and develop-
ment of an individual. Interactions between genes and
environmental factors during early life are suggested
to play role not only in human behavior but also in
susceptibility to diseases. Surprisingly, in some individuals,
onset of neurodegenerative disorders cannot be explained
by family history. What triggers the sudden onset and rapid
progression of these diseases still remains unexplained.
Such sporadic diseases need to be studied in the context
of early life environmental exposure. It is believed that
environmental factors in childhood interact with the
specific loci thereby modifying their expression and
resulting in disease onset [1]. Epidemiological and
animal based studies have also suggested a strong
relationship between environmental factors and neuro-
degenerative disorders [2-8]. The effect of exposure to
different environmental conditions during in-utero and
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developmental stages of life have been studied extensively
and based on these studies various models have come into
existence. A variety of agents including heavy metal
exposure such as lead (Pb), manganese, mercury [9-11];
dietary habits [12,13]; pesticides [14-16]; stress [17] and
other intrinsic factors such as inflammatory cytokines [18]
affect early life and alter the regulation of gene expression.
In this context, this review has been conceptualized to dis-
cuss the role of environmental cues that govern the onset
of neurodegeneration. In addition, various single nucleo-
tide polymorphisms (SNPs) associated with xenobiotic
metabolizing enzymes (XMEs) have also been explained
which may be useful for instituting preventive measures
for adverse environmental stimuli.
Environmental factors in neurodegeneration
It is widely believed that environmental constituents
such as food, metals, pollutants, microorganisms and
lifestyle play a direct or indirect role in brain health. For
example, environment to which a fetus is exposed during
the gestational period plays a significant role in future
health of an individual. Postnatal period is also crucial
for rendering an individual susceptible to environmental
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influences. Adverse prenatal and postnatal environmental
conditions disrupt the homeostasis and increase the risk
of neurodegenerative disorders. Various animal and
human studies have been discussed in this context.

In-utero conditions
Maternal environment affects the growing fetus as
during in-utero stages, mother’s body is the only
environment to which fetus is exposed. Growth of
fetus is generally proportionate to the mother’s size and
maternal constraint refers to the restriction provided to
the growing fetus due to mother’s body size [19,20]. The
maternal restriction affects growth by limiting the size of
placental connection between mother and fetus thereby
affecting the supply of nutrients for growth. The restraint
is increased with age of mother, short stature and multiple
pregnancies [21].

Human studies
Human fetuses are generally exposed to chronic placental
insufficiency (CPI), hypoxia, heavy metals or hormonal
disturbances in the mother’s womb. Studies have revealed
that the chronic placental insufficiency (CPI) or umbilical
cord occlusion to which fetus may be exposed to result in
fatal hypoxenima [22] leading to synaptic dysfunction that
triggers damage in neonates resulting in neurodegenera-
tion [23]. Maternal hormonal disturbances also have
adverse effect on fetus. Hormonal levels in fetus may be
elevated if placental barrier between mother and
fetus is compromised. For example, stress in mothers
elevates glucocorticoid levels which travel through
placenta adversely affecting fetus by programming
the hypothalamus-pituitary-adrenal (HPA) axis due to
change in number and affinity of glucocorticoid receptors
in fetus [24]. Human studies showing the effect of gesta-
tional or in-utero exposure on neurodegeneration are
limited. Most studies are either retrospective in nature,
which imposes a recall bias in the study design, or if longi-
tudinal studies are planned they are not of long duration.

Animal studies
As compared to human studies, animals provide an
excellent model for longitudinal analysis of early life
exposures due to comparatively small life cycle, easy
maintenance and trackable follow up. Rat model of
perinatal asphyxia has shown to affect retinal deve-
lopment by reduction in number of ganglion cells due to
degenerative changes which lead to long term effects [25].
Similarly placental insufficiency was found to be associated
to brain damage by impacting metabolic processes in
rabbits [26]. Various mechanisms have been extensively
reviewed by Johnston and coworkers [27] emphasizing that
the developing brain is more vulnerable than the adult
brain to the same insult. In an interesting study, pups of
female exposed to lipopolysaccharide (LPS), a bacterial
endotoxin, during pregnancy showed loss of dopaminergic
neurons. This suggests that high LPS levels in mothers
might interfere with the dopaminergic neurons in the
fetus enhancing the susceptibility to PD [28]. Similarly, ges-
tational exposure to metal toxins resulted in altered levels
of various antioxidant enzymes in rats leading to oxidative
stress [29]. Maternal hormones effect on newborns was
reproduced in in-vitro studies on cerebral granular cells
extracted from one week old pups of pregnant rats treated
with dexamethasone and it was shown that oxidative stress
due to glucocorticoids in cerebral regions is associated with
neuronal apoptosis [30].
Together these studies not only highlight the importance

of in-utero conditions in determining the health of
fetus but also present an opportunity to increase the
research investigations in this field of research.

