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A new stochastic and state space model of
human colon cancer incorporating multiple
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Abstract

Background and Purpose: Studies by molecular biologists and geneticists have shown that tumors of human
colon cancer are developed from colon stem cells through two mechanisms: The chromosomal instability and the
micro-satellite instability. The purpose of this paper is therefore to develop a new stochastic and state space model
for carcinogenesis of human colon cancer incorporating these biological mechanisms.

Results: Based on recent biological studies, in this paper we have developed a state space model for human
colon cancer. In this state space model, the stochastic system is represented by a stochastic model, involving 2
different pathways-the chromosomal instability pathway and the micro-satellite instability pathway; the observation,
cancer incidence data, is represented by a statistical model. Based on this model we have developed a generalized
Bayesian approach to estimate the parameters through the posterior modes of the parameters via Gibbs sampling
procedures. We have applied this model to fit and analyze the SEER data of human colon cancers from NCI/NIH.

Conclusions: Our results indicate that the model not only provides a logical avenue to incorporate biological
information but also fits the data much better than other models including the 4-stage single pathway model. This
model not only would provide more insights into human colon cancer but also would provide useful guidance for
its prevention and control and for prediction of future cancer cases.

Reviewers: This article was reviewed by M.P. Little and M. Kimmel

Background
In the past 15 years, molecular biologists and geneticists
have revealed the basic molecular and genetic mechan-
isms for human colon cancer. These mechanisms have
been linked to two avenues: The chromosomal instabil-
ity (CIN) involving chromosomal aberrations and loss of
heterozygosity (LOH), and the micro-satellite instability
(MSI) involving mis-match repair genes and the creation
of mutator phenotype ([1-9]). The pathway of the CIN
avenue (also referred to as LOH pathway) involves inac-
tivation through genetic and/or epigenetic mechanisms,
or loss, or mutation of the suppressor APC gene in
chromosome 5q (about 85% of all human colon cancers)
whereas the pathway of the MSI avenue involves muta-
tion or epigenetic inactivation of the mis-match repair

suppressor genes (about 15% of all colon cancers). This
leads to multiple pathways for the generation of human
colon cancer tumors with each pathway following a sto-
chastic multi-stage model and with intermediate trans-
formed cells subjecting to stochastic proliferation (birth)
and differentiation (death). The goal of this paper is to
develop a stochastic model for human colon cancer to
incorporate these biological information and pathways.
This paper is an extension of Tan et al. [10], Little and
Wright [11] and Little et al. [12]. We note that besides
the multiple pathways considered above, Little and
Wright [11], Little et al. [12] and Little [13] have also
included mixture type of multiple pathways; however,
because the mutation rates are very small, the chance of
mixture type of pathways will be extremely small in
which case the Little model is equivalent to the model
in Section 3.
For developing biologically supported stochastic model

of carcinogenesis, in Section 2 we present the most
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recent cancer biology of human colon cancer. Using
results from Section 2, we develop in Section 3 a sto-
chastic model for carcinogenesis of human colon cancer
involving multiple pathways. In Section 4 we derive a
statistical model for cancer incidence data of human
colon cancer. By combining models from Sections 3 and
4, in Section 5 we develop a state space model for
human colon cancer. In Section 6, by using the state
space model in Section 5, we develop a generalized
Bayesian inference procedure to estimate unknown
parameters and to predict state variables. To illustrate
the applications of the model and methods, in Section 7
we apply the model and methods to the colon cancer
incidence data from SEER. Finally in Section 8, we dis-
cuss the usefulness of the model and methods and pro-
vide some conclusions.

A Brief Summary of Colon Cancer Biology
As discussed in the introduction, genetic studies have
indicated that there are two major avenues by means of
which human colon cancer is derived: The Chromoso-
mal Instability (CIN) and the Micro-Satellite Instability
(MSI). The first avenue is associated with the LOH
pathway involving the APC gene in chromosome 5q and
the latter associated with the micro-satellite pathway
involving mis-match repair genes. The most important
oncogene is the b-catenin gene in chromosome 3p22.

The CIN (LOH) Pathway of Human Colon Cancer (The
APC-b-catenin - Tcf - myc pathway)
The CIN pathway involves loss or inactivation of the
tumor suppressor genes - the APC gene in chromosome
5q, the Smad-4 gene in chromosome 18q and the p53
gene in chromosome 17p; see Remark 1. This pathway
accounts for about 85% of all colon cancers. It has been
referred to as the LOH pathway because it is character-
ized by aneuploidy/or loss of chromosome segments
(chromosomal instability); see Remark 2. This pathway
has also been referred to as APC-b - catenin - Tcf - myc
pathway because it involves the destruction complex
GSK-3b -Axin-APC which phosphorylates the b-catenin
protein leading to its degradation; when both copies of
the APC gene are inactivated or mutated, the destruc-
tion complex is then inactive leading to accumulation of
free b-catenin proteins in the cytoplasm which move to
the nucleus to complex with Tcf/Lef transcription factor
to activate and transcript oncogenes myc, cyclin D and
CD44. (Free b-catenin protein in the cytoplasm also
binds with E-cadherin and a-catenin to disrupt the gap
junction between cells, leading to migration and metas-
tasis of cancer tumors.)
Morphological studies have indicated that inactivation,

or loss or mutation of APC creates dysplastic aberrant
crypt foci (ACF) which grow into dysplastic adenomas.

These adenomas grow to a maximum size of about 10
mm3; further growth and malignancy require the abro-
gation of differentiation, cell cycle inhibition and apop-
tosis which are facilitated by the inactivation, or
mutation or loss of Smad-4 gene in 18q and the p53
gene in 17p. The mutation or activation of the oncogene
H-ras in chromosome 11p and/or mutation and/or acti-
vation of the oncogene src in chromosome 20q would
speed up these transitions by promoting the prolifera-
tion rates of the respective intermediate initiated cells
[14]. This pathway is represented schematically by
Figure 1.
The model in Figure 1 is a 6-stage model. However,

because of the haplo-insufficiency of the Smad4 gene
(see Alberici et al.[15]) and the haplo-insufficiency of
the p53 gene ([16]), one may reduce this 6-stage model
into a 4-stage model by combining the third stage and
the fourth stage into one stage and by combining the
fifth stage and the sixth stage into one stage. This may
help explain why for single pathway models, the 4-stage
model fits the human colon cancer better than other
single pathway multi-stage models ([17]). Recent biologi-
cal studies by Green and Kaplan [4] and others have
also shown that the inactivation or deletion or mutation
of one copy of the APC gene in chromosome 5 can
cause defects in microtubule plus-end attachment dur-
ing mitosis dominantly, leading to aneuploidy and chro-
mosome instability. This would speed up the mutation
or inactivation of the second copy of the APC gene and
increase fitness of the APC-carrying cells in the micro-
evolution process of cancer progression. This could also
help explain why the APC LOH pathway is more fre-
quent than other pathways.
Remark 1: As observed by Sparks et al. [8], instead of

the APC gene, this pathway can also be initiated by
mutation of the oncogene b-catenin gene; however, the
proportion of human colon cancer due to mutation of
b-catenin is very small (less than 1%) as compared to
the APC gene, due presumably to the contribution of
the APC on chromosome instability ([4]). Similarly, the
destruction complex can become inactive either by the
inhibition of GSK-3b through the Wnt signalling path-
way (see [18]) or the inactivation or mutation of the
Axin protein, leading to accumulation of the b- Catenin
proteins in the cytoplasm; but the proportion of colon
cancer caused by inhibition of GSK-3b is also very small
as compared to the colon cancer cases caused by the
CIN and the MSI pathways.
Remark 2: The APC gene in chromosome 5q acts

both as a tumor suppressor gene and an oncogene in
initiating and promoting colon carcinogenesis. As an
oncogene, the APC gene acts dominantly in regulating
microtubule plus-end attachment during mitosis ([4]).
Thus, the inactivation or deletion or mutation of one
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copy of the APC gene in chromosome 5 can cause
defects in microtubule plus-end attachment during
mitosis, leading to aneuploidy and chromosome instabil-
ity. This would speed up the mutation or inactivation of
the second copy of the APC gene and increase fitness of
the APC-carrying cells in the micro-evolution process of
cancer progression. This could also help explain why
the APC LOH pathway is more frequent than other
pathways.

