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Abstract

PCR on yeast colonies.

presenting cell wall structure modifications.

Background: Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to
introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of
the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic
glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields
decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several
N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical

Findings: In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol
to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a
Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and
independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications.

Conclusions: The developed protocol enables by-passing of many of the difficulties associated with PCR caused by
phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation
of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains
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Background

With the progress in genetic manipulations, microorgan-
isms’ engineering for research or industrial bio-compound
production is very common. Budding yeast is recognized
as a GRAS (Generally Recognized as Safe) organism [1],
devoid of intellectual property limitations; as such its use
for industrial purposes is steadily increasing. Since the
80’s, production of biofuel by modified yeast strain is in
constant development [2,3]. Yeast is also used in the
manufacturing of compounds on the market of flavors or
fragrances [4,5] and for the production of numerous
others substances [6-9]. In 2009, Saccharomyces cerevisiae
strains were engineered to obtain different flavonoids for
use in high throughput screening of molecules in drugs
discovery [10].
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Saccharomyces cerevisiae is a particularly efficient and
attractive system for the bioproduction of therapeutic
proteins. Growth in neutral and well defined culture
media is rapid and inexpensive as compared to higher
eukaryotic systems such as CHO (Chinese Hamster
Ovary) cells. Large scale production allows high yields,
secretion of post-translationally modified proteins and
simplified downstream purification protocols. Several
recombinant therapeutic proteins have already been ap-
proved for commercialisation: Human Serum Albumin
(Recombumin and Albucult, Novozymes), insulin
(Actrapid, Novo Nordisk), HBV surface antigen (Pediatrix,
GlaxoSmithKline), hirudine (Revasc, Aventis). Productions
of other human proteins are under active studies:
a-amylase [11], HPV16IL [12], immunoglobulin G [13].

Glycan residues are generally essential for mammalian
glycoproteins activity [14-17]. Proteins produced in wild
type yeast strains carry glycan structures radically different
from native human glycoproteins; this can translate into

© 2013 Bonnet et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:christine.bonnet@glycode.fr
mailto:christophe.javaud@glycode.fr
http://creativecommons.org/licenses/by/2.0

Bonnet et al. BVIC Research Notes 2013, 6:201
http://www.biomedcentral.com/1756-0500/6/201

reduced serum half-life, poor target activity and changes
in their immunogenicity.

The process of N-glycosylation [18,19] consists in a
covalent linkage of a specific oligosaccharide on a nas-
cent protein in the endoplasmic reticulum. This first
step is conserved through all Eukaryotes. The matur-
ation process occurs in the Golgi apparatus and leads to
polymannosylated, complex or hybrid structures, and
determines differences between species. In Saccharomyces
cerevisiae strains, a set of mannosyltranferases will add
mannose residues to the core glycan until the protein is
hypermannosylated; in mammals the glycan structures
are more complex, composed of N-acetylglucosamine,
galactose, sialic acid or fucose. The engineering of the
yeast N-glycosylation pathway allows therapeutic glyco-
proteins production bearing homogeneous human type
glycan structures. This homogeneity increases protein
therapeutic efficiency and reproducibility between pro-
duction batches [20].

Glycode has developed technologies to enhance re-
combinant glycoprotein production through selective
modification of glycosylation in yeast Saccharomyces
cerevisiae. In the GlycodExpress™ technology (patent
W0O/2008/095797), Saccharomyces cerevisiae has been
modified by sequential deletion of mannosyltransferases
and glycosyltransferases expression cassettes introduc-
tion into the yeast genome by homologous recombin-
ation. This offers several advantages: strain stability
with time, full tracking of genotypic and phenotypic
changes and possibility to reengineer the strain identi-
cally in case of spontaneous recombination. For the
YAC-Express™ approach (patent WO/2012/013823),
Saccharomyces cerevisiae has been engineered by intro-
duction of a YAC (Yeast Artificial Chromosome)
containing a cluster of glycosyltransferases expression cas-
settes into a yeast strain deleted for mannosyltransferases.
Among the numerous advantages of the YAC-Express™
technology is the absence of direct chromosomal modifi-
cation, short time-frame for engineering a new strains and
extension of the YAC technology to a wide variety of
strains. The first essential step to humanise yeast N-glyco-
sylation is the deletion of sequences encoding specific
mannosyltransferases, such as OCH1 and MNN1, lead-
ing to strains producing glycoproteins with a core
MangGlcNAc, type structure [21-24].

