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Abstract
Background: Extracting motifs from sequences is a mainstay of bioinformatics. We look at the
problem of mining structured motifs, which allow variable length gaps between simple motif
components. We propose an efficient algorithm, called EXMOTIF, that given some sequence(s),
and a structured motif template, extracts all frequent structured motifs that have quorum q.
Potential applications of our method include the extraction of single/composite regulatory binding
sites in DNA sequences.

Results: EXMOTIF is efficient in terms of both time and space and is shown empirically to
outperform RISO, a state-of-the-art algorithm. It is also successful in finding potential single/
composite transcription factor binding sites.

Conclusion: EXMOTIF is a useful and efficient tool in discovering structured motifs, especially in
DNA sequences. The algorithm is available as open-source at: http://www.cs.rpi.edu/~zaki/
software/exMotif/.

Introduction
Analyzing and interpreting sequence data is an important
task in bioinformatics. One critical aspect of such inter-
pretation is to extract important motifs (patterns) from
sequences. The challenges for motif extraction problem
are two-fold: one is to design an efficient algorithm to
enumerate the frequent motifs; the other is to statistically
validate the extracted motifs and report the significant
ones.

Motifs can be classified into two main types. If no variable
gaps are allowed in the motif, it is called a simple motif. For
example, in the genome of Saccharomyces cerevisiae, the
binding sites of transcription factor, GAL4, have as con-
sensus [1], the simple motif, CGG[11,11]CCG. Here
[11,11] means that there is a fixed "gap" (or don't care

characters), 11 positions long. If variable gaps are allowed
in a motif, it is called a structured motif. A structured motif
can be regarded as an ordered collection of simple motifs
with gap constraints between each pair of adjacent simple
motifs. For example, many retrotransposons in the Ty1-copia
group [2] have as consensus the structured motif:
MT[115,136]MTNTAYGG[121,151]GTNGAYGAY. Here
MT, MTNTAYGG and GTNGAYGAY are three simple
motifs; [115,136] and [121,151] are variable gap con-
straints ([minimum gap, maximum gap]) allowed
between the adjacent simple motifs. More formally, a

structured motif, , is specified in the form:

M1[l1, u1]M2[l2, u2]M3 ... Mk-1[lk-1, uk-1]Mk
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where Mi, 1 ≤ i ≤ k, is a simple motif component, and li and
ui (for 1 ≤ i <k and where 0 ≤ li ≤ ui), are the minimum and
maximum number of gaps allowed between Mi and Mi+1,
respectively. Note that a gap is defined to be the number
of intervening positions after Mi but before Mi+1. In other
words, if si and ei represent the start and end positions of
component Mi, then for i ∈ [1, k - 1], the number of gaps
is given as gi = ei+1 - si - 1, and we require that gi ∈ [li, ui].
The number of simple motif components, k, is also called
the length of . Let Wi, 1 ≤ i <k, denote the span of the gap
range, [li, ui], which is calculated as: Wi = ui - li + 1.

In the structured motif extraction problem, the compo-
nent motifs Mi are unknown before the extraction. How-
ever, we do provide some known parameters to restrict the
structured motifs to be extracted, including: (i) k – the
length of ; (ii) |Mi| – the length of each component Mi
∈ , for 1 ≤ i ≤ k; and (iii) [li, ui] – the gap range between
Mi and Mi+1, for 1 ≤ i <k. All these parameters define a
structured motif template, , for the structured motifs to be
extracted from a set of sequences . A structured motif 
matching the template  in  is called an instance of . We
use K to denote the number of symbols (not counting
gaps) in  and use [j] (with 1 ≤ j ≤ K) to denote the jth
symbol of .

Let δS () denote the number of occurrences of an

instance motif  in a sequence S ∈ . Let dS () = 1 if δS

() > 0 and dS () = 0 if δS () = 0. The support of motif

 in the is defined as , i.e., the

number of sequences in  that contain at least one occur-

rence of . The weighted support of  is defined as

, i.e., total number of occurrences

of  over all sequences in . We use  () to denote the

set of all occurrences of a structured motif . Given a

user-specified quorum threshold q ≥ 1, a motif that occurs
at least q times will be called frequent.

There are two main tasks in the structured motif extraction
problem: a) Common Motifs – find all motifs  in a set of
sequences , such that the support of  is at least q, b)
Repeated Motifs – find all motifs in a single sequence S,
such that the weighted support of  is at least q. Further-
more, the structured motif extraction problem allows sev-
eral variations:

• Substitutions:  may consist of similar motifs, as meas-
ured by Hamming Distance [3], instead of exact matches, to
the simple motifs in . We can either allow for at most εi

errors for each simple motif Mi, 1 ≤ i ≤ k, or at most ε errors
for the whole structured motif .

• Overlapping Components: The variable gap constraints (li
and ui) can take on a limited range of negative values,
allowing search for overlapping simple motifs. We allow
two adjacent components Mi and Mi+1 to overlap, but we
require that Mi+1 does not precede Mi. This condition can
be satisfied by the following constraints on the gap range
[li, ui]: -|Mi| ≤ li ≤ ui, for i ∈ [l, k). For example the search
for motif template NNN[-2,2]NNN (where 'N' stands for
any of the four DNA bases: A,C,G,T), may discover the
pattern ACG[-2,2]CGA, representing an overlapped occur-
rence, ACGA, as well as a non-overlapped occurrence,
ACG--CGA, at the two extremes of the gap range.

• Motif Length Ranges: Each simple motif Mi in a template
 can be of a range of lengths, i.e., |Mi| ∈ [la, lb], where la
and lb are the lower and upper bounds on the desired
length.

Table 1 shows four example DNA sequences S1, S2, S3, S4
∈ ; a structured motif template , where M1 = NNN, M2
= NN and M3 = NNNN, and [0,3] and [1,3] are the inter-
vening gap ranges between the components; and a quo-
rum threshold q = 2. The length of the template  is k = 3
and the number of symbols in  is K = 3 + 2 + 4 = 9. The
span of gap ranges are: W1 = u1 - l1 + 1 = 2 and W2 = u2 - l2
+ 1 = 2. If no substitutions are allowed, there are five fre-
quent structured motifs in  matching the template ,
namely 1 = CCG[0,3]TA[1,3]GAAC (shown in bold)
and 2 = CCG[0,3]TA[1,3]AACC which occur in S1 and
S2; 3 = TAT[0,3]GG[1,3]ACCA (shown underlined), 4
= TAT[0,3]GA[1,3]CCAT and 5 = TAT[0,3]
GG[1,3]CCAT which occur in S2 and S3. If substitutions
are allows, say, e1 = 1 = e3, then the occurrence of 6 =
TAA[0,3]GG[1,3] CCCT (shown underlined) in S4 will be
considered to match motif 5.

In this paper, we propose EXMOTIF, an efficient algo-
rithm for both the structured motif extraction problems.
It uses an inverted index of symbol positions, and it enu-
merates all structured motifs by positional joins over this

π( ) ( ) = ∈∑ dSS

π δw( ) ( ) = ∈∑ SS

Table 1: Structured motif extraction.

Sequence S1 (∈ ):
CCGTACCGAACCTCAAA

Sequence S2 (∈ ):
CCGTTATAGGAACCATT

Sequence S3 (∈ ):
TATGGAACCATCTT

Sequence S4 (∈ ):
TAACGGATCCCTTT

Structured Motif Template ():
NNN[0,3]NN[1,3]NNNN

Quorum (q): 2
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index. The variable gap constraints are also considered at
the same time as the joins, resulting in considerable effi-
ciency. In order to save time and space, we only keep the
start positions of each intermediate pattern during the
positional join.