The MSI (Micro-Satellite Instability) Pathway of Human
Colon Cancer
This pathway accounts for about 15% of all colon can-
cers and appears mostly in the right colon. It has been
referred to as the MSI pathway or the mutator pheno-
type pathway because it is initiated by the mutations or
epigenetic methylation of the mis-match repair genes
(mostly hMLH1 in chromosome 3p21 and hMSH2 in
chromosome 2p16) creating a mutator phenotype to sig-
nificantly increase the mutation rate of many critical
genes 10 to 1000 times. Normally these critical genes
are TGF-b RII, Bax (The X protein of bcl-2 gene),
IGF2R, or CDX-2. The mis-match repair genes are
hMLH1, hMSH2, hPMS1, hPMS2, hMSH6 and hMSH3;
mostly hMLH1 (50%) and hMSH2 (40%). This pathway
is represented schematically by Figure 2. As in the LOH
pathway, assuming haplo-insufficiency of tumor

suppressor genes, one may approximate this pathway by
a 5-stage model.
Morphologically, mutation or methylation silencing of

the MMR gene hMLH1 or hMSH2 generates hyperplas-
tic polyps which lead to the generation of serrated ade-
nomas. These adenomas develop into carcinomas after
the inactivation, or loss or mutations of the TGF-b RII
gene and the Bax gene, thus abrogating differentiation
and apoptosis. (Bax is an anti-apoptosis gene.) In what
follows, we let N denote the normal stem cells, Ji the i-
th stage cells in the MSI pathways. Then for sporadic
MSI, the model is N ® J1 ® J2 ® J3 ® J4 ® J5 ® can-
cer tumor.

The Major Signalling Pathways for Human Colon Cancer
Recent biological studies ([18,19]) have shown that both
the CIN and the MSI pathways involve the Wnt signal-
ling pathway and the destruction complex (this complex
is a downstream of the Wnt signalling pathway), the
TGF-b inhibiting signalling pathway and the p53-Bax
apoptosis signalling pathway, but different genes in the
CIN and MSI pathways are affected in these signalling
processes. In the CIN pathway, the affected gene is the
APC gene in the Wnt signalling, the Smad4 in the TGF-
b signalling and the p53 gene in the p53-Bax signalling;
on the other hand, in the MSI pathway, the affected
gene is the Axin 2 gene in the Wnt signalling, the

Figure 1 The CIN pathway of human colon cancer. Sporatic Chromsomal Instability Pathways of human colon cancer.
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TGF-b -Receptor II in the TGF-b signalling and the Bax
gene in the p53-Bax signalling.
Because the probability of point mutation or genetic

changes of genes are in general very small compared to
epigenetic changes, one may speculate that colon cancer
may actually be initiated by some epigenetic mechan-
isms ([18,20,21]). In fact, Breivik and Gaudernack [20]
showed that in human colon cancer, either methylating
carcinogens or hyper-methylation at CpG islands would
lead to G/T mismatch which in turn leads to Mis-match
Repair (MMR) gene deficiency or epigenetic silencing of
the MMR genes and hence MSI (Micro-satellite Instabil-
ity); alternatively, either hypo-methylation, or bulky-
adduct forming (BAF) carcinogens such as alkylating
agents, UV radiation and oxygen species promote chro-
mosomal rearrangement via activation of mitotic check
points (MCP), thus promoting CIN (Chromosomal
Instability). A recent review by Baylin and Ohm [18]
have demonstrated that epigenetic events may lead to
LOH and mutations of many genes which may further
underline the importance of epigenetic mechanisms in
cancer initiation and progression.
Based on the above biological studies, in this paper we

thus postulate that the incidence data of human colon
cancer are described and generated by a multi-stage
model involving 2 pathways as defined above. In this
paper, because of haploid-insufficiency of the tumor
suppressor genes {Smad4, p53, Axin, Bax, TGF - b -
ReceptorII}, the number of stages for the CIN pathway
and MSI are assumed as 4 and 5 respectively.

Methods
Stochastic Multi-Stage Model of Carcinogenesis for
Human Colon Cancer Involving Multiple Pathways
From results of Section 2, it follows that the stochastic
multi-stage model for human colon cancer can be repre-
sented schematically by Figure 3.
In Figure 3, the model assumes that cancer tumors are

generated by two pathways with pathway 1 as a k1-stage
multi-stage model involving Il (l = 1, ..., k1) cells and
with pathway 2 as a k2-stage multi-stage model invol-
ving Jr (r = 1, ..., k2) cells. (For human colon cancer,
k1 = 4, k2 = 5.) The state variables are then


X (t) =

{Il(t), l = 1, ..., k1 - 1, Jr(t), r = 1, ..., k2 - 1} and T(t),
where T(t) denotes the number of cancer tumors at
time t and where Il(t) (Jr(t)) denote the number of the Il
(Jr) initiated cells for {l = 1, ..., k1 - 1 (r = 1, ..., k2 - 1)}
respectively. Notice that because cell proliferation, cell
differentiation and apoptosis, mutation or genetic
changes all occur during cell division and cell division
cycle, and because


X (t + Δt) develop from


X (t)

through cell divisions during (t, t + Δt], one may prati-
cally assume that (


X (t), t ≥ t0) is a Markov process

with continous time, where t0 represents time at birth;
one the other hand, T(t + Δt) may derive from I k1

( J k2
) cells before time t, T(t) is in general not Markov

([22,23])). If one assumes that the I k1
and J k2

cells
grow instantaneously into cancer tumors as soon as they
are generated, then one may also assume the T(t) as
Markov. In this case, as illustrated in Tan [24], one may
use standard Markov theory to derive the probability

Figure 2 The MSI pathway of human colon cancer. Microsatellite Instability pathway of human colon cancer.
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generating function (pgf) of the probabilities of these
variables and hence the probability distribution of these
variables. Let ψ (xl, l = 1,..., k1 -1, yr, r = 1,..., k2-1, z; t0,

t) = ψ ( 
x ,

y , z; t0, t) denote the pgf of {


X (t), T(t)}. Let

{ ( ), ( ), ( ), ( ), ( ), ( )}( ) ( ) ( ) ( ) l r l
I

r
J

l
I

r
Jt t b t b t d t d t denote the

mutation rates, the birth rates and the death rates of {Il,
Jr} cells as given in Table 1 respectively.
If T(t) is Markov, then by using the method of Kolmo-

gorov forward equation of these variables (Tan [24]), it

can readily be shown that ψ ( 
x ,

y , z; t0, t) satisfies the

following partial differential equation (pde):

∂
∂

= − + −
t

x y z t t

t x t y x y z t tI J
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+
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2 1

1


 
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−
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 ( , , ; , ),
 

0

1

12

(1)

where lI (t) = N(t)a0(t), lJ (t) = N(t) b0(t),
g y y t y y b t y d t y yr r r r r

J
r l

J
r r r2 1 11 1 1( , ; ) ( ) ( ) ( ) ( ) ( )( ) ( )

+ += − − − + −  (( )t ,

g y y t y y b t y d t y yr r r r r
J

r l
J

r r r2 1 11 1 1( , ; ) ( ) ( ) ( ) ( ) ( )( ) ( )
+ += − − − + −  (( )t ,

and the initial condition is ψ ( 
x ,

y , z; t0, t0) = 1 given nor-

mal individuals at risk at time t0 .
The above pde is in general very difficult to solve;

further, even if the solution of this equation can be
derived, the results are very difficult to apply to estimate
the unknown parameters and to predict future cancer

Figure 3 The multiple pathways of human colon cancer. All pathways involoved in sporatic human colon cancer.