The quality of these initial glyco-engineered strains is
guaranteed by a rigorous validation process. The first
step is a PCR (Polymerase Chain Reaction) on the yeast
genome to check the presence of the deletion cassette
and the absence of the targeted mannosyltransferase
sequence. Since the early 90’s, several techniques have
been described to carry out DNA amplification directly
on yeast colonies [25]. A protocol based on classical PCR
methods [26] has been adapted for the identification of
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pathogenic fungi [27]. The use of Zymolyase or lyticase is
reported to allow a better disruption of the cell wall and,
consequently, a better amplification [28]. During our val-
idation of modified strains it appeared that N-glycosylation
modifications prevented PCR amplification directly on
yeast colonies. To circumvent this we have developed a
new protocol based on a micro-plate culture phase on a
AochlAmnnl strain (YiMMOgene) derived from the
BY4742 laboratory strain. Culture duration and location of
the targeted sequence have no impact on the efficiency of
this method.

Findings

Classical protocols for PCR on yeast colonies showed low
amplification efficiency on glyco-engineered strains

The wild type laboratory strain BY4742 and the modified
AochiAmnnl YiMMOgeéne strain were restreaked on
YPD (Yeast Peptone Dextrose) plates (47 colonies for
each strain). The YiMMOgene strain deficient in
mannosyltransferase activity has growth defects; it needs
several days for colonies to appear on agar plate culture.
After 5 days of growth at 30°C, each colony was tested
for the amplification of 900 bp (base pair) of MNN5
sequence. This gene is located on chromosome X and
encodes a Golgi mannosyltransferase responsible for the
linkage of an a-1,2-mannose on the glycan outer chain
[29]. Two different protocols using two different DNA
polymerases have been successively carried out. Ampli-
fication or PCR efficiency was calculated as follows:
efficiency= (number of amplifications obtained/number
of colonies tested) *100.

First, PCR was carried out with a widely used DNA
polymerase (Dream Taq, Fermentas). All BY4742 col-
onies showed MNN5 amplifications, whereas no am-
plification was observed on YiMMOgene colonies
(Figure 1A). Secondly, a Hot Start DNA polymerase
(Platinium Taq, Invitrogen) was used in presence of
DMSO (Dimethylsulfoxide) in the reaction mix. DMSO
is known to inhibit secondary structures and to promote
access to DNA [30,31]. The percentage of amplifica-
tion was of 100% for BY4742 and 49% on YiMMOgene
(Figure 1A). The different PCR products were assessed by
agarose gel electrophoresis. In addition to poor amplifica-
tion efficiency, amplifications from YiMMOgene colonies
presented low quality and irregular intensities (Figure 1B).
The use of different DNA polymerases [classical
(DyNAzyme, Finnzymes), high fidelity (Taq-Phusion, New
England Biolabs or Taq Isis, Qbiogene) or specific for long
fragment (Taq long-expand, Roche)], under several PCR
conditions (extension time, denaturation temperature,
MgCl, concentration) and addition of various concen-
trations of secondary structure inhibitors (DMSO, form-
amide) did not increase amplification efficiency beyond
50% (unpublished observations).
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Figure 1 Efficiency of MNN5 gene amplification from wild type and modified strains. A) Percentage of colonies picked from Petri dishes
that amplified MNN5. The experiment was carried out on 47 colonies for each strain. Dark grey: BY4742; light grey: YIMMOgene. Amplification
was carried out using the DreamTagq or the Platinium Tag. B). PCR product visualisation, after amplification with the Platinium Tag, on a 1%

agarose gel stained with SYBR safe. Left panel (1): BY4742, right panel (2): YIMMOgéne, ML: Molecular ladder.

Since the importance of annealing temperature has been
clearly demonstrated [32,33], experiments were conducted
varying this parameter. Temperatures from 53°C to 60°C
were tested, in combination with different primer pairs;
however, this did not improve amplification efficiency or
quality significantly (unpublished observations).

The initial hypothesis was that the low PCR efficiency
on engineered Saccharomyces cerevisiae strains was due
to complex DNA structure. However, variation in all dif-
ferent parameters (different Taq polymerases, PCR pro-
grams, inhibitors of secondary DNA structure) did not
afford improvement in PCR product quantity or quality.