Related work
Many simple motif extraction algorithms have been pro-
posed primarily for extracting the transcription factor
binding sites, where each motif consists of a unique bind-
ing site [4-10] or two binding sites separated by a fixed
number of gaps [11-13]. A pattern with a single compo-
nent is also called a monad pattern. Structured motif extrac-
tion problems, in which variable number of gaps are
allowed, have attracted much attention recently, where
the structured motifs can be extracted either from multiple
sequences [14-21] or from a single sequence [22,23]. In
many cases, more than one transcription factor may coop-
eratively regulate a gene. Such patterns are called composite
regulatory patterns. To detect the composite regulatory pat-
terns, one may apply single binding site identification
algorithms to detect each component separately. How-
ever, this solution may fail when some components are
not very strong (significant). Thus it is necessary to detect
the whole composite regulatory patterns (even with weak
components) directly, whose gaps and other possibly
strong components can increase its significance.

Several algorithms have been used to address the compos-
ite pattern discovery with two components, which are
called dyad patterns. Helden et al. [11] propose a method
for dyad analysis, which exhaustively counts the number
of occurrences of each possible pair of patterns in the
sequences and then assesses their statistical significance.
This method can only deal with fixed number of gaps
between the two components. MITRA [12] first casts the
composite pattern discovery problem as a larger monad
discovery problem and then applies an exhaustive monad
discovery algorithm. It can handle several mismatches but
can only handle sequences less than 60 kilo-bases long.
Co-Bind [24] models composite transcription factors with
Position Weight Matrices (PWMs) and finds PWMs that
maximize the joint likelihood of occurrences of the two
binding site components. Co-Bind uses Gibbs sampling
to select binding sites and then refines the PWMs for a
fixed number of times. Co-Bind may miss some binding
sites since not all patterns in the sequences are considered.
Moreover, using a fixed number of iterations for improve-
ment may not converge to the global optimal dyad PWM.

SMILE [14] describes four variants of increasing generality
for common structured motif extraction, and proposes
two solutions for them. The two approaches for the first
problem, in which the structured motif template consists
of two components with a gap range between them, both

start by building a generalized suffix tree for the input
sequences and extracting the first component. Then in the
first approach, the second component is extracted by sim-
ply jumping in the sequences from the end of the first one
to the second within the gap range. In the second
approach, the suffix tree is temporarily modified so as to
extract the second component from the modified suffix
tree directly. The drawback of SMILE is that its time and
space complexity are exponential in the number of gaps
between the two components. In order to reduce the time
during the extraction of the structured motifs, [18]
presents a parallel algorithm, PSmile, based on SMILE,
where the search space is well-partitioned among the
available processors.

RISO [15-17] improves SMILE in two aspects. First,
instead of building the whole suffix tree for the input
sequences, RISO builds a suffix tree only up to a certain
level l, called a factor tree, which leads to a large space sav-
ing. Second, a new data structure called box-link is pro-
posed to store the information about how to jump within
the DNA sequences from one simple component (box) to
the subsequent one in the structured motif. This acceler-
ates the extraction process and avoids exponential time
and space consumption (in the gaps) as in SMILE. In
RISO, after the generalized factor tree is built, the box-
links are constructed by exhaustively enumerating all the
possible structured motifs in the sequences and are added
to the leaves of the factor tree. Then the extraction process
begins during which the factor tree may be temporarily
and partially modified so as to extract the subsequent sim-
ple motifs. Since during the box-link construction, the
structured motif occurrences are exhaustively enumerated
and the frequency threshold is never used to prune the
candidate structured motifs, RISO needs a lot of computa-
tion during this step.

For repeated structured motif identification problem, the
frequency closure property that "all the subsequences of a
frequent sequence must be frequent", doesn't hold any
more since the frequency of a pattern can exceed the fre-
quency of its sub-patterns. [22] introduces an closure-like
property which can help prune the patterns without miss-
ing the frequent patterns. The two algorithms proposed in
[22] can extract within one sequence all frequent patterns
of length no greater than a length threshold, which can be
either manually specified or automatically determined.
However, this method requires that all the gap ranges [li,
ui], between adjacent symbols in the structured motif be the
same, i.e., [li, ui] = [l, u] for all i ∈ [1, k - 1]. Moreover,
approximate matches are not allowed for the structured
motif.
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The EXMOTIF algorithm
We first introduce our basic approach for common struc-
tured motif extraction problem. We then successively
optimize it for various practical scenarios.

The basic approach
Let's assume that we are extracting all structured motif
instances from n sequence  = {Si, 1 ≤ i ≤ n}, each of
which satisfies the template  and occurs at least in q
sequences of . We assume for the moment that no sub-
stitutions are allowed in any of the simple motifs. We also
assume that all Si ∈ , 1 ≤ i ≤ n and the extracted motifs
are over the DNA alphabet, ΣDNA. EXMOTIF first converts
each Si ∈ , 1 ≤ i ≤ n into an equivalent inverted format
[25], where we associate with each symbol in the
sequence Si its pos-list, a sorted list of the positions where
the symbol occurs in Si. Then for each symbol we combine
its pos-list in each Si to obtain its pos-list in . More for-
mally, for a symbol X ∈ ΣDNA, its pos-list in Si is given as
(X, Si) = {j | Si[j] = X, j ∈ [1, |Si|]}, where Si[j] is the sym-
bol at position j in Si, and |Si| denotes the length of Si. Its
pos-list across all sequences  is obtained by grouping the
pos-lists of each sequence, and is given as (X, ) = {� i, |
(X, Si)|, (X, Si) � | Si ∈ }, where i is the sequence identi-
fier of Si, and | (X, Si)| denotes the cardinality of the pos-
list (X, Si) in sequence Si. For our example sequences in
Table 1, the pos-list for each DNA base is given in Table 2.
For example, A occurs in sequence S1 at the positions {5,
9, 10, 15, 16, 17}, thus the entries in A's pos-list are {1, 6,
5, 9, 10, 15, 16, 17}.

Positional joins
We first extend the notion of pos-lists to cover structured
motifs. The pos-list of  in Si ∈  is given as the set of
start positions of all the matches of  in Si. Let X, Y ∈
ΣDNA be any two symbols, and let  = X[l, u]Y be a struc-
tured motif. Given the pos-lists of X and Y in Si for 1 ≤ i ≤
n, namely, (X, Si) and (Y, Si), the pos-list of  in Si can
be obtained by a positional join as follows: for a position
x ∈ (X, Si), if there exists a position y ∈ (Y, Si), such that
l ≤ y - x - 1 ≤ u, it means that Y follows X within the variable
gap range [l, u] in the sequence Si, and thus we can add x
to the pos-list of motif X[l, u]Y. Let d be the number of

gaps between x ∈ (X, Si) and y ∈ (Y, Si), given as d = y
- x - 1.

Then, in general, there are three cases to consider in the
positional join algorithm:

• d <l: Advance y to the next element in (Y, Si).

• d > u: Advance x to the next element in (X, Si).

• l ≤ d ≤ u: Save this occurrence in (X[l, u]Y, Si), and then
advance x to the next element in (X, Si).