Table 1 Transition rates and transition probabilities for
human colon carcinogenesis

1 N ® 1 N, 1 I1 a0(t)Δt

1 N ® 1 N, 1 J1 b0(t)Δt
1 Il ® 2 Il b t tl

I( )( )Δ
1 Il ® death d t tl

I( )( )Δ
1 Il ® 1 Il,1 Il+1 al(t)Δt

l = 1, ..., k1 - 1

1 Jr ® 2 Jr b t tr
J( )( )Δ

1 Jr ® death d t tr
J( )( )Δ

1 Jr ® 1 Jr,1 Jr+1 br(t)Δt
r = 1, ..., k2 - 1
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cases. Most importantly, T(t) may not be Markov so
that this theory is not applicable (Fakir et al.[22,23]). In
this paper, we will thus propose an alternative approach
through stochastic equations. It can easily be shown
through the method of pgf that if T(t) is Markov, then
the stochastic equation method is equivalent to the
method of Markov theory; as we shall see, however, the
stochastic equation method is more powerful and does
not need to assume Markov for T(t).

The Stochastic Equation for State Variables
To derive stochastic equations for the state variables, let
B t B tl

I
r
J( ) ( )( ) ( ( )) be the number of births of the Il (Jr)

initiated cells during (t, t + Δt] {l = 1, ..., k1- 1 (r = 1, ...,

k2 - 1)}, D t D tl
I

r
J( ) ( )( ) ( ( )) the number of deaths of the Il

(Jr) initiated cells during (t, t + Δt] {l = 1, ..., k1- 1 (r =

1, ..., k2 - 1)} and M t M tl
I

r
J( ) ( )( ) ( ( )) the number of

mutation (Il ® Il+1) (Jr ® Jr+1) of Il (Jr) cells during

(t, t + Δt] {l = 1, ..., k1 - 1 (r = 1, ..., k2 - 1)}.
Also let M t M tI J

0 0
( ) ( )( ) ( ( )) be the number of mutation

of N ® I1(N ® J1) during (t, t + Δt]. Taking into account
of all possible input and output of relevant cells, we have
the following stochastic equations for the state variables:

I t t I t M t B t D t

l k
l l l

I
l
I

l
I( ) ( ) ( ) ( ) ( ),

,..., ,

( ) ( ) ( )+ = + + −
= −

−Δ 1

11 1
(2)

J t t J t M t B t D t

r k
r r r

J
r
J

r
J( ) ( ) ( ) ( ) ( ),

,..., ,

( ) ( ) ( )+ = + + −
= −

−Δ 1

21 1
(3)

Because the transition variables
{ ( ), ( ), ( ), ( ), ( ), ( )}( ) ( ) ( ) ( ) ( ) ( )M t M t B t D t B t D tl

I
r
J

l
I

l
I

r
J

r
J are ran-

dom variables, the above equations are stochastic equa-
tions. With the transition rates as given in Table 1, it can
readily be shown that to the order of o(Δt), the conditional
probability distributions of M tI

0
( )( ) and M tJ

0
( )( ) given N

(t) are Poisson with means lI(t)Δt and lI(t)Δt respectively
whereas the conditional probability distributions of the
numbers of births and deaths given the staging variables (i.
e. the Il(t) and Jr(t)) follow multinomial distributions inde-
pendently. That is,

M t N t t t

M t

I
I

J

0

0

( )

( )

( ) | ( ) ~ { ( ) },

( );

Poisson

independently of 

 Δ
(4)

M t N t t t

M t

J
J

I

0

0

( )

( )

( ) | ( ) ~ { ( ) },

( );

Poisson

independently of 

 Δ
(5)

for l = 1, 2, ..., k1 - 1,

{ ( ), ( )}| ( ) ~ { ( ); ( ) , ( ) };( ) ( ) ( ) ( )B t D t I t I t b t t d t tl
I

l
I

l l l
I

l
IML Δ Δ (6)

for r = 1, ..., k2 - 1,

{ ( ), ( )}| ( ) ~ { ( ); ( ) , ( ) };( ) ( ) ( ) ( )B t D t J t J t b t t d t tr
J

r
J

r r r
J

r
JML Δ Δ (7)

where lI(t) = N(t)a0(t), lJ (t) = N(t)b0(t).
Because the number of mutations of the Il cells

would not affect the size of the Il population but only
increase the number of Il+1 cells and because the
mutation rate of Il cells is very small (10-5 ~10-8), it
can readily be shown that to the order of o(Δt), the
conditional probability distribution of M tl

I( )( ) given Il
(t) Il cells at time t is Poisson with mean Il(t)al(t)Δt
independently of { ( ), ( )}( ) ( )B t D tl

I
l
I and other transition

variables. That is,

M t I t Poisson I t t t

l k
l
I

l l l
( )( ) | ( ) ~ { ( ) ( ) },

,..., ,

 Δ
= −1 11

(8)

independently of { ( ), ( )}( ) ( )B t D tl
I

l
I and other transi-

tion variables.
Similarly, we have that to the order of o(Δt),

M t J t Poisson J t t t

r k
r
J

r r r
( )( ) | ( ) ~ { ( ) ( ) },

,..., ,

 Δ
= −1 12

(9)

independently of { ( ), ( )}( ) ( )B t D tr
J

r
J and other transi-

tion variables.
Using the probability distributions given by equations

(5)-(10) and by subtracting from the transition variables
the conditional expected values respectively, we have the
following stochastic differential equations for the staging
state variables:

dI t I t t I t

M t B t D t

I t

l l l

l
I

l
I

l
I

l

( ) ( ) ( )

( ) ( ) ( )

{ (

( ) ( ) ( )

= + −

= + −

=
−

−

Δ

1

1 )) ( ) ( ) ( )}

( ) , ,..., ,

( )

( )

 l l l
I

l
I

t I t t t

e t t l k

− +

+ = −
1

11 1

Δ

Δ

(10)

dJ t J t t J t

M t B t D t

J t

r r r

r
J

r
J

r
J

r

( ) ( ) ( )

( ) ( ) ( )

{ (

( ) ( ) ( )

= + −

= + −

=
−

−

Δ

1

1 )) ( ) ( ) ( )}

( ) , ,..., ,
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( )
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J
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1
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Δ

(11)

where
 l

I
l
I

l
I

r
J

r
J

r
Jt b t d t t b t d t( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ), ( ) ( ) ( )= − = − .

Tan and Yan Biology Direct 2010, 5:26
http://www.biology-direct.com/content/5/1/26

Page 6 of 16



In the above equations, the random noises
{ ( ) , ( ) }( ) ( )e t t e t tl

I
r
JΔ Δ are derived by subtracting the con-

ditional expected numbers from the random transition
variables respectively. Obviously, these random noises
are linear combinations of Poisson and multinomial ran-
dom variables. These random noises have expected value
zero and are un-correlated with the state variables {Il(t), l
= 1, ..., k1 - 1, Jr(t), r = 1, ..., k2 - 1}. It can also be shown
that to the order of o(Δt), these random noises are uncor-
related with one another and have variances given by:

Var e t t EI t t t

EI t b t d t

l
I

l l

l l
I

l
I

{ ( ) } ( ) ( )
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EJ t b t d t t

o t r k
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J
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Δ

Δ
Δ

+ +
+ = − for 11,

where I0(t) = J0(t) = N(t).