A lyticase treatment can increase PCR efficiency

Yeast cells are encapsulated by a rigid but dynamic cell
wall structure. It determines the shape of the organism;
it provides osmotic protection and forms a physical bar-
rier to the extracellular environment [34,35]. Breaking
this organelle is a prerequisite for DNA amplification by
PCR on yeast colonies. Different techniques, applied to
DNA or protein extraction, have been described for sev-
eral decades: lysis by chemicals such as SDS (Sodium
Dodecyl Sulfate) [36,37], cell wall disruption by thermal
choc [38-40], sonication [41,42] and microwaves [43,44].
Experiments based on these methods were successively
carried out: they did not improve PCR efficiency (unpub-
lished observations).

Enzymatic permeabilisation with zymolyase or lyticase
is very common [45,46]. Lyticase hydrolyzes linear glu-
cose polymers at beta-1,3-linkages and is the preferred
enzyme to digest cell walls and generate spheroplasts
from Saccharomyces cerevisiae strains. When a ODggg
decrease of 80% is observed in the reaction system, the
yeast cells can be considered as completely lysed. We
submitted engineered colonies to a classical 20 minute
lyticase treatment but did not succeed in genomic DNA
amplification (unpublished observations). To check the
sensibility of YIMMOgeéne to enzymatic lysis, we performed
2 independent assays on fresh yeast cells collected from 5

days agar plate culture. The initial ODggg in the reaction
mix were 2,2 and 1,6 respectively. The ODgqy was verified
every 20 minutes (Figure 2A). It appears that the perme-
abilisation efficiency is not reproducible.

In a second assay, 20 YiMMOgene colonies were
picked from an agar plate culture and treated with
lyticase for 2 h. After centrifugation, spheroplasts were
picked and submitted to amplification. The same 20 col-
onies were also assayed for PCR directly from the agar
plate. The lyticase treatment increases PCR efficiency
from 25% to 90% (Figure 2B). However, lyticase perme-
abilisation appears to be random and the procedure time
consuming and too expensive for use in high throughput
screening.

These experiments demonstrate that alteration of
YiMMOgene cell wall properties could be an explan-
ation for low PCR efficiency on agar plate colonies.

A microculture phase allowed good amplification on
yeast altered for N-glycosylation
PCR is performed on 5 day old colonies; at this point
yeast has reached the early stationary growth phase dur-
ing which the cell wall becomes resistant as compared to
exponential growth phase (thinner cell wall). Using cells
from a liquid culture in exponential phase may help to
improve the PCR reaction. However, in order to screen
numerous yeast colonies, it is important to conserve a
limited volume of culture.

YiMMOgene strain was restreaked on YPD plates. After
5 days at 30°C, 47 colonies were diluted in 50 pL of YPD
on a micro-plate and grown at 30°C, under agitation, for
18 hours. The cells were then collected directly, either
from Petri dishes or from liquid cultures. PCR was carried
out on the MNNS5 sequence with the Platinium Taq DNA
polymerase in presence of DMSO. Only 9% amplification
efficiency was observed on colonies from YPD plate;
however 100% was obtained after a liquid culture phase
(Figure 3A). This confirms the importance of yeast
culture conditions (solid vs. liquid medium).
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Figure 2 Lyticase treatment of the YiMMOgeéne colonies can improve PCR efficiency. A) ODgyy measurement during lyticase treatment, 2
independent assays. ODgoy was measured on an Ultrospec 2100pro (Amersham). B) Percentage of MNN5 ampilification from 20 colonies picked
on Petri dishes treated or untreated with lyticase for 2 h.

In a subsequent assay we determined the effect of
culture duration on PCR efficiency. A growth curve in
micro-plate was carried out on two distinct YiMMOgeéne
colonies (Figure 3B). Amplifications of 47 liquid cultures
were performed from cells in early exponential phase (6 h),
late exponential phase (17 h) or early stationary phase
(24 h). As shown in Figure 3C, there is no difference in
PCR efficiency correlated to a particular time of culture,
in the range tested.

The efficiency of the developed method was repeatable

In addition to the previous assay, two distinct tests
targeting the MNN5 sequence were conducted on 47
YiMMOgene colonies, picked from a Petri dish after 5
days of growth or from a micro-plate after 6h of liquid
culture. An efficiency of 100% was observed from li-
quid culture, while it varied from 9% to 53% (average
of 30%) from agar plate cultures (Figure 4). A great

improvement in amplification quality was observed
(Figure 4C).