The pos-list for X[l, u]Y can be computed in time linear in
the lengths of (X, Si) and (Y, Si), i.e., the complexity of
a positional join is O(|(X, Si)| + |(Y, Si)|). In essence,
each time we advance x ∈ (X, Si), we check if there exists
a y ∈ (Y, Si) that satisfies the given gap constraint.
Instead of searching for the matching y from the begin-
ning of the pos-list each time, we search from the last posi-
tion used to compare with x. This results in fast positional
joins. For example, during the positional join for the
motif A[0,1]T in S4, with l = 0 and u = 1, we scan the pos-
lists of A and T for S4 in Table 2, i.e. (X, S4) = {2, 3, 7}
and (Y, S4) = {1, 8, 12, 13, 14}. Initially, x = 2 and y = 1.
This gives d = 1 - 2 - 1 = - 2 <l, thus we advance y to 8. Next,
d = 8 - 2 - 1 = 5 > u, thus we advance x to 3.  Then, d = 8 -
3 - 1 = 4 > u, thus we advance x to 7. Next, d = 8 - 7 - 1 = 0
∈ [l, u], so we store x = 7 in (A[0, 1]T, S4). We would
advance x but since we have already reached the end of
(A, S4), the positional join stops. Thus the final pos-list
of A[0,1]T in S4 is: (A[0, 1]T, S4) = {7}. After we obtain
the pos-list of  in each Si for 1 ≤ i ≤ n, we can combine
them together to obtain the pos-list of  in . For exam-
ple, the full pos-list of A[0,1]T for  is: {2, 2, 6, 15, 3, 2,
2, 10, 4, 1, 7}. Thus the support of A[0,1]T is 3. Note here
for each non-empty pos-list, we insert its sequence identi-
fier and length before it. The pseudo-code for the posi-
tional joins for a given sequence Si ∈  is shown in Figure
1. The full pos-list is obtained by concatenating the pos-
lists from each sequence Si.

Given a longer motif , the positional joins start with the
last two symbols, and proceed by successively joining the
pos-list of the current symbol with the intermediate pos-
list of the suffix. That is, the intermediate pos-list for a
(l+1)-length pattern (with l ≥ 1) is obtained by doing a
positional join of the pos-list of the pattern's first symbol,
called the head symbol, with the pos-list of its l-length suf-
fix, called the tail. As the computation progresses the pre-
vious tail pos-lists are discarded. Combined with the fact
that only start positions are kept in a pos-list, this saves
both time and space.

Table 2: Pos-lists.

X pos-lists

A {1,6,5,9,10,15,16,17, 2,5,6,8,11,12,15, 3,4,2,6,7,10, 4,3,2,3,7}
C {1,7,1,2,6,7,11,12,14, 2,4,1,2,13,14, 3,3,8,9,12, 4,4,4,9,10,11}
G {1,2,3,8, 2,3,3,9,10, 3,2,4,5, 4, 2,5,6}
T {1,2,4,13, 2,5,4,5,7,16,17 3,5,1,3,11,13,14, 4,5,1,8,12,13,14}

Sequence identifiers (i) and cardinality of (X, Si) are marked in bold.
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In order to enumerate all frequent motifs instances  in
, EXMOTIF computes the pos-list for each  and report
 only if its support is no less than the quorum (q). A
straightforward approach is to directly perform positional
joins on the symbols from the end to the start for each .
This approach leads to much redundant computation
since simple motif components may be shared among
several structured motifs. EXMOTIF, in contrast, performs
two steps: it first computes the pos-lists for all simple
motifs in  by doing positional joins on pos-lists of its
symbols, and it then computes the pos-list for each struc-
tured motif by doing positional joins on pos-lists of its
simple motif components. EXMOTIF handles both simple
and structured motifs uniformly, by adding the gap range
[0, 0] between adjacent symbols within each simple motif
Mi. For our example in Table 1, the structured motif tem-
plate  becomes: N[0,0]N[0,0]N[0,1]N[0,0]N[2,3]N[0,0]
N[0,0]N[0,0]N. Also since we only report frequent motifs,
we can prune the candidate patterns during the positional
joins based on the closure property of support (note how-
ever that this cannot be done for weighted support).

Extraction of the simple motifs
Given a template motif  , we know the lengths of the
simple motif components desired. A naive approach is to
directly do positional joins on the symbols from the end
to the start of each simple motif. However, since some
simple motifs are of the same length and the longer sim-
ple motifs can be obtained by doing positional joins on
the shorter simple motifs/symbols, we can avoid some
redundant computation. Note also that the gap range
inside the simple motif is always [0,0].

Let  = {Li, 1 ≤ i ≤ m}, where Li is the length of each simple

motif in  and assume  is sorted in the ascending order.

For each Li, 1 ≤ i ≤ m, we need to enumerate  pos-

sible simple motifs. Let  be the maximum length in

. We can compute the pos-lists of simple motifs sequen-

tially from length 1 to . But this may waste time in

enumerating some simple motifs of lengths that are not in

. Instead, EXMOTIF first computes the pos-lists for the

simple motifs of lengths that are powers of 2. Formally, let

J be an integer such that 2J ≤  < 2J+1. We extract the

patterns of length 2j by doing positional joins on the pos-

lists of patterns of length 2j-1 for all 1 ≤ j ≤ J. For example,

when  = 11, EXMOTIF first computes the pos-lists

for simple motifs of length 20 = 1, 21 = 2, 22 = 4 and 23 = 8.

EXMOTIF then computes the pos-lists for the simple
motifs of Li ∈ , by doing positional joins on simple
motifs whose pos-list(s) have already been computed and
their lengths sum to Li. For example, when Li = 11, EXMO-
TIF has to join motifs of lengths 8, 2, and 1. It first obtains
all motifs of length 8 + 2 = 10, and then joins the motifs
of lengths 10 and 1, to get the pos-lists of all simple motifs
of length 10 + 1 = 11. The pos-lists for the simple motifs
of length Li ∈  are kept for further use in the structured
motif extraction. At the end of the first phase, EXMOTIF
has computed the pos-lists for all simple motif compo-
nents that can satisfy the template.

Extraction of the structured motifs
We extract the structured motifs by doing positional joins
on the pos-lists of the simple motifs from the end to the
start in the structured motif . Formally, let H[l, u]T be an
intermediate structured motif, with simple motif H as the
head, and a suffix structured motif T as tail. Then (H[l,
u]T) can be obtained by doing positional joins on (H)
and (T). Since (H) keeps only the start positions, we
need to compute the corresponding end positions for
those occurrences of H, to check the gap constraints. Since
only exact matches or substitutions are allowed for simple
motifs, the end position is simply s + |H| - 1 for a start
position s.

Full-position recovery
In our positional join approach, to save time and space we
retain only the motif start positions, however, in some
applications, we may need to know the full position of
each occurrence, i.e., the set of matching positions for
each symbol in the motif. EXMOTIF records some "indi-
ces" during the positional joins in order to facilitate full
position recovery.

ΣDNA
Li

max

max

max

max
Positional Joins AlgorithmFigure 1
Positional Joins Algorithm.

Positional-Joins(P(X, Si),P(Y, Si), l, u)
1 x ← y ← k ← 1;
2 while (x ≤ |P(X, Si)| and y ≤ |P(Y, Si)|) do
3 d ← P(Y, Si)[y] − P(X, Si)[x] − 1;
4 if (d < l) then
5 y ← y + 1;
6 else if (d > u) then
7 x ← x + 1;
8 else
9 P(X [l, u]Y, Si)[k] ← P(X, Si)[x];

10 x ← x + 1;
11 k ← k + 1;

12 return P(X [l, u]Y, Si);
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For each suffix of a structured motif, , starting at posi-

tion i with 1 ≤ i ≤ ||, we keep its pos-list, i, and an

index list, i. For each entry, say i[j], in the pos-list i,

the corresponding index entry i[j], points to the first

entry, say f, in i+1 that satisfies the gap range with respect

to i[j], i.e., i+1[f] - i[j] - 1 ∈ [li, ui]. Note that  is

never used. Also note that () = 1. Let s be a start posi-

tion for the structured motif in sequence S, and let s be the

js-th entry in 1, i.e., s = 1[js]. Let F store a full position

starting from s, and let  store the set of all full positions.