The Expected Numbers
Let uI(l, t) = E [Il(t)] and uJ (r, t) = E [Jr(t)] denote the
expected numbers of Il(t) and Jr(t) respectively and write
uI(0, t) = uJ(0, t) = N(t). Using equations (11)-(12), we
have the following differential equations for these
expected numbers:

d
dt

u l t u l t t u l t t
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The solution of the above equations are:
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J J
z dz

t

t
r
J

x

t

1 1

1

2
0

−

= −

=

∫∫


for ,, .k2 1−

If the model is time homogeneous, then lI(t) = lI, lJ
(t) = lJ,    l l l

I
l
It t( ) , ( )( ) ( )= = for l = 1, ..., k1 - 1 and

   r r r
I

r
Jt t( ) , ( )( ) ( )= = for r = 1, ..., k2 - 1. If the

proliferation rates are not zero and if
   l

I
l
I

r
J

r
J( ) ( ) ( ) ( )≠ ≠ ≠ for all l ≠ u and r ≠ v, then

the above solutions reduce to:

u t I
I

e

u t J
J

e
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I

J

I

I

J
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1
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1

1

1
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










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,..., ;

( , ) ( )

( )

( )

=

= −

=

=
∑ A u e

l k

u r t B u e

l
t

u

l

J r
t

u
I

u
J





1

11 1for 

,,

, ...,
u

r
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=

∑
= −

1

21 1for 

where

A u B ul I u

l
v
l

v u
u
I

v
I

r

J u

r

( ) { }{ ( )} ( )

{ }

( ) ( )= − ⋅ =
=
−

=
≠

−

=
−

∏ ∏  



1

1
1

1

1

11
1

1∏ ∏ =
≠

−−{ ( )}( ) ( )
v
r

v u
u
J

v
J 

.

The Probability Distribution of State Variables and
Transition Variables
Although T(t) is not Markov, the random vector {


X (t),

t ≥ t0} is Markov with continuous time. To derive the
transition probability of this process, denote by f(x, y :
N, p1, p2) the density at (x, y) of the multinomial distri-
bution ML(N; p1, p2) with parameters (N; p1, p2) and h
(x; l) the density at x of the Poisson distribution with
mean l. Then, using the probability distributions given
by equations (5)-(10), the transition probability of this
Markov process is, to order of o(Δt):

P X t t X t

h a l i t I t t tu u r u
i

I

u

u

{ ( ) | ( )}

{ [ ( , ; ); ( ) ( ) ( )]
(

 
+

= − −
=

Δ

Δ1 1
0


tt l

l

I t

u

k

u u u u
I

u
I

u

u

u

f l i I t b t t d t

)( )

( ) ( )[ , ; ( ), ( ) , (

−

==

−

∑∑∏
×

01

11

Δ )) ]}

{ [ ( , ; ); ( ) ( ) ( )]
( )

Δ

Δ

t

h b m j t J t t tv v v v
j

J t m

m

J

v

v v

v

× − −
=

−

=
∑ 1 1

00


vv t

v

k

v v v v
J

v
Jf m j I t b t t d t t

( )

( ) ( )[ , ; ( ), ( ) , ( ) ]},

∑∏
=

−

×

1

12

Δ Δ

where I0(t) = J0(t) = N(t), a(lu, iu; t) = Iu(t + Δt) - Iu(t)
- lu + iu, u = 1, ..., k1 - 1 and where b(mv, jv; t) = Jv(t +
Δt) - Jv(t) - mv + jv, v = 1, ..., k2 - 1.
The above transition probability and hence the prob-

ability distribution of

X (t) is too complicated to be of
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much use. For implementing the Gibbs sampling proce-
dure to estimate parameters and to predict state vari-
ables, we use data augmentation method to expand the
model. Thus, we define the augmented variables


U t B t D t l k B t D t rl

I
l
I

r
J

r
J( ) { ( ), ( ), ,..., , ( ), ( ),( ) ( ) ( ) ( )= = − =1 11 11 12,..., }k − . (In

what follows we will refer these variables as the transi-
tion variables, unless otherwise stated.)
Put

  
Z t X t U t t( ) { ( ) , ( ) }= ′ − ′ ′Δ . Then {


Z (t), t ≥ t0} is

Markov with continuous time. Using the probability dis-
tributions of the transition random variables given by
equations (5)-(10), the transition probability P{


Z (t +

Δt)|

Z (t)} is

P Z t t Z t P X t t X t U t

P U t X t

{ ( ) | ( )} { ( ) | ( ), ( )}

{ ( ) | ( )},
    

 

+ = +
×

Δ Δ
(14)

where

P U t X t

f B t D t I t b t t dl
I

l
I

l l
I

l
I

{ ( ) | ( )}

{ ( ), ( ); ( ), ( ) , (( ) ( ) ( ) ( )

 

= Δ tt t

f B t D t J t b t t d

l

k

r
J

r
J

r r
J

r
J

) }

{ ( ), ( ); ( ), ( ) , (( ) ( ) ( ) ( )

Δ

Δ

=

−

∏
×

1

11

tt t
r

k

) };Δ
=

−

∏
1

12

(15)

and

P X t t U t X t

h u l t I t t t

h

I l l

l

k

( ( ) | ( ), ( )}

{ ( , ); ( ), ( ) }

  
+

=

×

=

−

∏
Δ

Δ
1

11

{{ ( , ); ( ), ( ) },u r t J t t tJ r r

r

k

 Δ
=

−

∏
1

12

(16)

where u l t I t t I t B t D tI l l l
I

r
I( , ) ( ) ( ) ( ) ( )( ) ( )= + − − +Δ for l = 1, ...,

k1 - 1 and u r t J t t J t B t D tJ r r r
J

r
J( , ) ( ) ( ) ( ) ( )( ) ( )= + − − +Δ for r =

1, ..., k2 - 1.
The probability distribution given by equation (15)

will be used to derive estimates and predicted numbers
of state variables. This is discussed in Section 6.

A Statistical Model and The Probability Distribution of the
Number of Detectable Tumors
The data available for modeling carcinogenesis are
usually cancer incidence over different time periods. For
example, the SEER data of NCI/NIH for human cancers
are given by {(yj, nj), j = 1, ..., n}, where yj is the observed
number of cancer cases during the j-th age group and nj
is the number of normal people who are at risk for can-
cer and from whom yj of them have developed cancer

during the age group. Given in Table 2 are the SEER data
for human colon cancer adjusted for genetic cancer cases.

The Probability Distribution of the Number of Detectable
Tumors for Colon Cancer
To derive the probability distribution of time to
tumors, one needs the probability distribution of T(t).
For deriving this probability distribution, we observe
that malignant cancer tumors arise by clonal expansion
from primary I k1

cells and primary J k2
cells, where

primary I k1
cells are I k1

cells derived from I k1 1− cells
by mutation of I k1 1− cells and primary J k2

cells are
J k2

cells derived from J k2 1− cells by mutation of
J k2 1− cells.
Let P s t P s tT

I
T
J( ) ( )( , ) ( ( , )) be the probability that a pri-

mary I k1
( J k2

) cancer cell at time s develops into a
detectable cancer tumor at time t. Let Ti(t) be the num-
ber of cancer tumors derived from the i-th pathway.
Then, to order of o(Δt), the conditional probability dis-
tribution of T1(t) given { I k1 1− (s), s ≤ t} is Poisson with
mean ω1(t) independently of T2(t), where

 1 1 11 1
0

( ) ( ) ( ) ( , ) .( )t I x x P x t dxk k T
I

t

t
= − −∫

Similarly, to order of o(Δt), the conditional probability
distribution of T2(t) given { J k2 1− (s), s ≤ t} is Poisson
with mean ω2(t) independently of T1(t), where

Table 2 Colon Cancer Data from SEER(overall population)

Age
Group

Number of
People at Risk

Observed Colon
Cancer Cases

Total Prediced
Colon Cancer

0 9934747 1 0

0-4 38690768 2 0

5-9 48506058 2 6

10-14 49881935 35 44

15-19 50447512 104 164

20-24 51612785 337 370

25-29 54071811 847 965

30-34 54194486 1829 2080

35-39 50363957 3420 3534

40-44 46029771 6174 6698

45-49 40674188 10950 11072

50-54 36070434 18716 18256

55-59 31084543 27438 25875

60-64 26507762 37155 34867

65-69 22772688 47202 45156

70-74 18785224 53190 52810

75-79 14592602 52887 53479

80-84 9751212 42589 41517

The predicted numbers were generated by the model with unknown
paprameters being substituted by the estimates respectively.