Dietary exposure
Dietary habits have significant effect on the physiology
and metabolism of an organism. Growth and development
of fetus is dependent on nourishment which is provided
by the maternal system, thus, any food restriction during
pregnancy has a direct or indirect role on fetus develop-
ment. Deficiency or excess of any nutritive supplement to
the mother results in long term consequences to the
offspring.

Human studies
The possible effect of fetal nutrition on the risk of
degenerative disease in later life has generated interest
in 1990s resulting in extensive studies which elucidated
the positive relation between diet and disease onset [31].
Positive relation between maternal diet and neurodegenera-
tion has been supported in some human studies. Vitamin
B-12 for example, is important for maintaining homeostasis
in body and studies have shown that Vitamin B-12 deficient
diet to mother during pregnant adversely affects the
myelination in nervous system of offspring [32]. Postulating
the role of maternal micronutrients, Roy and coworkers
have demonstrated that imbalanced micronutrient sup-
plementation in mother affects the level of antioxidant
enzymes in the offspring increasing the risk of neurode-
generative diseases [33].

Animal studies
Similar to human studies, correlation between maternal
diet and fetal neurodegeneration was reported in animal
studies as well. Performance in Morris maze experiments
is affected in pups born to mice fed on high fat diet during
gestational and lactation period and the results were
attributed to decreased cell proliferation [34]. Similarly,
studies have shown that maternal folate depletion results
in oxidative stress and epigenetic changes in the offspring
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[35] which ultimately lead to neurodegeneration. Further
elevated levels of homocysteine in mother were shown to
increase oxidative stress in pups brain leading to
apoptosis, as marked by DNA fragmentation [36].
High dose of iron at neonatal stage has similarly been
shown to result in neurodegeneration of midbrain at a
later age. Pups with higher iron dose reduce dopaminergic
neurons at age of 24 months as compared to that of
2 months old pups. This indicates that there are long term
effects of neonatal iron exposure which are associated
with degenerative changes [37]. Conversely, omega-3 fatty
acid rich maternal diet is neuroprotective. This was
shown by a study where omega 3 fatty acid supple-
mentation to mother resulted in neonate protection
from LPS induced brain injury [38]. Therefore, balanced
diet during pregnancy has been suggested to protect
offspring from neurodegenerative diseases.

Metal exposure
Heavy metals consist of toxic pollutants pervading
the environment. They are widely distributed in the
environment and poison the living systems, as they
accumulate. Mature tissue is protected from metal
toxicity by the blood–brain barrier which prevents the
movement of heavy metals from the systemic circulation
to brain and by the formation of metal-protein complexes
rendering metals unavailable to exert its toxic effects. In
fetal brain this sequestering mechanism is impaired [39].

Human studies
Various metals such as aluminium, zinc, iron, copper
and mercury have been linked with the neurodegenerative
diseases. However, in some cases results are controversial
and no direct association between these metals and
neurological diseases have been demonstrated. For
example, high level of aluminium in drinking water
has been shown as a risk factor of Alzheimer’s disease
in some studies while other studies fail to establish
any such relation [40,41]. The reason for such con-
trary results includes inadequate aluminium analysis
methods, improper selection of subjects and matching
controls [42]. Transition metals like zinc and copper
are other sources of brain toxicity and are believed to
results in Aβ aggregation [43]. Like brain, retina is
considered to be an immune privileged site due to
presence of the blood-retinal barrier and has been
found to be sensitive to metal toxicity. Metal expos-
ure and its association with retinal degeneration has
been examined in various studies [44-46]. Low and
moderate level of gestational lead exposure (GLE) i.e.
first trimester results in increased amplitude of a and b
waves in 7–10 year old children [47]. Similarly high level
of mercury and Pb in umbilical cord blood due to prenatal
exposure impaired the visual processing as shown by
visual evoked potential measurement in exposed children
after 11 years [48].