Figure 2 shows the pseudo-code for recovering full posi-
tions starting from s. This recursive algorithm has four

parameters: i denotes a (suffix) position in , j gives the

j-th entry in i, F denotes an intermediate full position,

and  denotes the set of all the full occurrences. The algo-

rithm is initially called with i = 2, j = 1[js], F = {s}, and

 = ∅. Starting at the first index in Pi, that satisfies the gap

range with respect to the last position in F, we continue to

compute all such positions j' ∈ [j, |Pi|] that satisfy the gap

range (line 3).  That is, we find all positions j', such that

Pi[j'] - F[i - 1] - 1 = d ∈ [li, ui]. For each such position j', we

add it in turn to the intermediate full position, and make
another recursive call (line 5), passing the first index posi-
tion Ni[j'] in Pi+1 that can satisfy the gap range with respect

to Pi[j']. Thus in each call we keep following the indices

from one pos-list to the next, to finally obtain a full posi-

tion starting from s when we reach the last pos-list, .

Note that at each suffix position i, since j only marks the

first position in i+1 that satisfies the gap constraints, we

also need to consider all the subsequent positions j' > j
that may satisfy the corresponding gap range.

Consider the example shown in Fig. 3 to recover the full
positions for  = CCG[0,3]TA[1,3]GAAC. Under each
symbol we show two columns. The left column corre-
sponds to the intermediate pos-lists as we proceed from
right to left, whereas the right column stores the indices
into the previous pos-list. For example, the middle col-
umn gives the pos-list (TA[1,3]GAAC) = {1, 1, 4, 2, 2, 5,
7, 3, 1, 1}. For each position x ∈ (TA[l,3]GAAC) (exclud-
ing the sequence identifiers and the cardinality), the right
column records an index in (GAAC) which corresponds
to the first position in (GAAC) that satisfies the gap
range with respect to x. For example, for position x = 5 (at
index 6), the first position in (GAAC) that satisfies the
gap range [1,3] is 10 (since in this case there are 3 gaps
between the end of TA at position 6 and start of GAAC at
position 10), and it occurs at index 6. Likewise, for each
position in the current pos-list we store which positions in
the previous pos-list were extended. With this indexed
information, full-position recovery becomes straightfor-
ward. We begin with the start positions of the occurrences.
We then keep following the indices from one pos-list to
the next, until we reach the last pos-list. Since the index
only marks the first position that satisfies the gap range,
we still need to check if the following positions satisfy the
gap range. At each stage in the full position recovery, we
maintain a list of intermediate position prefixes  that
match up to the j-th position in . For example, to
recover the full position for  = CCG[0,3]TA[1,3]GAAC,
considering start position 1 (with  = {(1)}) in sequence
2, we follow index 6 to get position 5 in the middle pos-
list, to get  = {(1, 5)}. Since the next position after 5 is 7

 

 

Indexed Full Position Recovery AlgorithmFigure 2
Indexed Full Position Recovery Algorithm.

Full-Position-Recovery(i, j, F,F)
1 if (i > |M|) then
2 Add F to F ;
3 foreach (j′ ∈ [j, |Pi|] such that (Pi[j′]−F [i−1]−1 = d) ∈ [li, ui]) do
4 F [i] ← Pi[j′];
5 Full-Position-Recovery(i + 1, Ni[j′], F , F);
6 if (i=2) then
7 Return F ;
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which is also within the gap range [0,3], so we update  =
{(1, 5), (1, 7)}. For position 5, we follow index 6 to get
position 10 in the rightmost pos-list, to get  = {(1, 5,
10)}; for position 7, we follow index 6 to get position 10
in the right pos-list, to get  = {(1, 7, 10)}. Likewise, we
can recover the full-position in sequence 1, which is  =
{(1, 4, 8)}. During the full-position recovery, we can also
count the number of full-positions, i.e., occurrences, of
each structured motif. For example, there are 3 occur-
rences of CCG[0,3]TA[1,3]GAAC.

Length ranges for simple motifs
EXMOTIF also allows variation in the lengths of the sim-
ple motifs to be found. For example, a motif template may
be specified as M1[5,10] M2, |M1| ∈ [2,4], and |M2| ∈
[6,7], which means that we have to consider NN, NNN,
and NNNN as the possible templates for M1 and similarly
for M2. A straightforward way for handling length ranges
is to enumerate exhaustively all the possible sub-tem-
plates of  with simple motifs of fixed lengths and then to
extract each sub-template separately. Instead, EXMOTIF
does an optimized extraction. EXMOTIF reuses the partial
pos-lists created when using a depth first search to enu-
merate and extract the sub-templates.

Handling substitutions
As mutations are a common phenomena in biological
sequences, we allow substitutions in the extracted motifs.
That is two motif instances may be considered to be the
same if they are within the allowed substitution thresh-
olds. EXMOTIF allows users to specify the number of sub-
stitutions allowed for the whole motif (ε), and also a per
simple motif threshold (εi, i ∈ [1, k]). There are two types
of substitutions we consider.

Position-specific substitutions
Here we allow a position (a DNA symbol) in the instance
motif  to be substituted with 1 or 2 other DNA symbols.
All such neighbors will contribute to the frequency of .
For example, for  = ACG[4,6]TT, if we allow e1 = 1 sub-
stitutions in motif M1 = ACG, at position 2, then
AAG[4,6]TT, ACG[4,6]TT or AGG[4,6]TT may contribute
to the frequency of . Instead of enumerating all of these
separately, EXMOTIF can directly mine relevant motifs
using IUPAC symbols (see Table 3). EXMOTIF simply
constructs the pos-lists for the relevant IUPAC symbols by
scanning sequences in  once. Then it mines the motif
instances as in the basic approach, since all allowed sub-
stitutions have already been incorporated into the rele-
vant IUPAC symbols. Let vi, 1 ≤ i ≤ k, to denote the set of
IUPAC symbols that can appear in the motif. When vi = 1
(i.e., each position allows only 1 DNA symbol), the alpha-
bet used is {A, C, G, T}; when vi = 2 (i.e., each position
may allow up to 2 DNA symbols), the expanded alphabet
is {A, C, G, T, R, Y, K, M, S, W}; and when vi = 3 (i.e., each
position may allow up to 3 DNA symbols), the expanded
alphabet is {A, C, G, T, R, Y, K, M, S, W, B, D, H, V}. For
example, when v1 = 2, instead of reporting  =
ACG[4,6]TT as the mined instance, EXMOTIF may report
ASG[4,6]TT as an instance, where S stands for either C or
G (see Table 3). EXMOTIF also allows the user to specify
the maximum number of IUPAC symbols that can appear
in each simple motif, ei, 1 ≤ i ≤ k.

Arbitrary substitutions
Here we allow a DNA symbol in  to be substituted with
other symbols across all positions (i.e., in a position inde-
pendent manner), up to the allowed maximum errors per
motif (or per component). To count the support for a
motif, EXMOTIF has to consider all of its neighbors as well,
which are defined as all the motifs (including itself)
within Hamming distance, ε (or per motif ei). Then the sup-
port of an instance motif is calculated as the total number
of sequences in which its neighbors (including itself) are
present. As always, the motif is frequent if its support
meets the quorum q, that is, its neighbors are present in at
least q distinct sequences.