Tan and Yan Biology Direct 2010, 5:26
http://www.biology-direct.com/content/5/1/26

Page 8 of 16



 2 1 12 2
0

( ) ( ) ( ) ( , ) .( )t J x x P x t dxk k T
I

t

t
= − −∫

Let Qi(j) (i = 1, 2) be defined by:

Q j E e e

E e e

i
t t

t R t t

i j i j

i j i j j

( ) { }

{ ( )}

( ) ( )

( ) ( , )

= −

= −

− −

−

−

− −

 



1

1 11 ,,

where Ri(tj-1, tj) = ωi(tj-1) - ωi(tj).
Then Qi(j) is the probability that cancer tumors would

develop during the j-th age group by the i-th pathway.
Since cancer tumors develop if and only if at least one
of the two pathways yield cancer tumors, the probability
that each normal person at time t0 will develop cancer
tumors during (tj-1, tj] is given by QT (j), where

Q j Q j Q j

Q j Q j Q j Q j
T( ) [ ( )][ ( )]

( ) ( ) ( ) ( ).

= − − −
= + −

1 1 11 2

1 2 1 2

For practical applications, we observe that to order of
o( k1 1− (t)) and o(  k2 1− (t)) respectively, the ωi(t) in Qi

(j) are approximated by

 



1 1 1

2 1

1 1
0

2

( ) ~ [ ( )] ( ) ( , ) ,

( ) ~ [ ( )

( )t E I s s P s t ds

t E J s

k k T
I

t

t

k

− −

−

∫
]] ( ) ( , ) .( ) k T

I

t

t
s P s t ds

2
0

1−∫
Similarly, it can readily be shown that to the order of

Min{o( k1 1− (t)), o(  k2 1− (t)}, QT(t) ~Q1(t) + Q2(t).
To further simplify the calculation of QT (j), we

observe that in studying human cancers, one time unit
(i.e. Δt = 1) is usually assumed to be 3 months or 6
months or longer. In these cases, one may practically
assume P s tT

I( )( , ) ~ 1 and P s tT
J( )( , ) ~ 1 if t - s ≥ 1.

A Statistical Model for Cancer Incidence Data
Let yj be the observed number of the number of cancer
cases Yj developed during (tj-1, tj] given nj people at risk
for cancer, who are normal at birth (t0). We assume
that each individual develops colon cancer tumor by the
same mechanism independently of one another. Then
for each person who is normal at birth (t0), the prob-
ability that this individual would develop colon cancer
tumor during the j-th age group (tj-1, tj] is given by QT

(j). It follows that the probability distribution of Yj given
that nj is:

Y n Q jj j T~ { , ( )}.Binomial (17)

Because nj is very large and QT (j) is very small,
approximately Yj is Possion with mean τj = njQT (j).

Notice that to the order of Max{o( k1 1− (t)), o(  k2 1−
(t))}, τj (and hence the probability distribution of Yj)
depends on the stochastic model of colon carcinogenesis
through the expected number {E [ I k1 1− (t)], E [ J k2 1−
(t)]} of { I k1 1− (t), J k2 1− (t)} and the parameters { k1 1−
(t),  k2 1− (t)} over the time period (tj-1, tj].

The State Space Model of Human Colon Cancer
State space model is a stochastic model which consists
of two sub-models: The stochastic system model which
is the stochastic model of the system and the observa-
tion model which is a statistical model based on avail-
able observed data from the system. Thus, the state
space model of a system takes into account the basic
mechanisms of the system and the random variation of
the system through its stochastic system model and
incorporates all these into the observed data from the
system; furthermore, it validates and upgrades the sto-
chastic model through its observation model and the
observed data of the system. As illustrated in Tan ([25],
Chapters 8-9), the state space model has many advan-
tages over both the stochastic model and the statistical
model when used alone since it combines information
and advantages from both of these models.
For human colon cancer, the stochastic system model

of the state space model is the stochastic model consist-
ing of 2 pathways with each pathway following a multi-
stage model as described in Section 3; the observation
model of this state space model is a statistical model
based on the observed number of colon cancer cases as
described in Section 4.

The Stochastic System Model and the State Variables
Putting Δt = 1 for some fixed small interval, then the
staging variables are X = {


X (t), t = t0, t0 + 1, ..., tM}

and the transition variables are U = {

U (t), t = t0, t0 +

1, ..., tM - 1}. From results in Section (3.3), the joint
probability distribution of {X, U} given the parameters Θ
is:

P

P X t X t U t

P U t X t

t t

t M

{ , | }

{ ( ) | ( ), ( )}

{ ( ) | (

X U Θ

= − −

× − −
= +
∏   

 

1 1

1
0 1

11)},

(18)

where P{

U (t - 1)|


X (t - 1)} and P{


X (t)|


X (t - 1),


U (t - 1)} are given by equations (16) and (17) respec-
tively and where Θ = {lI, lJ, al(t), br(y), b tl

I( )( ) , dl(t)
(I)

(t), b tr
J( )( ) , dr(t)

(J)(t), l = 1, ..., k1 - 1, r = 1, ..., k2 - 1}.
Notice that this probability distribution is basically a

product of Poisson distributions and multinomial
distributions.
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The Observation Model Using SEER Data
Put Y = (Yj, j = 1, ..., m) and


y = (yj, j = 1, ..., m)’. By

the probability distribution given by equation (18), the
conditional probability density of Y given {X, U, Θ} is
approximately given by:

P h Y j j

j

m

{ | , , } ( ; ),Y X U Θ =
=

∏ 
1

(19)

where h(Yj; τj) is the density at Yj of the Poisson distri-
bution with mean τj.
Then the likelihood function of Θ given (X, U) is

L y h y j jj

m
( | , , ) ( ; )Θ

X U =

=∏ 
1

. It follows that the
deviance from this density is:

Dev logL y

logL y

y y
j

y j
j j j

j

= −

−

= − −

∧

=

2{ ( | , , )

( | , , )}

{ log }

Θ

Θ




X U

X U




11

m

∑ ,

(20)

where Θ
∧ ∧

= =( , , , ) j j m1 and 
∧

=j jy is the maxi-
mum likelihood estimate of τj.
From equations (19)-(20), we have for the joint density

of (X, U, Y ) given Θ:

P P P{ , , | } { , | } { | , , }.X U Y X U Y X UΘ Θ Θ= (21)

To apply the above distribution to estimate unknown
parameters and to fit real data, we also make the follow-
ing assumptions: (a) From biological observations ([1-9]),
one may practically assume that {al(t) = al, l = 0, 1, 2,
3; br (t) = br, r = 0, 1, 2, 3, 4,
b t b d t d b t b d t dI I I I J J J J

3 3 3 3 4 4 4 4
( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) , ( ) , ( ) , ( )= = = = )) }.