Animal studies
Toxic effects of heavy metal exposure are also evidenced
from animal studies. Long-term potentiation (LTP) which
is responsible for enhancing the signal transmission
between the neurons is considered as the major mechanism
underlying information storage and memory formation,
resulting in increased synaptic strength [49]. Enhancement
in signal strength is dependent on two factors, one is the
presynaptic increase in neurotransmitter release and
other is enhanced function of glutamate receptor at the
postsynaptic end. NMDA receptor function has been
found crucial for the LTP induction in hippocampus
[50,51]. Neonatal exposure to aluminium chloride has
been shown to reduce the LTP amplitude in rats by affect-
ing both presynaptic and postsynaptic signal transmission
[52]. Heavy metal exposure such as zinc, copper and Pb
have a negative effect on LTP during developmental stage
as it reduces the potentiation magnitude and increases its
decay time as well as the threshold level for induction in
hippocampus [53,54].
Combined prenatal effects of arsenic, cadmium and Pb

in rats exposed to metal mixture have been shown to
disrupt blood–brain barrier and cause memory deficit
[55]. Although various studies have focused on the role
of different metals in pathogenesis of neurological
disease, the role of Pb is most widely investigated. The
early life exposure of Pb and its effect on adults has thus
been a major area of investigation for past few years.
Rats exposed to low Pb level during in-utero and lacta-
tion period have shown impaired learning and memory,
hyperactivity and anxiety in adults [56]. In vivo studies
of Pb exposure on various animal models, such as rats
and monkeys, have revealed the role of developmental
exposure of sub-toxic doses of Pb on neurodegeneration.
It is evident from studies that the Pb exposure in develop-
mental stages results in the increased level of beta amyloid
in brain causing Alzheimer in later age [57,58].

Pesticides
Pesticides are other major pollutants or toxins to which
living organisms are exposed. Health issues related to
pesticides prevalence in environment are of major concern.
These pesticides include insecticides, herbicides and fungi-
cides. Insecticides such as organophosphates, organochlo-
rines and carbamates are used more frequently and enter
the living system through respiratory tract, gastrointestinal
tract or through dermal contact [59,60]. Ocular exposure,
although not a common route of exposure, may occur
through accidental splashing of pesticides into eyes or
through contact of hands with eye and further from ocular
tissue to blood circulation [61]. β radiation based



Modgil et al. Translational Neurodegeneration 2014, 3:9 Page 4 of 14
http://www.translationalneurodegeneration.com/content/3/1/9
radioactive studies have revealed movement of carbamate
from the cornea to the retina via aqueous humor support-
ing the exposure of pesticide through ocular route [62].

Human studies
Exposure to pesticides is more prevalent in individuals
working in agricultural sectors such as farmers, peasants,
farm workers. They are at increased risk of direct
exposure while others may be exposed due to food
contamination [63]. Contaminants get accumulated in
the body and change the gene expression profile in
exposed tissues. Pesticides are thus believed to be one such
contaminant that can alter the regulatory framework and
lead to disease onset and progression through epigenetic
changes [64]. Pesticide exposure has been shown to
result in neuronal loss, cognitive impairment and motor
dysfunction. These alterations in neurological behavior
may be associated with neurodegenerative diseases.

Animal studies
Pesticides exposure studies in animals supported the
adverse effect of early life exposure on later life. It was
evidenced from study in which exposure to dieldrin
during gestation and lactation has been reported to
affect the dopaminergic responses in offsprings. Exposed
mice showed elevated level of dopamine transporter and
vesicular monoamine transporter 2 (VMAT) proteins.
These alterations were persistent through later stages
in life leading to dysfunction of dopamine making
dopamine neurons more susceptible to damage in
adulthood [65]. Another pesticide, paraquat in com-
bination with maneb, has also been shown to be
more destructive in animal studies and leads to PD
by dysfunction of nigrostriatal dopaminergic system as
well as motor response abnormalities [66]. Likewise,
permethrin, when administered to rats at age of 6–21 day
results in glutamate, NO and calcium imbalance in brain
hippocampus [67]. Despite accumulating evidence of the
effect of pesticides in pathogenesis of neurodegeneration,
very only fewer studies have integrated this aspect of
investigation in understanding of brain disorders.