The main challenge is that when arbitrary, position inde-
pendent substitutions are allowed, we cannot do support
checking during each positional join, since the support of
the current motif may be below quorum, but combined
with its neighbors it may meet quorum. Thus EXMOTIF
does support checking at two points. First, it checks for
quorum after the pos-lists of all the simple motifs in 
have been computed, provided the per motif error thresh-
olds ei have been specified. In this case each simple motif
must be frequent to be extended to a structured motif. Sec-
ond, it checks for quorum after the pos-lists of all the
structured motifs that satisfy  are computed.

Indexed Full-position Recovery ExampleFigure 3
Indexed Full-position Recovery Example.
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Determining neighbors

In order to quickly find all the existing neighbors of a
motif within the allowed error thresholds, EXMOTIF first
computes all the exact structured motifs, and stores them
into a hash table to facilitate fast lookup. Then for each

extracted structured motif , EXMOTIF enumerates all its

possible neighbors and checks whether they exist in the
hash table. One problem is that the number of possible

neighbors of  can be quite large. When we allow εi sub-

stitutions for simple component Mi in , for 1 ≤ i ≤ k, the

number of 's neighbors is given as

. For example, for  =

AACGTT[1,5]AGTTCC, when we allow one substitution
for each simple motif, the number of its neighbors is 361;
when we allow two substitutions per component, the
number of its neighbors is 23,716. Instead of enumerating
the potentially large number of neighbors (many of which

may not even occur in the sequence set ) for each struc-

tured motif  individually, EXMOTIF utilizes the obser-

vation that many motifs have shared neighbors, and thus
previously computed support information can be reused.
EXMOTIF enumerates neighbors in two steps. In the first

step, for each , it enumerates aggregate neighbor motifs,

replacing the allowed number of errors ei with as many 'N'

symbols (which stands for A,C,G, or T). The number of

possible aggregate neighbors is given as .

The second step, it computes the support for each aggre-
gate neighbor by expanding each 'N' with each DNA sym-
bol, looking up the hash table for the support of the
corresponding motif, and adding the supports for all
matching motifs. Since the motifs matching an aggregate

are also neighbors of each other, the support of the aggre-
gate can be re-used to compute the support of other
matching motifs as well. Once the supports for all aggre-
gate neighbors have been computed, the final support of

the structured motif  can be obtained. Thus for each ,

the number of "neighbors" to consider can be as low as

!

For example, consider the example shown in Figure 4.
Consider the structured motif  = TAA[0,3]GG[1,3]CCTT
(taken from our example in Table 1); assume that ε1 = 1,
ε2 = 0 and ε3 = 1. There are three possible aggregates for
TAA, namely TAN, TNA, and NAA, and four aggregates for
CCTT, namely CCTN, CCNT, CNTT, and NCTT, giving a
total of 12 aggregate neighbors for , as illustrated in the
figure. EXMOTIF processes each aggregate neighbor in
turn. Using a hash-table (or direct lookup table if there are
only a few neighbors), it checks if the aggregate neighbor
has been processed previously. If yes, it moves on to the
next aggregate. If not, it gathers the support information
from all of its matching structured motifs, to compute its
total support. Next, it also updates the neighbor support
value for each of the matching motifs, so that once an
aggregate is processed, we no longer require its informa-
tion. All we need to know is whether it has been processed
or not. For example, once the support of the first aggregate
TAN[0,3]GG[1,3]CCTN for the example motif  above is
computed, EXMOTIF also updates the neighbor supports
for all other matching structured motifs, such as ' =
TAC[0,3]GG[1,3]CCTG. Later when processing ',
EXMOTIF can skip the above aggregate and focus on the
not yet processed aggregates, e.g., NAC[0,3]GG
[1,3]NCTG, and so on.

The pseudo-code for arbitrary substitutions is given in Fig-
ure 5. The procedure takes as input the hash-table � con-
taining all structured motifs  and their supports π(),
the quorum q, and the per simple motif errors ei or the glo-
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Table 3: IUPAC alphabet (ΣIUPAC).

Symbol A C G T
Bases A C G T

Symbol U R Y K
Bases U A,G C,T G,T

Symbol M S W B
Bases A,C G,C A,T C,G,T

Symbol D H V N
Bases A,G,T A,C,T A,C,G A,C,G,T
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bal error ε for the structured motifs. For each structured
motif we also maintain its aggregate support πaggregate(),
which is initially set to 0 (line 1). Initially we create all the
aggregate neighbors for each extracted structured motif 
(lines 3–7). For each such aggregate neighbor G (line 8),
if it has not been processed, we compute its support by
adding the individual supports of all its matching motifs
' (lines 11–12). Note that these support values are
found quickly via the hash-table �.  Once the support of
an aggregate neighbor is known, we immediately update
the aggregate support πaggregate) for each of its contributing
matching motifs ' (lines 13–14). Note that since each
motif has already contributed to the support of the aggre-
gate neighbor (π (G)), we must subtract the initial support

of ' (π(')) to avoid over-counting. Finally, once all the
aggregate neighbors have been processed, we output the
structured motif , provided π() + πaggregate() meets
the quorum requirement (line 14).

Counting support
There are two methods to record the support for each
motif. In the first method, we associate each motif with a
bit vector, . Each bit, i for 1 ≤ i ≤ n (where n = ||) indi-
cates whether the motif is present in the sequence Si ∈ .
The support of the motif is the number of set bits in .
Thus to obtain the support for a motif, we can simply
union the bit vectors of all its (aggregate) neighbors.
Using one bit to represent a sequence saves space, and also

Aggregate NeighborsFigure 4
Aggregate Neighbors.
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saves time via the union operation. However, since we
need n fixed bits for each motif to store its bit vector, this
is not efficient if there are many sequences, and if a motif
occurs only in a small number of sequences, which leads
to a sparse bit vector. Thus in the second method, EXMO-
TIF associates each motif with an identifier array, , to
only store the sequence identifiers in which the motif
occurs. EXMOTIF can then obtain the support for a motif
by scanning the identifier arrays of its neighbors in linear
time. For example consider again our motif (from Table
1), TAT[0,1]GG[2,3]CCAT, which occurs in S2 and S3, Its
bit vector is thus  = {0110} and its identifier array 
= {2, 3}.

Creating positional weight matrices
For any frequent structured motif , we can summarize
the information about its neighbors (including ) by

computing a Positional Weight Matrix (PWM). The PWM
for a structured motif  gives for each non-gap position
the likelihood of occurrence for each symbol in ΣDNA. The
PWM  for  is calculated as follows:

where, fij and rij represent the observed and relative fre-
quency of symbol i at position j, respectively, pi is the prior
probability of symbol i, and ij is the weight (log-likeli-
hood) of observing symbol i at position j. Whereas 
gives the likelihood of observing a given symbol in a given
position in  it does not account for the degree to which
some symbols are conserved at some positions. We can
adjust the weights ij by considering the information
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Arbitrary SubstitutionsFigure 5
Arbitrary Substitutions.