The efficiency of the developed method was not target
sequence dependent

Three distinct assays were carried out for the amplifica-
tion of 710 pb of the MNN2 sequence. MNN2 is located
on the chromosome II and encodes a golgi o-1,2-
mannosyltransferase [29]. Mnn5p and Mnn2p have
similar functions however their sequences are different,
with only 49.9% homology. Moreover, the chosen
primers pairs were located in different regions of the
ORF (Open Reading Frame) targeted. The methodology
used for MNN5 was applied to MNN2 gene amplifica-
tion on 23 colonies. As shown in Figure 5, percentage
amplification from agar plate cultures was higher but
still insufficient with an average of 59% (from 39% to
78%), whereas the percentage obtained after a liquid
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Figure 3 Efficiency of MNN5 gene amplification from liquid culture of modified strain. A) Percentage of MNN5 amplification from 47
colonies picked on Petri dishes and 47 colonies picked from liquid cultures in micro-plates. B) Growth curve in micro-plate (YPD medium),
average of two colonies of YiMMOgene. The ODgoo Was measured in a micro-plate reader. 4: ODgq after 6 hour culture (early exponential phase).
®: ODgq after 17 hour culture (late exponential phase). m: ODgq after 24 hour culture (early stationary phase). C) Percentage amplification of
MNNS5 from 47 YiMMOgéne after different culture times in micro-plate. All amplifications have been carried out with the Platinium Taq.
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Figure 4 MNN5 gene amplification efficiency on modified strain colonies picked from Petri dishes or micro-plate cultures. A) 3
independent assays carried out on 47 colonies for each condition. Dark grey: Petri dishes cultures, light grey: micro-plate cultures. B) Average of
the 3 assays presented in A (standard deviation =22.07). C) PCR product visualised on a 1% agarose gel stained with SYBR safe. Left panel (1):
Petri dishes, right panel (2): micro-plate cultures, ML: Molecular ladder. All amplifications were carried out using Platinium Tag.
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Figure 5 MNN2 gene amplification efficiency on modified strain colonies picked from Petri dishes or micro-plate cultures. A) 3
independent assays carried out on 23 colonies for each condition. Dark grey: Petri dishes cultures, light grey: liquid cultures. B) Average of the 3
assays presented in A (standard deviation=19.55). €) PCR product visualized on a 1% agarose gel stained with SYBR safe. Left panel (1): Petri
dishes, right panel (2): micro-plate cultures, ML: Molecular ladder. All amplifications have been carried out with the Platinium Tag.
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culture was constant at 100%. Again, the quality of the
PCR product is improved using a liquid culture step
(Figure 5C).

Discussion

Saccharomyces cerevisiae cells deleted for several
N-mannosyltransferase sequences appear to be “resistant”
to yeast PCR protocols.

In the classical method, amplification is carried out on
colonies directly picked from agar plate culture; in the
new approach presented here, colonies are submitted to
a short liquid culture phase before being analyzed. This
additional step allows a significant improvement of PCR
efficiency, from 30% to 100%, on a AochlAmnnl strain.
For the PCR definition of efficiency (percentage of amp-
lification obtained) only the quantitative aspect, and not
the qualitative aspect (intensity of amplification), is con-
sidered. Indeed, while performing screening, we are
looking for a positive or negative result; the quality of
amplification, even if we have noted an improvement, is
not so important in this specific application.

Various parameters concerning the PCR (annealing
temperature, denaturation time...), the reaction buffer
composition (MgCl, concentration, specific GC buffer...)
and the addition of DNA secondary structure inhibitors
(DMSO...) have been tested, but none of these provided
a sufficient increase in PCR efficiency. This suggests that
difficulty in PCR amplification was due to alteration in
yeast cell properties rather than to DNA secondary
structure modifications.

Amplification protocols have been carried out on 5
day colonies. Clones are invisible on the plate until
the 5th day due to the disturbed growth of OCH1
deleted strains; at this culture time cells have just
reached the early stationary phase and PCR efficiency
is very low. In contrast, after 24 h of liquid culture
YiMMOgene strain is also in the early stationary phase
but the PCR efficiency reached 100%. Moreover, when 5
day old wild type colonies are analyzed PCR efficiency is
of 100%. The amplification failure is not dependent of the
aged of the colony but rather on the effect of glyco-
engineering.