Lifestyle, smoking and drug abuse
Lifestyle plays a central role in health and well being
of organisms. With increased sedentary lifestyle and
lack of physical activity the incidence of diseases is also
increasing. Healthy lifestyle prevents disease occurrence
whereas bad habits increase the susceptibility to disease.
Exercise, in particular aerobic exercise, has a positive
impact on brain functioning.

Human studies
Importance of healthy lifestyle in human life has been
demonstrated. Childhood aerobics increases the resilience
of the brain in later life [68]. Similarly, the association of
caffeine, smoking and alcohol consumption has been well
reported in neurodegenerative diseases [69-71]. Our SNP
studies with patients of age related macular degeneration
(AMD) showed higher frequency of TT genotype of CCL2
gene. Interestingly, the frequency of TT genotype was
found to be higher in smoker AMD patients when
compared to nonsmoker AMD patients [72] highlighting
the role of smoking in exacerbating the pathogenesis of
disease. Early life exposure to smoking with degenerative
disease has not been investigated adequately and could be
the subject of future research projects.

Animal studies
Studies carried out on animals further strengthen the
correlation between lifestyle and neurodegeneration. In a
study, the pups born to mothers underwent low intensity
treadmill exercise during pregnancy were shown to
have more hippocampal cell survival [73]. Similarly,
pups performing treadmill exercise at postnatal day
21–60 showed enhanced spatial memory as compared
to controls [74]. Drugs such as methamphetamine
(MA), which is widely abused due to comparatively
low prices in comparison to cocaine or heroin [75]
have been studied for its role on retinal damage in
rats born with prenatal and postnatal methamphetamine
exposure. Female rats exposed to MA at gestational
stage have shown altered optic nerve patterns in new-
borns with optic nerve diameter smaller than the
controls. Furthermore, it has also been reported that optic
nerves of MA exposed rats have reduced production of
myelin basic protein and increased number of deformed
axons, mean optic fiber area, less lamellar separation
[76-78] (Figure 1; Table 1).

Mechanism, hypothesis and models
Epigenetics
Recent studies have focused on epigenetic mechanisms
that modify the onset, latency period and progression of
neurodegenerative diseases [91]. Epigenetics is an emerging
field that focuses on the mechanisms that alter the
function of genes. It generally takes into account the
gene and environment interaction such that these
changes are inherited. The epigenetic changes do not
involve alteration in nucleotide sequences in the DNA
but influence its functioning by controlling its expression
by gene reprogramming [92]. The epigenome is therefore
considered different from genome in being dynamic. It is
altered by environmental signals, not only during the
period of exposure but even later in life. It has been shown
that fetal epigenetic patterns can be altered at later stages
by environment exposures [93,94]. A traditional insight
into the field is exemplified by the example of identical
twins having same genotype but possessing different



Figure 1 Different subtypes of environmental exposures.

Table 1 Spectrum of environmental stimuli and their effects on neurodegeneration

S. no. Exposure Subject/animals Period of exposure Effect Reference

1. Ethanol Mice Postnatal day 3-20 Decreased number of neurons in Retinal
ganglion cell layer and dorsalateral geniculate

[79]

2. Microwave irradiation Mice Prenatal + 4 months postnatal Complete degeneration of RPE, nuclear
pyknosis in photoreceptors, thinness of all layers

[80]

3. Fried potato chips Rats Gestational day 6-postpartum
day14

Vacuolization and apoptosis in GCL, swollen
choriocapillaries, alteration in cellular organelles

[81]

4. Lead (Pb) Mice Lactation period Altered mitochondrial morphology,
mitochondrial phosphorylation dysfunction

[82]

5. Rotenone Rats Postnatal Thinness of GCL, disruption of mitochondrial
complex I, photoreceptor loss

[83]

6. Cycus plant Postnatal ALS and PD [84]

7. Pesticide contaminated
drinking water

Human Postnatal Inhibitory effect on antioxidant enzyme systems,
mitochondrial and proteosome function (PD)

[85]

8. 1-methyl-4-phenyl-1,2,3,
6-tetrahydropyridine

Mice Gestational day 8-12
and postnatal

Apoptosis of nigrostriatal dopamine neurons
enhancing toPD risk

[86]