Arbitrary Substitutions(H, q, ε, e = {ei}ki=1)
1 foreach (structured motif M ∈ H) do πaggregate(M) ← 0;
2 foreach (structured motif M ∈ H) do
3 if (per component errors) then
4 foreach (Mi ∈ M, 1 ≤ i ≤ k) do
5 Gi ← All the aggregate neighbors of Mi obtained by replacing

ei positions in Mi by N;

6 G ← All the aggregate neighbors of M obtained by combining all
Gi, for 1 ≤ i ≤ k;

else if (global error) then
7 G ← All the aggregate neighbors of M obtained by replacing ε

symbols in M by N;
8 foreach (aggregate neighbor G ∈ G) do
9 if (G is not marked) then

10 π(G) ← 0; Mark G as processed;
11 foreach (motif M′ matching aggregate neighbor G) do
12 π(G) ← π(G) + π(M′);
13 foreach (motif M′ matching aggregate neighbor G) do
14 πaggregate(M′) ← πaggregate(M′) + π(G) − π(M′);

15 if (π(M) + πaggregate(M) ≥ q) then Print M;
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content at each position. The information content for a
PWM is given as:

where K is the number of symbols in ; ij is the informa-
tion content of symbol i at position j; j is the information
content over all bases at position j; and W is the informa-
tion content of the entire matrix . To allow mismatches
at less conserved positions to be more easily tolerated
than those at highly conserved positions, we multiply
each ij by j, which is larger for more conserved posi-
tions. As a result, the corrected weight of each element in
the PWM  becomes:

Then we can calculate the PWM score, , for a structured

motif, , by summing up the positional weights for the

bases in , given as . Thus for each ,

its PWM score and PWM information content can be fur-

ther used to measure whether  is a significant motif.

Solving repeated structured motif identification problem
In repeated structured motif identification problem, the
frequency closure property (that all the subsequences of a
frequent sequence must be frequent), does not hold any
more. For example, the sequence GCTTT, has three occur-
rences of pattern G[1,3]T, but it sub-pattern, G, has only
one occurrence. Thus we cannot apply the closure prop-
erty for pruning candidates. Nevertheless, a bound on the
frequency of a sub-pattern can be established, which can
be used for pruning.

Theorem 1. Let  = M1 ... Mk be a structured motif and ’

= Mi ... Mk be a suffix of , for 1 ≤ i ≤ k. If the weighted support

of  is πw (), then , where Wm =

um - lm + 1 is the span of the gap range for m ∈ [1, k - 1].

Proof. Let () be the occurrence set of  and (’) be

the occurrence set of ’. For each occurrence of ’ in

(’), we can extend it to get occurrences of  in ()

by adding M1 ... Mi-1 before ’. This leads to at most

 occurrences of  for any occurrence of ’.

Thus , which immediately

gives .  �

With Theorem 1, EXMOTIF can calculate a support bound

for any suffix ’ of , given the quorum requirement q.

For example, assume that the motif template is
NN[3,5]NNN[0,4]NNN and q = 100, with W1 = 5 - 3 + 1

= 3 and W2 = 4 - 0 + 1 = 5. When processing the suffix com-

ponent ’ = NNN, we require that πw(’) ≥  = 6;

when processing ’ = NNN[0,4]NNN, we require that

πw(’) ≥  = 33. Thus even the weaker bounds can

lead to some pruning.

The complete EXMOTIF algorithm: complexity analysis

The pseudo-code for the complete EXMOTIF algorithm is
shown in Figure 6. The program takes as inputs the set of

sequences , the motif template  = M1[l1, u1] ...

[lk-1, uk-1] Mk, the quorum threshold q, the number of

errors or IUPAC symbols allowed per simple motif

, and the set of IUPAC symbols to use per sim-

ple motif,  (only for position specific substitu-

tions). As outlined in Figure 6 EXMOTIF allows several
different variations to motif extraction, as described
above. These variations include, exact matching, position-
specific substitutions via use of IUPAC symbols, arbitrary
substitutions, and repeated motif identification.

EXMOTIF initially adjusts the support thresholds if the
task is repeated motif identification (lines 1–2). The main
approach for handling exact matches or position-specific
substitutions is the same. The main difference is that
while enumerating the simple motifs, EXMOTIF uses the
appropriate IUPAC alphabet (specified by vi for compo-
nent Mi; lines 6–7). The structured motifs are found via
positional joins over the simple motifs (line 8). The posi-
tional joins are performed as described in Figure 1. For
arbitrary substitutions, EXMOTIF first enumerates the
simple motifs (line 9) and checks their aggregate support
(i.e., including the supports of all neighbors within error
εi). From these, the structured motifs are enumerated and
stored in a hash-table (�; line 11). Lastly, the aggregate
support of all these motifs is computed as described in
Figure 5 (line 12). Those that meet the quorum will be
output. Finally, if desired, EXMOTIF recovers the full posi-
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tions for each occurrence, via the procedure outlined in
Figure 2.

In terms of the computational complexity of EXMOTIF,
let's first consider the complexity of extracting the simple
motifs. Assume that m is the length of the longest simple

motif component in the structured template . Note that

there are potentially |Σ|m frequent simple motifs at that
length, but due to the quorum requirement, many of

these will not be frequent. Nevertheless, in the worst case

O(|Σ|m) simple components may be extracted. For a sim-
ple motif of length m, EXMOTIF uses O(log(m)) posi-
tional joins to obtain its support, and each such join takes

O(N) time, where  is the sum of the lengths

of all the sequences Si in the database . Thus, extracting

the simple motifs takes time O(N log(m)|Σ|m) in the worst
case.

N Sii
n= =∑ 1

EXMOTIF AlgorithmFigure 6
EXMOTIF Algorithm.

exMotif (S, T , q, ε, e = {ei}k
i=1,v = {vi}k

i=1)
1 if (repeated motif identification) then
2 Calculate the support threshold for simple motifs and suffixes of T based on q

by using Theorem 1;
3 if (exact matching or position-specific substitution) then
4 if (exact matching) then
5 Enumerate all frequent simple motifs from S via positional joins on the

pos-lists of symbols/patterns, and check the (weighted) support during each
positional join;

else
//position-specific substitutions

6 Based on vi, 1 ≤ i ≤ k, expand the DNA alphabet to contain all the IUPAC
symbols that are allowed in the simple motifs;

7 Enumerate all frequent simple motifs, in which the number of IUPAC
symbols is no more than ei, 1 ≤ i ≤ k, from S via positional joins on the
pos-lists of symbols/patterns, and check the (weighted) support during each
positional join;

8 Enumerate all frequent structured motifs via positional joins on the pos-lists
of simple motifs, and check the (weighted) support during each positional join;

else
//arbitrary substitutions

9 Enumerate all simple motifs that occur in S via positional joins on the pos-
lists of symbols/patterns;

10 Check the (weighted) support of each simple motif by considering all its neigh-
bors that are within the hamming distance ei, 1 ≤ i ≤ k;

11 Enumerate all structured motifs that occur in the sequence(s) via positional
joins on the pos-lists of simple motifs; Store these in Hash-table H;

12 Check the (weighted) support of each structured motif by considering all its
neighbor templates;

13 Recover the full position for each occurrence if desired.
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With |Σ|m simple motifs, there are O(|Σ|mk) potential
structured motifs, though a vast majority of these will not
meet the quorum requirement. Extracting the structured

motifs then takes time O(kN|Σ|mk) for the exact match and
position-specific substitution cases. For arbitrary substitu-
tions there is additional cost of enumerating aggregate
neighbors and computing their support. For each motif

we have to consider  = kme aggregate neigh-

bors, where e = maxi{ei}. Furthermore, an aggregate

neighbor can have k|Σ|e matching motifs. Thus the time
complexity of extracting all the structured motifs is

O(kN|Σ|mk + k2me|Σ|e) for arbitrary substitutions. Since
typically mk > e and N > me, the time complexity is essen-

tially O(kN|Σ|mk). Combined with the cost for simple
motif extraction, the computational complexity of EXMO-

TIF is then given as O(log(m) N |Σ|m + kN|Σ|km) =

O(kN|Σ|km).