Differences in PCR efficiency have been observed be-
tween wild type and modified strains, but also in modified
yeast, between agar and liquid culture. In Saccharomyces
cerevisiae the cell wall represents around 30% of the cell
dry weight and is largely composed of neutral polysaccha-
rides for the inner layer (85%) and heavily glycosylated
mannoproteins (15%) for the outer layer [47,48]. De-
pending on growth conditions at least 20 different
mannoproteins, are present and they likely have specific
functions. These glycoproteins, particularly their N-
linked carbohydrate side-chains, influence the cell wall
permeability to macromolecules [49-52]. It has been
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reported that alteration of glycosylation, by deletion or
mutation of mannosyltransferases, drastically increases
cell wall porosity [53,54] and chitin synthesis [55]. Inter-
actions between “cell wall stress”, glycosylation and chi-
tin deposit in the cell wall have been already described
[56-58]. Although accounting for only 1-2% of the wild
type cell wall under vegetative growth, chitin can con-
tribute up to 20% of this structure under cell wall stress
conditions [54]. As its crystalline structure confers re-
sistance to the cell wall, an increased amount of chitin
can dramatically raise the cell’s resistance to chemical
or mechanical disruption, impairing the capacity to ac-
cess the DNA matrix and to perform PCR on yeast col-
onies. Numerous methods have been described to break
or permeabilise yeast cell wall. We tested enzymatic
lysis: the PCR results show that disturbing the cell wall
allows an increase of efficiency by more than 3 fold.
However, because of the random results of permeabil-
isation, the time needed to perform the experiment and
the cost of the enzyme, lyticase procedure is not suit-
able for the screening of several hundreds of colonies.
Stationary-phase cells are physiologically, biochemically,
and morphologically distinct from exponentially grow-
ing cells. Polysaccharide composition, structure and
thickness of the cell wall are tightly controlled and vary
considerably, depending on environmental conditions
[59,60]. The major change concerns the large size
mannoprotein material, mainly because of variations in
the amount of N-glycan linked mannose residues [61].
Cell wall porosity of batch-grown Saccharomyces
cerevisiae is maximal in the early exponential phase and
decreases rapidly to lower levels in later stationary
growth phases [50]. In the improved protocol, cells are
analyzed during the exponential growth phase; unlike
those from agar plate cultures which are in early
stationary phase.

It has been shown that the mnnlochl mutants tend to
aggregate, probably because of glycosylation defects [53]
and this was observed with YIMMOgeéne strain. Aggre-
gation limits access to numerous cells and so to nuclear
DNA thus reducing efficiency of direct amplification on
yeast colonies from agar plate cultures.

To conclude, the increase of chitin deposit in the
cell wall of engineered yeasts, the structure of this
organelle in early stationary phase and cell aggrega-
tion in AochlAmmnnl yeast strains can each partially
explain the loss of PCR efficiency on yeast colonies.
However, it is likely that the convergence of the
three phenomena leads to the absence of amplifica-
tion during PCR process on YiMMOgene strain col-
onies. The improved protocol developed in this work
by-passes those difficulties and it has the potential
to be applied to yeast strains presenting cell wall
structure modifications.
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Conclusion

Characterisation of genetically engineered cell lines is
essential before they can be released on the market. PCR
is usually an efficient tool to analyze genomes. Unfortu-
nately, DNA sequence modifications can lead to pheno-
typic changes that may render genomes inaccessible for
such studies. An improved method for PCR on yeast col-
onies has been developed for validation of humanised
Saccharomyces cerevisiae strains. This protocol can be
easily implement in yeast labs and does not need any
specific instrumentation. It allows the rapid screening, in
a cost effective and reproducible manner, of several
hundreds of yeast colonies in parallel.

Methods

Yeast strains

BY4742 (MATalpha, his3deltal, leu2delta0, lys2delta0,
ura3delta0) is a laboratory Saccharomyces cerevisiae
strain, derived from the S288C strain. It was obtained from
ATCC (#201389). The YiMMOgene strain (MATalpha,
his3deltal, leu2deltaO, lys2delta0, ura3delta0, ochlA:
KanMX4, MnnlA:: Hph) was constructed at Glycode
S.A.S., it is derived from the BY4742 strain. It was
engineered by a PCR-based gene deletion strategy [62]
that allows the deletion of the ORF of interest from the
yeast genome. The OCH1 gene was replaced with the
KanMX cassette that confers resistance to kanamycine.
The MNNI1 gene was replaced with a Hph module that
confers resistance to hygromycine.