9. Methamphetamine Mice Postnatal day 11-21 Altered level of muscarinic acetylcholine
receptors in the hippocampus

[87]

10. Cypermethrin Rats Postnatal day 5-19 Dopamine, 3,4-dihydroxyphenylacetic acid
(DOPAC) and homovanillic acid (HVA) level in

brain altered

[88]

11. Aluminium Mice Pregnancy day 1-15 Neurotoxicity by affecting dopaminergic system [89]

12. Tobacco inhalation Mice Gestational day 6-17 Altered gene expression profile affecting
morphology and function of hippocampus

[90]
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epigenetic patterns in adulthood due to different environ-
mental exposures leading to different epigenome and dis-
ease susceptibility [95-97]. Epigenomic variation leads to
phenotypic diversity as well as susceptibility of individuals
to disease. These changes are generally brought about
by environmental influences. DNA methylation and
histone acetylation have been recognized as epigenetic
processes which regulate the functioning of gene.
Histone acetylation controls the heterochromatic and
euchromatic state of DNA wrapped around histones,
and remaining in dormant state. Histone acetylation
unwinds the DNA from histone and renders it avail-
able for transcription. Along with histone acetylation,
DNA methylation plays an important role in regulating
accessibility of DNA for transcription. Histone acetylase
transferases (HAT) and Histone deacetylase (HDAC)
controls histone modification in cell [98]. Animal
studies have been used to describe the epigenetic
pathways of disease etiology. It has been demon-
strated that the early life exposure to various environ-
ment stimuli leads to methylation pattern changes in
Figure 2 Epigenetic processes that regulate the gene expression at tr
promoter region, resulting in altered gene expression
in later stages. Methylation patterns have been found
to be altered in mice offspring by methyl donors or
low proteins in mother’s diet [99]. Some sites in the
genome are more susceptible to the epigenetic changes.
It is, therefore, pertinent to note that CpG islands are tar-
geted more often for methylation [100]. Thus, switching
on and off of expression is under the control of epigenetic
patterns of histone acetylation and DNA methylation
changes [98] which are influenced by early life exposure.
The non-coding RNA referred to as microRNA is

believed to act at post transcriptional stage thereby
exerting epigenetic regulation of such changes. Micro-
RNAs control the gene expression by interfering with
the mRNA thereby destabilizing it and rendering it
unavailable for translation. This unique property enables it
to regulate many different mRNAs [101] (Figure 2).

Barker hypothesis or fetal basis of adult diseases (FeBAD)
Barker and coworkers have proposed the FeBAD model
after their studies on adult cardiovascular diseases and
anscriptional and post-transcriptional level.
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their fetal origin [31]. According to Barker’s hypothesis
adult diseases are more or less consequences of fetal
adverse conditions. Although Barker’s work was mainly
confined to cardiovascular diseases, the hypothesis fits
well to other diseases too. The fetus gets adapted to
new environment depending on environmental stimuli in
uterus by means of physiological and hormonal alterations
and prepares itself to the upcoming conditions in postna-
tal life, a phenomenon called fetal programming. It takes
cues from the maternal health status and show adaptive
responses to survive in the maternal environment.
Adaptive responses may be either in the form of
metabolic changes, hormonal release or sensitivity of
the target organs to hormones, which in turn affects the
development of target organs, leading to physiologic and
metabolic disturbances. Thus, the reduced growth or body
size can be considered as a fetal adaptive response
towards small uterus size of mother with no immediate
consequences in the newborn but which may lead to
physiologic changes that can cause diseases in later life [19].

Developmental origin of health and disease (DOHaD)
The DOHaD model was a modified version of FeBAD
which postulated that postnatal period of development
also plays an equal role as fetal life in health. According to
DOHaD, the adaptive responses during developmental
stages, which include not only embryonic development
but also the period of development during infancy,
are responsible for late life risk of diseases [20].
Environmental conditions prevailing during the infancy
phase exert their influence on the genotype and alter the
organism’s ability to cope with its environment in later life.
As compared to intra-uterine environment, which
remains relatively constant throughout gestation, post-
natal environment changes drastically. The DOHaD
phenomenon explains how changing environmental
factors affects the patterns of diseases.