(b) Because the colon polyps are generated by prolifera-
tion of I2 cells and J3 cells and because the polyps can
only grow to a maximum size of about 10 mm3, we

assume that { ( ) , ( ) }( ) ( ) ( ) ( )b t b e d t d eI I t I I t
2 2 2 2

1 1= =− −  and

{ ( ) , ( ) }( ) ( ) ( ) ( )b t b e d t d eJ J t J J t
3 3 3 3

2 2= =− −  for some small (δi
> 0, i = 1, 2). (c) Because colon cell divisions are mainly
due to action of the b-catenin gene, one may also
assume { ( ) ( ) , , }( ) ( )g g1 0 1 2I

j
Jt t j= = = . In this case, one

has approximately I t t I t M tI
1 1 0( ) ( ) ( )( )+ = +Δ

and J t t J t M tr r r
J( ) ( ) ( )( )+ = + −Δ 1 , r = 1, 2. Under

these assumptions, the unknown parameters
of interest are Θ = {Θ1, Θ2}, where
Θ1 3 1 1 2 2 1 2= =+ + + +{ , , , , , , , , , , ,( ) ( ) ( ) ( )    I J i j i

I
i
I

j
J

j
Jb d b d i j == =1 2 1 2, , , , } l l

and Θ2 = {a3, b4).

The Generalized Bayesian Method and the Gibbs
Sampling Procedure
The generalized Bayesian inference is based on the pos-
terior distribution P{Θ|X, U,


y } of Θ given {X, U, Y =


y }. This posterior distribution is derived by combining
the prior distribution P{Θ} of Θ with the probability dis-
tribution P{X, U, Y|Θ} given by equation (20) with Y
being replaced by


y . It follows that this inference proce-

dure would combine information from three sources: (1)
Previous information and experiences about the para-
meters in terms of the prior distribution P{Θ}, (2) Biolo-
gical information represented by the stochastic system
equations of the stochastic system (P{X, U|Θ}) and (3)
Information from observed data, represented by the sta-
tistical model through the conditional likelihood L(Θ|


y ,

X, U).
Because of additional information from the stochastic

system model, this inference procedure is advantageous
over the standard Bayesian procedure in that it can
avoid the identifiability problems associated with stan-
dard Bayesian method. For example, we have shown
that to the order of Max{o(a3(t)), o(b4(t))} the probabil-
ity distribution of the Yj’s depends on the stochastic
model through the expected numbers of I3(t) and J4(t),
which depend on the birth rates and death rates only
through the difference of these rates. It follows that it is
not possible to estimate the birth rates and death rates
separately by the traditional Bayesian method. Most
importantly, the number of parameters is very large and
the number of data points is limited. Thus, without
information from the stochastic system model, it is vir-
tually impossible to estimate all unknown parameters;
for more examples, see Tan ([25,26]).

The Prior Distribution of the Parameters
For the prior distributions of Θ, because biological infor-
mation have suggested some lower bounds and upper
bounds for the mutation rates and for the proliferation
rates, we assume

P c c( ) ( )Θ ∝ > 0 (22)

where c is a positive constant if these parameters
satisfy some biologically specified constraints; and equal
to zero otherwise. These biological constraints are:
(i) For the mutation rates of the Ii cells in the LOH

pathway, 1 <lI < 1000 (N ® I1), 10
-6 <ai < 10-4, i = 1,

2, 3. For the proliferation rates of Iicells in the LOH
pathway, g1(t) = 0, 0 < bi

I( ) < 0.5, i = 2, 3, g2(t) =
 

2
1e t− , 10-4 <g2 < 2 * 10-2, 10-5 <δ1 < 5 * 10-3, 10-2

<g3< 0.5.
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(ii) For the mutation rates in the MSI pathway, 1 <lJ<
1000 (N ® I1), 10

-8 <b1 < 10-5, 10-6 <bj < 10-2, j = 2, 3,
4. For the proliferation rates in the MSI pathway,
   
i
J J J t

j
Jt i t e j( ) ( ) ( ) ( )( ) , , , ( ) , . , , ,= = = < < =− −0 1 2 10 0 5 3 43 3

32 110 10 0 0 5 3 46
2

4− −< < < < = , . , ,( )b jj
J .

We will refer the above prior as a partially informative
prior which may be considered as an extension of the
traditional non- informative prior given in Box and Tiao
[27].
The Posterior Distribution of the Parameters Given

{Y =

y , X, U}

Combining the prior distribution given in (6.1) with
the density of P{X, U, Y |Θ} given in equation (20), one
can readily derive the conditional posterior distribution

of Θ given {X, U, Y =

y }. For (l = 2, 3), denote by:

N I t B B tlI lt

t
lI l

I
t

tM M= == =∑ ∑( ), ( )( )
1 1

and D D tlI l
I

t

t M= =∑ ( )( )
1

;

similarly, for r = 3, 4, we define {BrJ, DrJ, NrJ} by repla-

cing ( ( ), ( ), }( ) ( )I t B t Dl l
I

l
I by ( ( ), ( ), }( ) ( )J t B t Dr r

J
r
J respec-

tively. Then, we have the following results for the
conditional posterior distributions:
(i) The conditional posterior distributions of Θ1(1) =

{lI, lJ, al, l = 1, 2, br, r = 1, 2, 3} given {X, U, Y =

y } is:
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(ii) The conditional posterior distributions of
Θ1 3 3 4 42( ) { , , , }( ) ( ) ( ) ( )= b d b dI I J I given {X, U, Y =


y } is:

P y

P f B D N b d

f B D

I I I
I I

J

{ ( ) | , , }

{ ( )} ( , ; , , )

( ,

( ) ( )

Θ

Θ

1

1 3 3 3 3 3

4

2

2

X U


∝

× 44 4 4 4J J
J JN b d; , , ).( ) ( )

(iii) The conditional posterior distribution of {a3, b4}
given {X, U, Y =


y } is:

P y P e j j
j

y

j

m

{ , | , , } ( , ) ( ) .    
3 4 3 4

1

X U


∝ −

=
∏

(vi) The conditional posterior distribution of
{ , , }( ) ( )b dI I

2 2 1 given {X, U, Y =

y } and the conditional

posterior distribution of { , , }( ) ( )b dJ J
3 3 2 given {X, U, Y =


y } are represented respectively by:
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The Multi-level Gibbs Sampling Procedure For Estimating
Parameters
Given the above probability distributions, the multi-level
Gibbs sampling procedure for deriving estimates of the
unknown parameters are given by:
(a) Step 1: Generating (X, U) Given (Y =


y , Θ) (The

Data-Augmentation Step):
Given Y =


y and given Θ, use the stochastic equa-

tions (3)-(4) and the probability distributions given by
equations (5)-(10) in Section 3 to generate a large sam-
ple of (X, U). Then, by combining this sample with P{Y
=

y |X, U, Θ} to select (X, U) through the weighted

bootstrap method due to Smith and Gelfant [28]. This
selected (X, U) is then a sample from P{X, U|Y =


y , Θ}

even though the latter is unknown. (For proof, see Tan
[25], Chapter 3.) Call the generated sample ( X

∧ , U
∧ ).

(b) Step 2: Estimation of Θ = {Θ1, Θ2} Given {Y =

y ,

X, U}:
Given Y =


y and given (X, U) = ( X

∧ , U
∧ ) from Step 1,

derive the posterior mode of the parameters by maxi-
mizing the conditional posterior distribution P{Θ| X

∧ ,


y ,

y }. Denote the generated mode as Θ

∧ .
(c) Step 3: Recycling Step.
With {(X, U) = ( X

∧ , U
∧ ), Θ = Θ

∧ } given above, go back
to Step (a) and continue until convergence. The conver-
gence of the above steps can be proved using procedure
given in Tan ([25], Chapter 3). At convergence, the Θ

∧

are the generated values from the posterior distribution
of Θ given Y =


y independently of (X, U) (for proof,

see Tan [25], Chapter 3). Repeat the above procedures
one then generates a random sample of Θ from the pos-
terior distribution of Θ given Y =


y ; then one uses the

sample mean as the estimates of (Θ) and use the sample

Tan and Yan Biology Direct 2010, 5:26
http://www.biology-direct.com/content/5/1/26

Page 11 of 16



variances and covarainces as estimates of the variances
and covariances of these estimates.