Media and culture conditions

YPD (Yeast Peptone Dextrose) complete medium was
purchased from Formedium. The liquid medium was
prepared as recommended by the supplier; for solid
medium, 20 g/L agar from Formedium was added to the
mixture before autoclaving. Culture micro-plates were
purchased from Greiner Bio-One (96 well, round bottom,
well volume 250 pL). Petri dishes were purchased from
Greiner Bio-One (100 mm).

A frozen 80% glycerol stock containing the yeast strain
was streaked onto an YPD agar plate. The plate was
incubated at 30°C, until individual colonies appeared. 47
of those colonies were isolated onto YPD agar plates and
incubated 5 days at 30°C. Each yeast colony was seeded,
with a toothpick, into 50 pL YPD liquid medium in

Table 1 Primers used in this study
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micro-plate well and incubated at 30°C, under agitation
(200 rpm), during a pre-determinate time (6 h, 17 h or
24 h). The ODggy was measured by a micro-plate reader
(Infinite® 200 PRO from Tecan).

Determination of the optimal annealing temperature

Primers used were purchased from Eurofins MWG
Operon (Table 1). The T, was initially calculated using
the (4(G+C) + 2(A+T)) formula. For PCR on liquid
culture colonies, different annealing temperatures sur-
rounding the theoretical number were tested and the
optimal T, found for both primer pairs was 58°C.

PCR amplification

With the DyNAzyme DNA polymerase (Finnzymes)
PCR was performed in 25 pL final volume, with the 2X
supplier mix that contains both the buffer and the
enzyme. Primers were added to a final concentration of
0.5 pM and H,O up to 25 pL.

With the Platinium Taq DNA polymerase (Invitrogen),
the PCR mix was performed with final concentrations
of: 1x manufacturer-supplied buffer, 1.5 mM MgCl,, 0.2
mM dNTPs, 0.3 mM primers, 2.4% DMSO, 0.5 U of the
Hot Start enzyme, H,O to 20 pL. The PCR was set up
with yeast cells picked from liquid culture in micro-plate
or agar plate culture. The reactions were performed on
an Eppendorf Thermal cycler mastercycler ep gradient.
Primers used are presented in Table 1. Thermocycling
conditions are presented in Table 2. After cycling, 7.5 pL
of each sample were loaded on a 1% agarose gel stained
with SYBR safe for visualization.

Lyticase treatment

Yeast from a 5 days agar plate culture were diluted in 5
ml H,O, at approximately 1.5<ODg0<2.5. After centrifu-
gation for 5 minutes at 2000 g, the pellet was incubated
in 750 pl of pretreatment buffer (100 mM Tris HCl pH
9.4, 1 mM DTT) for 10 minutes at 30°C and centrifuged
for 5 minutes at 1000 g. The supernatant was discarded
and the pellet carefully resuspended in 500 pl of sphero-
plast buffer (0.6 mM sorbitol, 50 mM Tris pH 7.4, 1 mM
DTT). 400 U of lyticase in H,O was added and the reac-
tion performed at 30°C, under gentle shaking for 120
minutes. Evolution of the reaction is verified by measuring

Targeted gene Primer name Primer sequence Tm Product lenght

MNN5 CRO67-Fw 5'-ACGACTGGTTCCTAGCACAAC-3' 64°C 900 bp
CRO68-Rv 5'AAAAGGCGGGAGGGGTGAC-3' 62°C

MNN2 CRO64-Fw 5'-TTCCTCAGACGCCGCCAG-3 60°C 710 bp
CRO64-Rv 5'GGCCACATGACCAAGCCC-3' 60°C

Fw: forward, Rv: reverse.
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Table 2 Thermocycling conditions used in this study

Initial denaturation 95°C 15 min 1 cycle
Denaturation 95°C 30s 40 cycles
Annealing 58°C 30s

Extension 72°C 1 min

Final extension 72°C 5 min 1 cycle

at ODggp: reaction is complete when the OD decreased
from 100% to 20%.

For the treatment before PCR reaction, yeast colonies
have been picked from a 5 days agar plate culture and
diluted to H,O to around 1 ODggyy The reaction was
carried out as describe above, without following the
ODggo. After 2 h, spheroplasts were harvested by centri-
fugation and collected with a toothpick; PCR was
performed as described in 4th paragraph of the methods
section.

Abbreviations
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CHO: Chinese hamster ovary; YAC: Yeast artificial chromosome; YPD: Yeast
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