Predictive adaptive response (PAR)
Gluckman and Hanson have suggested that when fetus
is exposed to adverse conditions or stress it makes
immediate changes which are often reversible, but if
the stress conditions are prolonged, fetus undergoes
irreversible changes which then persist throughout life
and influence the adulthood. They coined term PAR for
the phenomenon. The fetus predicts the extra-uterine
environment from intrauterine conditions and makes
changes for its better survival. These irreversible changes
may or may not be useful to the fetus in the long
run. If extra-uterine environment will be different
from intrauterine, it will suffer from the physiological
manifestations as changes in response to predictive
environment will not match the actual environment
[102]. If adaptations match the environment, then it leads
to the better survival. For example, meadow vole pup born
in autumn has thicker coat due to adaptive response to
the signal emanating from maternal melatonin levels
in-utero and thus has better survival [103].

LEARn model
LEARn (Latent early life associated regulation) model
suggests the role of environmental factors in disease
etiology. Lahiri et al. [94] have described the association
of early environment with disease onset especially with re-
spect to Alzheimer’s disease. Due to lack of knowledge
pertaining to disease cause and progression, the sporadic
onset of several diseases have been believed to be associated
with many environmental agents such as nutrition [104],
head trauma [105], metal exposure [106] and lifestyle [107].
LEARn model describes these environmental exposures as
‘hits’. The authors contrasted LEARn against different acute
and chronic models of disease progression [94]. LEARn is
distinct from these models in that it is neither acute nor
chronic but acts through induced latent epigenetic changes.
They further suggested that all neurodegenerative disorders
come under the category of a ‘n’ hit latent model, according
to which early life exposure leads to epigenetic perturba-
tions in the genes but do not result in any disease symp-
tom. A second trigger is required for the disease to develop
and this time between first hit and disease onset is termed
as latency period. Genes are divided into two categories the
one which respond late in relation to early life responses
(LEARned) and others which don’t (unLEARNed). The
process of responding to the early life environmental trig-
gers after the long latency period is termed as LEARning
[94] (Figure 3).

Prevention and reversibility
Reversal of induced changes may be possible if associated
epigenetic (methylation, acetylation) and physiologic (gene
expression) changes can be switched back to normal.
Cognitive impairment because of imbalanced maternal
diet has been tested by leptin treatment as leptin receptors
are present in brain regions and known to regulate
neuronal excitability and long term potentiation [108].
Peroxisome proliferator activator receptor α (PGC1α)
regulates the expression of genes involved in bioenerget-
ics. (PGC1α) expression in offspring of under-fed female
rats returned to normal by exogenous supply of leptin
[109]. Similarly folate deficiency related neurodegeneration
is ameliorated by dietary S-adenosylmethionine (SAM)
supplementation. Folate deficiency has been shown to
result in neurodegeneration in mice due to reduced level
of SAM which is attenuated by apple juice concentrate
supplementation, containing high levels of SAM [110-112].
Likewise, polysaturated fatty acids exerts neuroprotective
effect against neurodegeneration in PD and AD models by
ameliorating the adverse effects of neuronal toxicity



Figure 3 Effect of environmental factors on late-life disorders. The schematic summarizes the proposed mechanism and different models of
early life exposures and how they operate.
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[113,114] and creatine rich diet has also been shown to
sustain the harmful effects of birth hypoxia [115].
These studies highlight the possibility of restoring altered
epigenetic changes and provide scope for instituting thera-
peutic approaches for ameliorating degenerative diseases.
Remedial intervention during latency period can prevent
the disease onset by reversing the abnormal conditions
back to normal for e.g. complete degeneration of inner
retina by early life exposure to monosodium glutamate
(MSG) [116] has been found to be reversed by enrichment
of postnatal living conditions in rats. Provision of appro-
priate housing conditions such as larger cage size readily
reversed the effect of MSG on retinal thickness [117].
Exercise is another preventive measure that has been
shown to modulate the expression of genes regulating the
methylation and acetylation of DNA and protein. Studies
have shown decreased expression of DNA methyltransfer-
ases [118] and increased expression of HAT [119] in the
hippocampus of rats which exert their epigenetic influence
by increasing the expression of neurotrophic factors in
brain. Further evidence was provided by Scopel et al.
[120] by showing that exercise regime of 20 minutes for
2 weeks for wistar rat attenuates the damage in hippocampal
slices submitted to ischemia in-vitro opening the field for
further investigation.