Results
Application to Fit the SEER Data
In this section, we will apply the above model to the
NCI/NIH colon cancer data from the SEER project.
Given in Table 2 are the numbers of people at risk and
colon cancer cases in the age groups together with the
predicted cases from the model. There are 18 age
groups with each group spanning over 5 years. To fit
the data, we have assumed that  1 0( ) ( )I

j
J= = for j = 1,

2 because of the observation that uncontrolled cell divi-
sion of colon stem cells is mainly initiated by the onco-
gene b-catenin in 3p22. Given in Table 3 are the
estimates of the mutation rates, the birth rates and the
death rates of the Ii cells and Jjcells. Given in Figure 3 is
the plot of probability density of time to tumors.
From these results, we have made the following

observations:
(a) As shown by results in Table 2, the predicted

number of cancer cases are very close to the observed
cases in all age groups. This indicates that the model
fits the data well and that one can safely assume that
the human colon cancer can be described by a model of
2 pathways. The AIC (Akaike Information Criterion)
and the BIC (Bayesian Information Criterion) from the
model are 55.96 and 81.30 which are smaller than the
AIC of 816.0667 and the BIC value of 827.1513 from a
single pathway 4-stage model respectively (Luebeck and

Moolgavkar [17]). This shows that the multiple pathway
model fits better than the single pathway 4-stage model
as proposed by Luebeck and Moolgavkar [17].
(b) From Table 2, it is observed that the largest num-

ber of cancer cases is in the age group between 70 and
75 years old. Comparing the values of Qi(j) between the
CIN pathway (i = 1) and the MSI pathway (i = 2), it
appears that the largest cancer cases is between the age
group 65 and 70 years old for the CIN pathway and is
between 85 and 90 years old for the MSI pathways. Pre-
sumably this might be due to the fact that the MSI
pathway has one more stage than the CIN pathway.
(c) Reflecting the contribution of the APC gene on

chromosomal instability, results in Table 3 showed that
the mutation rates of the Ircells from I1 ® I2 and from
I2 ® I3 had increased about 100 times and 1000 times
respectively than the mutation rate from N ® I1 cells.
Similarly, due to the contribution to genomic instability
by the mis-match repair genes, the mutation rates from
J1 ® J2, from J2 ® J3 and J3 ® J4 had increased about 5
* 102, 0.5 * 104 and 104 times respectively than the
mutation rate from N ® J1. Notice also from Table 3
that the mutation rates from J1 ® J2 ® J3 ® J4 are
about 2 to 3 times of those from I1 ® I2 ® I3. As
shown in probability plots (not shown here), these
increases have speeded up the time to cancer in the
MSI pathway by about 5-10 years.
(d) Results in Table 3 showed that the mutation rates

from I3 ® I4 and from J4 ® J5 are of the order 10-6

which were about 102 ® 103 times smaller than the

Table 3 Estimates of Parameters for Each Pathway

LOH Pathway

I0 I1 I2 I3
Mutation Rate 1.4E-06 2.2E-04 3.2E-03 1.2E-06

± 1.69E-08 ± 1.32E-05 ± 3.33E-04 ± 2.06E-07

Proliferation Rate 0 0 3.6E-03 1.6E-02

N/A N/A ± 1.12E-03 ± 4.78E-04

Birth Rate Para. 0 0 7.4E-03 1.9E-02

N/A N/A ± 1.03E-03 ± 4.08E-04

Growth Limiting Para. N/A N/A 8.3E-05 N/A

N/A N/A ± 1.4E-05 N/A

MSI Pathway

J0 J1 J2 J3 J4
Mutation Rate 8.3E-07 3.5E-04 1.4E-03 9.3E-03 7.7E-06

± 1.38E-08 ± 1.89E-05 ± 8.57E-05 ± 1.22E-03 ± 1.7 9E-06

Proliferation Rate 0 0 0 2.8E-03 2.0E-02

N/A N/A N/A ± 7.01E-04 ± 3.31E-04

Birth Rate 0 0 0 9.6E-03 2.6E-02

N/A N/A N/A ± 6.08E-04 ± 2.88E-04

Growth Limiting Para. N/A N/A N/A 1.6E-03 N/A

N/A N/A N/A ± 3.7E-04 N/A
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mutation rates from I1 ® I2 ® I3 and from J1 ® J2 ® J3
® J4. These results might be the consequence that we
had ignored the stages of vascular carcinogenesis (i.e.
angiogenesis and metastasis; see Hanahan and Weinberg
[29] and Weinberg [30]) by merging these stages into
the last stage. From Weinberg ([30], Chapters 13-14),
notice that the angiogenesis and metastasis are also
multi-stage processes.
(e) Results in Table 3 showed that the proliferation

rates (birth rate - death rate) of the I3 cells and the J4
cells are of order 10-2 which are much larger than the
proliferation rates of the I2 cells and the J3 cells, due
presumably to the effects of the silencing or inactivation
of the cell cycle inhibition genes (Smad4 and TGF-b-
RII) and the apoptosis inhibition genes (p53 and Bax).
Notice from Table 3 that the estimates of the prolifera-
tion rates of the I2 and I3 cells are approximately equal
to those of the J3 and J4 cells respectively. These results
seemed to suggest that the genomic instabilities had lit-
tle effects on cell proliferations.

Conclusions and Discussion
Recent studies of cancer molecular biology have indi-
cated very clearly that human colon cancer is developed
through multiple pathways ([1-9]). This indicates that
single pathway models are not realistic and hence may
lead to incorrect prediction and confusing results. For
developing efficient prevention and controlling proce-
dures for human colon cancer and for prediction of
future human colon cancer, in this paper we have devel-
oped a stochastic model and a state space model for
carcinogenesis of human colon cancer involving multi-
ple pathways with each pathway being a multi-stage
model. Using this model, we have derived for the first
time the probability distribution of the numbers of
initiated cells and the probability distribution of time to
cancer tumors. Such derivation by the traditional
approach is extremely difficult and had not been
attempted previously for multiple pathway models.
Based on the state space model of colon cancer, we
have developed a generalized Bayesian procedure to esti-
mate the unknown parameters and to predict future
cancer cases. This approach combines information from
three sources: The stochastic system model via P{X,
U|Θ}, the prior information via P{Θ} and information
from data via L{Θ|


y , X, U}. Because of additional infor-

mation from the stochastic system model, our procedure
is advantageous over the standard Bayesian procedure
and the sampling theory procedure. Notice that there
are a large number of unknown parameters in the
model and only a limited amount of data are available.
Without this additional information, it is then not possi-
ble to estimate all unknown parameters. Notice also that
through the stochastic system model, one can

incorporate biological mechanism into the model.
Because the number of stages and the mutation rates of
intermediate cells in different pathways are different and
different drugs may affect different pathways, we believe
that this is important and necessary.
We have applied these models and procedure to the

NCI SEER data (upto November, 2007). Our results
showed that the proposed multiple pathways model
fitted better than the single pathway 4-stage model as
proposed by Luebeck and Moolgavkar [17]. (The
respective AIC and BIC for the multiple pathways
model are 55.96 and 81.30 which are ten times smal-
ler than those of the AIC (816.0667) and BIC
(827.1513) respectively of the single pathway 4-stage
model.)
In this preliminary study, we have not yet compared

the multiple pathways model with the single pathway
model regarding prediction of future cancer cases and
evaluation of treatment protocols for human colon can-
cer. This will be our future research, we will not go any
further here.