Experimental results
EXMOTIF has been implemented in C++, and compiled
with g++ v4.0.0 at optimization level 3 (-O3). We per-
formed experiments on a Macintosh PowerPC G5 with
dual 2.7GHz processors and 4GB memory running Mac
OS X vl0.4.5. We compare our results with the latest ver-
sion of RISO [15-17] (called RISOTTO [17]), the best pre-
vious algorithm for structured motif extraction problem.

EXMOTIF and RISO: comparison
For comparison, we extract structured motifs from 1,062
non-coding sequences (a total of 196,736 nucleotides)
located between two divergent genes in the genome of B.
subtilis [15-17]. Figure 7 and 8 compare the running time
(in seconds) for EXMOTIF and RISO using exact matching
and approximate matching, respectively. Experiments
were done for different gap ranges, number of compo-
nents, and quorum thresholds. Note that EXMOTIF has
two options: one (shown as "exMOTIF" in the figures) for
reporting only the number of sequences where the struc-
tured motifs occur, the other (shown as "exMOTIF(#)")
for reporting both the number of sequences where the
structured motifs occur and the actual occurrences. Also
note that the current implementation of RISO does not
report the actual occurrences; it reports only the fre-
quency.

Exact matching
In the first experiment, shown in Figure 7(a), we ran-
domly generated 100 structured motif templates, with k ∈
[2,4] simple motifs of length l ∈ [4,7] (k and l are selected
uniformly at random within the given ranges). The gap
range between each pair of simple motifs is a random sub-

interval of [0, 200]. The x-axis is sorted on the number of
motifs extracted. For clarity we plot average times for the
methods when the number of motifs extracted fall into
the given range on the x-axis. For example, the time plot-
ted for the range [102, 103) is the average time for all the
random templates that produce between 100 and 1000
motifs. We find that the average running time for RISO
across all extracted motifs is 120.7s, whereas for EXMOTIF
it takes 88.4s for reporting only the supports, and 91.3s
for also reporting all the occurrences. The median times
were 26.3s, 8.5s, and 9.2s, respectively, indicating a 3
times speed-up of EXMOTIF over RISO.

In the next set of experiments we varied one parameter
while keeping the others fixed. We set the default quorum
to 12% (q = 127), the default gap ranges to [0,100], the
default simple motif length to l = 4 (NNNN), and the
default number of components k = 3 (e.g.,
NNNN[0,100]NNNN[0,100]NNNN). In Figure 7(b), we
plot the time as a function of the number of simple motifs
k in the template. We find that as the number of compo-
nents increases the time gap between EXMOTIF and RISO
increases; for k = 4 simple motifs, EXMOTIF is around 5
times faster than RISO. Figure 7(c) shows the effect of
increasing gap ranges, from [0,0] to [0,200]. We find that
as the gap range increases the time for EXMOTIF increases
at a slower rate compared to RISO. For [0,200], EXMOTIF
is 3–4 times faster than RISO depending whether only fre-
quency or full occurrences are reported. In Figure 7(d), as
the quorum threshold increases, the running time goes
down for both methods. For quorum 24%, EXMOTIF is
4–5 times faster than RISO. As support decreases, the gap
narrows somewhat, but EXMOTIF remains 2–3 times
faster. Finally, Figure 7(e) plots the effect of increasing
simple motif lengths l ∈ [2,6]. We find that the time first
increases and then decreases. This is because there are a
large number of motif occurrences for length 3 and length
4, but relatively few occurrences for length 5 and length 6.
Depending on the motif lengths, EXMOTIF can be 3–40
times faster than RISO for comparable output, i.e., report-
ing only the support. EXMOTIF remains up to 5 times
faster when also reporting the actual occurrences.

To compare the performance for extracting structured

motifs with length ranges, we used the template  =

M1[50, 100] M2[1,50]M3[20, 100]M4 with q = 12%, where

|M1| ∈ [2,4], |M2| ∈ [3,4], |M3| ∈ [5,6], |M4| ∈ [4,5].

EXMOTIF took 78.4s, whereas RISO took 1640.9s to
extract 14,174 motifs.

Approximate matching
In the first experiment, shown in Figure 8(a), we ran-
domly generated 30 structured motif templates, with k ∈
[2,3] simple motifs of length l ∈ [3,6] (k and l are selected
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EXMOTIF vs. RISO: Exact MatchingFigure 7
EXMOTIF vs. RISO: Exact Matching.
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EXMOTIF vs. RISO: Approximate MatchingFigure 8
EXMOTIF vs. RISO: Approximate Matching.
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uniformly at random within the given ranges). The gap
range between each pair of simple motifs is a random sub-
interval of [10, 30]. The x-axis is sorted on the number of
motifs extracted, and average times are plotted for the
extracted number of motifs in the given range. We find
that the average running time for RISO is 334.5s, whereas
for EXMOTIF it takes 59.3s seconds for reporting only the
support, and 176.7s for also reporting all the occurrences.
Thus EXMOTIF is on average 5 times faster than RISO,
with comparable output.

Figures 8(b)–(e) plot the time for approximate matching
as a function of different parameters. We set the default
quorum to 12% (q = 127, out of || = 1062 sequences),
the default gap ranges to [12,22], the default simple motif
length to l = 6 (NNNNNN), and the default number of
components k = 2 (e.g., NNNNNN[12,22]NNNNNN).
Figure 8(b) shows how increasing gap ranges effect the
running time; for gap range [8,26] between the two motif
components, EXMOTIF is 2–3 times faster than RISO. In
Figure 8(c), we increase the numbers of arbitrary substitu-
tions allowed for each simple motif; a pair (ε1, ε2) on the
x-axis denotes that ε1 substitutions are allowed for motif
component M1, and ε2 for M2. We can see that EXMOTIF
is always faster than RISO. It is 9 times faster when only
frequencies are reported, and it can be up to 5 times faster
then full occurrences are reported, though for some cases
the difference is slight.

Figure 8(d) plots the effect of the quorum threshold.
Compared to RISO, EXMOTIF performs much better for
low quorum, e.g., for q = 4% EXMOTIF is 4–5 times faster
than RISO. Finally in Figure 8(e), as the simple motif
lengths increase, the time for both EXMOTIF and RISO
increases, and we find that EXMOTIF can be 2–3 times
faster.

We also studied the effect of quorum and allowed substi-
tutions. Table 4 shows the comparative results for EXMO-
TIF and RISO. Here we used the template  = NNNNNN
[12, 22]NNNNNN to extract motifs from the 1062 subse-
quences from B. subtilis. We vary the quorum from low
(5%) to high (90%), and vary the number of errors ei per
simple motif (with more errors allowed for higher quo-
rum). For a comparable output (when only the frequency

is reported), EXMOTIF outperforms RISO, especially for
high quorum and high number of errors. It is interesting
that for this latter case, reporting all occurrences incurs sig-
nificant overhead. For example for q = 90% and with (e1 =
3, e2 = 3), EXMOTIF is 20 times faster than RISO, but
EXMOTIF(#) is 3 times slower!