Therapeutic interventions
While prevention is always better than cure, sometimes
it is not feasible to prevent an environmental exposure
due to occupational demand, as in pesticide exposure to
farmers and metal exposure to workers in metallurgy
industry is imminent. Similarly, if the sole source of water
supply is contaminated, exposure to pollutants cannot be
avoided. In such cases identification of targets for disease
reversal are useful tools for pioneering therapies. The
environmental agents modulate the normal functioning
and physiology of central nervous system (CNS) by
mechanisms that involve altered gene expression through
modulation of signal pathways. These mechanisms, if
explored, can provide a window of opportunity for thera-
peutic intervention during latency stage, thereby delaying
or preventing the onset of disease. Recent studies have
tried to elucidate the underlying mechanisms by which
the environmental agents exert their toxic effects on CNS.
Pb is reported to accumulate amyloid-β in brain tissue by
decreasing the activity of insulin degrading enzyme (IDE)
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and neprilysin (NEP), both known for amyloid beta
degradation [121,122]. Exogenous administration of IDE
and NEP may thus provide a good approach to prevent
the lead induced toxicity. Another key factor involved in
neurodegeneration is oxidative stress as is evident from
studies related to AD and PD [123,124]. Environmental
toxins such as heavy metals act as an electron acceptor or
donor and result in formation of reactive oxygen species,
leading to oxidative stress [125]. Therefore, antioxidants
can be used for metal intoxification due to their property
of ameliorating the oxidative stress. Certain antioxidants
such as α-lipoic acid and vitamin E have already been
reported to prevent neurotoxicity induced by copper
[126]. Herbal extracts of Lutein, Allium cepa, and other
natural antioxidants can similarly diminish the adverse
effects of oxidative stress and prevent rapid disease
progression [127,128]. By reducing the cause that results
in neurodegeneration, remedial steps to reverse the effect
can be evaluated. Metal exposure and drug abuse, for
example, disrupts the signaling pathways, as manganese
toxicity in striatum has been found to alter the AKT1/2
and ERK signal pathway [129] resulting in impaired
VMAT and dopamine active transporter (DAT) regulation
[130]. In such case the neuroprotective substance should
be able to maintain the normal signaling pathway so
that the expression of VMAT and DAT protein is not
compromised. Trolox, has been found to reverse the
adverse effect of manganese on ERK 1/2 pathway [130]
while a Chinese prescription, Zhen Wu Tang (ZWT)
ameliorates the neurodegenerative process by maintaining
levels of VMAT-DAT mRNA [131]. Thus, both of them
provide a therapeutic approach against metal toxicity.
Similarly rotenone induced neurotoxicity was ameliorated
by oxytocin by reducing the expression of various caspases
which were responsible for apoptosis [132]. Likewise,
targeting PGC 1α can be useful in PD patients as elevating
PGC1α levels in in-vitro studies prevented dopaminergic
neuron loss [133].
Metal induced neurotransmitters-receptor sensitiv-

ity and cause neurodegeneration. LTP has also been
suggested to result from the malfunctioning of NMDA
receptor [134,135]. NMDA receptor is a hetero-dimeric
structure and the functionality of receptor depends on
the proper assembly of subunits. Expression of NR2A
subunit of receptor has been reported to be reduced
due to Pb exposure resulting in altered LTP suggest-
ing that NR1/NR2A receptor complex is required for
the calcium mediated signaling to maintain the cognitive
ability [136]. Taurine supplementation on the other hand
was found to be protective against NMDA receptor mal-
functioning by reducing calcium overload [137]. Therefore,
for diseases related to NMDA receptor malfunction-
ing and calcium influx, taurine can be considered as
neuroprotective.
Ubiquitin Proteosome Complex (UPC) maintains protein
homeostasis in the body by degrading the misfolded,
malfunctioned and accumulated proteins and inhibition of
UPC results in aggregation and deposition of these
malformed proteins in CNS leading to neurotoxicity [138].
As also described in epigenetics section that histone
modification plays a major role in regulation of gene
expression, HDAC inhibitors such as valproic acid,
trichostatin and phenylbutyrate have been found to be
neuroprotective. They exert neuroprotection by regulating
the expression of neurotrophic factors such as glial derived
neurotrophic factor (GDNF), brain derived neurotrophic
factor (BDNF) and reducing inflammation and neur-
onal death [139,140]. Thus, therapeutic intervention
by targeting these known processes can also prevent
the progression of disease from environmental hazards.
These neuroprotective agents thus help in disrupting the
cascade of reactions that ultimately lead to cell loss by
apoptosis (Figure 4).