Reviewers’ comments
Reviewer 1 (M.P. Little)
General comments
This is a generally well-written paper, describing a

model very similar to that recently developed by Little
et al. [12], generalising the model of Little and Wright
([11]). Arguably thislatest model should be referenced,
with discussion of mathematical differences between the
model outlined here and that one. There could also be
discussion of the somewhat different conclusions
reached in fits to more or less the same SEER colon
cancer data.
Response: The paper by Little et al. has been added to

the reference; see Little et al. [12].
Specific comments (page/line)
(1) The 6-stage model is suddenly drawn from the hat

here, but is then almost immediately reduced to a 4-
stage model! Why does the haplo-insufficiency of Smad4
and p53 justify combining the stages in this way? Is
there evidence that Smad4 and p53 are without function
at half gene dose? Also, what is the evidence for muta-
tions being in the order given in Figure 1?
Response: References documenting haplo-insuffi-

ciency of p53 and smad4 have been given in the paper.
The reason why we can combine the two-stages invol-
ving P53 into one-stage is based on these papers. To
illustrate, let B denote the P53 gene and b the mutant
of p53. Then, under haplo-insufficiency of P53, the level
and effects of the P53 protein has been reduced signifi-
cantly (at least 4-fold or more) so that the phenotype of
genotype B/b (or B/-) is closely approximated by that of
genotype b/b.
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(2) How would a model incorporating epigenetic
effects differ from the (DNA mutational) models already
outlined? I suspect that mathematically the formalism
would be exactly the same, although the implied “muta-
tion rates” would be very much higher for epigenetic
events.
Response: From modeling viewpoint, it is difficult to

tell the difference between epigenetic changes and muta-
tion except that the former is much more frequent and
very often reversible. However, epigenetic changes can
help the modeler to incorporate biological information
into the biological process. Many biological papers (just
during 2008, there are hundreds of biological papers
published) support the epigenetic changes and the view
that epigenetic changes are the driving force for cancer
initiation, progression and metastasis, more important
than gene mutations in cancer initiation and progres-
sion. Epigenetic changes include methylation (hypo- and
hyper-methylation), micro-RNA (non-coding RNA), loss
of imprinting, Histone acetylation, HDAC, tissue disor-
ganization and gap junction disruption, etc.; epigenetic
changes can also lead to gene mutations; for a brief
review, see Tan and Hanin [31] (Chapter 3).
(3) This is slightly confusing. I assume that the two

pathways referred to are CIN and MSI, but coming after
discussion of epigenetic effects, perhaps this was meant
as well or instead.
Response: The genetic sequence of the CIN and MSI

pathways were determined by molecular biology of
colon cancer and have been published in cancer jour-
nals. (There are a large number of biological papers doc-
umenting this. I have just listed a few of them in our
paper. I can provide many more published papers from
cancer journals if one wishes.) This sequence appears to
be logical from biological mechanism. Notice that the
APC-b- Catenin activates myc and cyclin D to push the
cell into cell cycle; for the cell cycle to progress, the
inhibition effects of p15, p16, p18, p19, p27 have to be
abrogated through the inhibition of the TGF-b signaling
pathway (epigenetic silencing or inactivation or muta-
tion or deletion of smad2/smad4 (CIN pathway) or
TGF-b Receptor II (MSI pathway).). When the number
of cells has increased to certain level, then the apoptosis
p53-Bax pathway is activated. For the progression of
carcinogenesis, the p53 (CIN pathway) or the Bax gene
(MSI pathway) have to be epigenetically silenced or
inactivated or mutated or deleted. This is the reason
why only the late stage involves silencing or inactivation
of the gene p53. This is illustrated in our paper; see also
Tan and Hanin [31] (Chapter 3, Chapter 11 and Chapter
12). There are no biological supports single-stage or two
stage models. Hence it is not logical to accept single
stage or two stage models for colon cancer for people
who are born normal. Also, it is extremely difficult for

me to accept that there are no proliferation for I2 cells
as assumed in some of the cancer model papers simply
because of the observation of polyps in colon which are
derived from proliferation of second-stage cells and is
the basis for colon cancer screening procedure “Colono-
scopy” practiced by medical doctors.
(4) I assume that asymmetric mutations are assumed,

in which a cell produces one normal daughter cell and
one mutant daughter cell, as assumed by Little et al.
[12] and Little and Wright [11] and many others, but
this could perhaps be clarified. It might be useful to
derive this Kolmogorov forward equation (2) in an
Appendix. Clearly this forward equation (2) is in general
intractable. I suspect that as in the papers of Little et al.
[12] and Little and Wright [11] it is much easier to
attempt to solve the Kolmogorov backward equations.
Response: As in Little, I assume that under genetic

changes, a normal (or one Ij cell) cell will give rise to
one normal cell (or one Ij cell) and one mutant cell (or
one Ij+1cell)(asymmetric change or mutation). This is
logical because mutation or genetic changes occur dur-
ing cell division.
(5) These conclusions are somewhat at odds with

those of Little et al. [12] and Little and Li [32] who
fitted models to very similar SEER colon cancer data
and demonstrated that there was little evidence of better
fit of models that allowed for genomic instability com-
pared with those that did not. In particular the 4-stage
model of Luebeck and Moolgavkar [16] provided as
good fit as models that allowed for genomic instability
[32], or as here multiple types of instability (CIN and
MSI) [12]. The authors may care to discuss this.
Response: On November 13, 2009, Dr. Little had sent

me his comments about our paper and a copy of his 2008
paper which I was not aware of before I wrote our paper.
Dr. Little claimed that their fitting of the data could not
differentiate between many different models. When I
examined Dr. Little’s paper, I found out that our estima-
tion approach is very different from Dr. Little’s. While Dr.
Little’s approach used the classical sampling theory
through maximum likelihood estimates; our approach is
the state space modeling and the generalized Bayesian
inference incorporating information from three different
sources: (1) The biological information from cancer mole-
cular biology, (2) prior information from epigenetic and
genetic mechanism, and (3) information from the likeli-
hood function of observed data involving cancer incidence.
Furthermore, because cancer incidence are derived only
from people who are less than 100 years old (his/her life
time), we first change the SEER data from (nj, yj) to (mj,
yj), where mjis the number of people who can develop
colon cancer during his life time (i.e., less that 100 yrars
old.). Notice that nj is of the order 107 while mj is of the
order 105. This is described in detail in our paper in Tan
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and Hanin [31] (Chapter 11). Because of this and because
of additional information from biological mechanism and
prior distribution, we do not have the problem of identifi-
cation of parameters which statisticians usually encounter
in analyzing data without using information from biologi-
cal mechanism. Thus, using classical approach, the para-
meters are not identifiable so that one has to make some
assumptions such as that growth rates (birth rates) of dif-
ferent stage cancer initiated cells are equal which can
hardly be realistic in carcinogenesis. (Biological studies by
cancer biologists clearly demonstrated that the prolifera-
tion rates of cancer initiated cells with different genetic
changes are very different in most of the cases.)
Finally, I want to emphazise that many models can fit

the data but some fit better than others. Finally I like to
emphasize what Dr. Van Ryzin had concluded 20 years
ago that for cancer risk assessment, many models can fit
the data but only models which are biologically sup-
ported can give correct results for cancer prediction and
cancer risk assessment. It is important to list the pre-
dicted numbers along with the observed numbers in
cancer modeling research. EPA has revised the guide-
lines to require that cancer risk assessment models
should be biologically supported.

Reviewer 2 (M. Kimmel)
The paper by Tan and Yan, proposes a new stochastic
model of colon cancer progression, involving the chro-
mosomal instability pathway and the micro-satellite
instability pathway. This model not only might provide
more insights into human colon cancer but also might
provide useful guidance for its prevention and control
and for prediction of future cancer cases. One interest-
ing question is as to whether Tan and Yang model
might help in deciding about the value of early detection
of colon cancer by screening examination. Although
colonoscopy is an accepted procedure, there are ques-
tions that linger concerning the impact of early detec-
tion on mortality reduction.

Response to Reviewer 2
Thank you very much for your comments and sugges-
tion. We are currently collecting data on screening by
colonoscopy. We will apply the model to estimate can-
cer incidence under screening and will examine if colo-
noscopy will help reduce cancer incidence. We will do
computer simulation to find this out. This is our next
research on colon cancer.
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