Real applications
Discovery of single transcription factor binding sites
We evaluate our algorithm by extracting the conserved
features of known transcription factor binding sites in
yeast. In particular we used the binding sites for the Zinc
(Zn) factors [11]. There are 11 binding sites listed for the
Zn cluster, 3 of which are simple motifs. The remaining 8
are structured, as shown in Table 5. For the evaluation, we
first form several structured motif templates according to
the conserved features in the binding sites. Then we
extract the frequent structured motifs satisfying these tem-
plates from the upstream regions of 68 genes regulated by
zinc factors [11]. We used the -1000 to -1 upstream
regions, truncating the region if and where it overlaps with
an upstream open-reading frame (ORF). After extraction,
since binding sites cannot have many occurrences in the
ORF regions, we drop some motifs if they also occur fre-
quently in the ORF regions (i.e., within the genes).
Finally, we calculate the Z-scores for the remaining fre-
quent motifs, and rank them by descending Z-scores. In
our experiments, we set the minimum quorum threshold
to 7% within the upstream regions and the maximum
support threshold to 30% in the ORF regions. We use the
shuffling program from SMILE [14] to compute the Z-
scores. The shufffing program randomly shuffles the orig-
inal input sequences to obtain a new shuffled set of
sequences.

Then it computes, for each extracted frequent motif, its

support (π) and weighted support (πw) in the shuffled set.

For a given frequent motif , let μ and σ be the mean and

standard deviation of its support across different sets
(about 30) of shuffled sequences. Then the Z-score for

each motif is calculated as: . Likewise we

can also calculate the Z-score for each frequent motif by

Z = −π μ
σ

( )

Table 4: Comparison of EXMOTIF and RISO for different quorums and allowed substitutions.

Quorum #Substitutions RISO EXMOTIF EXMOTIF(#)

5% (0, 0) 1.82s 1.42s 1.52s
30% (1, 1) 63.01s 58.91s 64.52s
60% (2, 2) 2763.31s 328.43s 2317.35s
90% (3, 3) 13682.13s 707.56s 41464.93s

The template used is  = NNNNNN[12,22]NNNNNN. #Substitutions shows the number of errors (e1, e2) allowed for the two simple components.
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using the weighted support (which is also applicable for
the repeated structured motif identification problem). As
shown in Table 5, we can successfully predict GAL4, GAL4
chips, LEU3, PPR1 and PUT3 with the highest rank. CAT8
and LYS also have high ranks. We were thus able to extract
all eight transcription factors for the Zinc factors with high
confidence. As a comparison, with the same dataset RISO
can only predict GAL4, LEU3 and PPR1.

Discovery of composite regulatory patterns
The complex transcriptional regulatory network in
Eukaryotic organisms usually requires interactions of
multiple transcription factors. A potential application of
EXMOTIF is to extract such composite regulatory binding
sites from DNA sequences. We took two such transcrip-
tion factors, URS1H and UASH, which are involved in
early meiotic expression during sporulation, and that are
known to cooperatively regulate 11 yeast genes [24].
These 11 genes are also listed in SCPD [1], the promoter
database of Saccharomyces cerevisiae. In 10 of those genes
the URS1H binding site appears downstream from UASH;

in the remaining one (HOP1) the binding sites are
reversed. We took the binding sites for the 10 genes (all
except HOP1), and after their multiple alignment, we
obtained their consensus:  taTTTtGGAG-
Taata[4,179]ttGGCGGCTAA (the lower case letters are
less conserved, whereas uppercase letters are the most
conserved). Table 6 shows the binding sites for UASH and
URS1H for the 10 genes, their start positions, their align-
ment, and the consensus pattern. The gap between the
sites are obtained after subtracting the length of UASH,
15, from the position difference (since the start position
of UASH is given). The smallest gap is l = 119 - 110 - 15 =
4 and the largest is u = 288 - 94 - 15 = 179. Based on the
on most conserved parts of the consensus, we formed the
composite motif template:  = NNN[1,1]NNNNN
[10,185]NNNNNNNNN (note the 6 additional gaps
added to [4,179] to account for the non-conserved posi-
tions). We then extracted the structured motifs in the
upstream regions of the 10 genes. We used the -800 to -1
upstream regions, and truncated the segment if it overlaps
with an upstream ORF. The numbers of substitutions for
NNN, NNNNN and NNNNNNNNN were set to ε1 = 1, ε2

Table 6: UASH and URS1H binding sites.

Genes UASH URS1H Gap

Site Pos Site Pos

ZIP1 GATTCGGAAGTAAAA -42 ==TCGGCGGCTAAAT -22 5
MEI4 TCTTTCGGAGTCATA -121 ==TGGGCGGCTAAAT -98 8
DMC1 TTGTGTGGAGAGATA -175 AAATAGCCGCCCA== -143 17
SPO13 TAATTAGGAGTATAT -119 AAATAGCCGCCGA== -100 4
MER1 GGTTTTGTAGTTCTA -152 TTTTAGCCGCCGA== -115 22
SPO16 CATTGTGATGTATTT -201 ==TGGGCGGCTAAAA -90 96
REC104 CAATTTGGAGTAGGC -182 ==TTGGCGGCTATTT -93 74
RED1 ATTTCTGGAGATATC -355 ==TCAGCGGCTAAAT -167 173
REC114 GATTTTGTAGGAATA -288 ==TGGGCGGCTAACT -94 179
MEK1 TCATTTGTAGTTTAT -233 ==ATGGCGGCTAAAT -150 68

Consensus taTTTtGGAGTaata ==ttGGCGGCTAA== [4,179]

Table 5: Regulons of Zn cluster proteins.

TF Name Known Motif Predicted Motifs Num-Motifs Ranking

GAL4
GAL4 chips

CGGRnnRCYnYnCnCCG CGG[11,11]CCG 1634(3346) 1/1

CAT8 CGGnnnnnnGGA CGG[6,6]GGA 1621(3356) 147/13
HAP1 CGGnnnTAnCGGCGGnnnTAnCGGnnnTA CGG[6,6]CGG 1621(3356) 111/146
LEU3 RCCGGnnCCGGY CCG[4,4]CGG 1588(3366) 2/1
LYS WWWTCCRnYGGAWWW TCC[3,3]GGA 1605(3360) 33/21
PPR1 WYCGGnnWWYKCCGAW CGG[6,6]CCG 1621(3356) 1/2
PUT3 YCGGnAnGCGnAnnnCCGA

CGGnAnGCnAnnnCCGA
CGG[10,11]CCG 727(4035) 1/1

TF Name stands for transcription factor name; Known Motif stands for the known binding sites corresponding to the transcription factors in TF 
Name column; Predicted Motifs stands for the motifs predicted by EXMOTIF; Num-Motifs gives the final (original) number of motifs extracted (final 
is after pruning those motifs that are also frequent in the ORF regions); Ranking stands for the Z-score ranking based on support/weighted support.
Page 17 of 18
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:21 http://www.almob.org/content/1/1/21
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

= 2 and ε3 = 1, respectively. The quorum thresholds was set
to q = 0.7 with the upstreams, and the maximum support
within genes was set to 0.1% The rank of the true motif
TTT[1,1]GGAGT[10,185]GGCGGCTAA was 290 (out of
5284 final motifs) with a Z-score of 22.61.

Conclusion and future work
In this paper, we introduced EXMOTIF, an efficient algo-
rithm to extract structured motifs within one or multiple
biological sequences. We showed its application in dis-
covering single/composite regulatory binding sites. In the
structured motif template, we assume the gap range
between each pair of simple motifs is known. In the
future, we plan to solve the motif discovery problem when
even the gap ranges are unknown. Another potential
direction is to directly extract structured profile (or posi-
tion weight matrix) patterns.
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