Genetic susceptibility to environmental stimuli
Individuals exposed to same environment respond
differently and this difference is attributed to differences in
genetic make-up. SNP studies focus on the polymorphisms
in genes which influence the susceptibility of individual to
the environmental stimuli. Studies have been carried out to
show that risk to the environmental toxins such as heavy
metals and pesticides have positive correlation with
gene polymorphisms. Polymorphism in XME genotype
influences the metabolizing efficacy of enzyme. SNP
variation effect the normal functioning of enzyme by
altering the enzyme kinetics. One allele of glutathione
synthetase (GSS) was found to be more interactive with
metals over the other enhancing the risk of toxification
[141]. Similarly, glutathione transferases (GSTs) are another
group of enzymes involved in detoxification processes by
ubiquitinization of pesticides and other toxicants. GST
genotype and heavy metal metabolism have been studied
and it was found that one form of gene readily metabolizes
metals into non-toxic form and thus reduces the risk of
toxicity [142,143]. Children of mothers with GSTM1 and
GSTT1 allele, prenatally exposed to pesticides are at
greater risk of fetal growth restriction [144]. Further
studies on this gene revealed the positive associated of
gene polymorphism with AD, PD and AMD [145]. Similar
genotype study on human paraoxonase 1 (PON1) enzyme
revealed that one form of gene is associated with increased
susceptibility to pesticide related damage. Children of
mothers with susceptible genotype have been found to be
more prone to toxicity due to prenatal exposure of
organophosphates [146]. N-acetyltransferase-2 (NAT-2)
and Cytochrome P-450 (CYP2C9) are other XMEs that
are studied for genetic susceptibility for DNA damage due
to pesticide exposure. Singh and coworkers studied



Figure 4 Schematic diagram representing the action of different environmental stimuli (metals, drug and pesticides) on dopaminergic
neurons, glutaminergic neurons and mitochondria leading to neuronal apoptosis.
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polymorphism of these enzymes in workers exposed
to organophosphate pesticides and revealed that DNA
damage was higher in persons with one particular allele
as compared to the persons with another allele [147].
Pregnant women exposed to heavy metals have been
reported to have placental accumulation of these metals
which affects the transport of nutrients from mother
to fetus. Metallothionein is involved in micronutrient trans-
port and detoxification of placental toxins. Polymorphism
in this gene results in differential accumulation of cadmium
in placenta [148]. Similarly, SNPs in metallothionein (MT)
gene have also been shown to be responsible for varying
susceptility to ALS. Antioxidant enzymes help in prevent-
ing the oxidative stress and SNPs related to these enzymes
also showed varied response to environment. Superoxide
dismutase (SOD) genotype reconstruction showed that
SOD1 (GG) and SOD2 (GT) alleles decrease the risk of
retinopathy of prematurity in preterm babies [149].
The above studies have elucidated that certain alleles
involved in xenobiotics metabolism make individual
more susceptible to diseases, who can be counseled to
adopt preventive measures to protect themselves from
adverse environmental influences.

Conclusion
The present review emphasizes the importance of envir-
onmental cues and epigenetics on pathogenesis of neuro-
degenerative diseases. The role of early life exposure to
environmental stimuli while ageing has largely remained
underinvestigated which has been highlighted in this re-
view. Present work postulates that the sporadic diseases
can be considered as after effects of exposure in early life,
in addition to prevalent theories of pathogenesis being
investigated worldwide. Early life practices and environ-
ment determines physical and mental wellness in later
stages due to genetic imprinting explained by epigenetics.
Even though the bulk of research investigations have
focused on molecular targets, the therapeutic outcome
has not been very encouraging. A new focus on targeting
the early life epigenetic mechanisms is imperative through
larger studies. Whether developmental disorders and
degenerative diseases have any epigenetic association could
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be revisited though launch of longitudinal animal studies.
Therefore, prevention of disease by preempting early life
exposure should be tested by launching worldwide public
health initiatives. The mechanistic understanding of
neurodegeneration provided in the review will likely
provide new insights important for healthy lifestyle in
the individuals at risk for such diseases.
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