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Abstract
Immunotherapy has become a standard approach for cancer management, through the use of
cytokines (eg: interleukin-2) and monoclonal antibodies. Cancer vaccines hold promise as another
form of immunotherapy, and there has been substantial progress in identifying shared antigens
recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell
responses in cancer patients, and in developing new technology for monitoring immune responses
in various human tissue compartments. Dramatic clinical regressions of human solid tumors have
occurred with some cancer vaccines, but the rate of those responses remains low. This article is
part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for
cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis
is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve
monitoring of cellular immune function after vaccination. Progress in both areas will facilitate
development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines
promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

Cancer immunotherapy: transition from 
nonspecific to specific immunotherapy
There is broad appeal for the concept of treating cancer
with the immune system. Early anecdotal experiences over
100 years ago suggested that induction of generalized
immune activation, by a bacterial infection, could induce
regression of solid human cancers in a small subset of
patients [1,2]. However, efforts to generalize this finding
by treating patients with bacterial agents (e.g.: Bacille Cal-
mette-Guerin, BCG) were disappointing [3]. Subsequent
efforts were to vaccinate with cancer cell preparations to
induce immune responses more specifically against can-
cer antigens that had not yet been defined. These included
whole cell vaccines, cancer cell lysates, and cultured cell
supernatants [4-8]. The molecular identity of cancer-spe-
cific antigens was sought over several decades, with most
of the work focusing on melanoma. Initially, numerous

cell surface antigens were identified by serologic methods
in mice [9]. Vaccination against those antigens can induce
specific antibodies [10]. However, a recent clinical trial of
vaccination against one such antigen (the ganglioside
GM2) had a negative result in terms of clinical outcome
[11]. The potential of vaccines for induction of anti-tumor
antibodies has not been fully explored, and deserves fur-
ther investigation. However, in recent years, substantial
effort has been directed at defining antigenic targets for
CD8+ cytotoxic T lymphocytes (CTL), leading to new vac-
cine strategies designed to induce antigen-specific CTL
using these antigens.

Preclinical models of tumor vaccines: role of 
CD8+ and CD4+ T cells in tumor protection
In murine studies, cell-based tumor vaccines can protect
against cancer progression and can lead to regression of
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early established tumors. The protective immunity
induced by syngeneic tumor vaccines appears to be medi-
ated most directly by T-cells, and in many studies, deple-
tion of CD8+ T cells abrogates the protective effect of
syngeneic tumor cell vaccines [12], suggesting cytotoxic T-
cells are critical to that protective immunity. In some stud-
ies, however, depletion of CD4+ T-cells also abrogates all
or part of the protective immune response to vaccines
[13]. Furthermore, adoptive therapy with CD4+ T-cells can
induce tumor protection in some model systems [14].
Thus, the protective immunity induced by syngeneic
tumor cell vaccines appears to be mediated both by CD8+

T-cells and by CD4+ T-cells. These findings directed efforts
toward identifying the molecular nature of tumor anti-
gens recognized by CD8 and CD4 T cells. It was only in
the last 1–2 decades that the nature of these antigens
became known [15]. It was discovered that short peptides
from cellular proteins were presented in association with
cell-surface MHC molecules, and that these peptides rep-
resented epitopes for these T cells.

Molecular definition of tumor antigens 
recognized by T-cells
In the late 1980s, it was found that melanomas expressed
shared antigens recognized by CD8+ cytotoxic T lym-
phocytes (CTL) [16]. Subsequent studies beginning in the
1990s defined the molecular nature of some of these anti-
gens [17-22]. The peptides recognized by cytotoxic
(CD8+) T-cells are typically 8–10 amino acids long and are
presented in association with Class I MHC molecules. The
peptides recognized by helper (CD4+) T-cells are usually
longer (generally 13–18 amino acids in length, although
peptide elution studies have indicated no apparent restric-
tion on peptide length) and are presented in association
with Class II MHC molecules. For melanoma, the melano-
cytic differentiation proteins (MDPs) and the cancer-testis
antigens (CTAs) are the most common source proteins for
these defined shared peptide antigens. Now, a large
number of peptide epitopes recognized by melanoma-
reactive human CTL and helper T-cells are known
(reviewed in [23,24], making it possible to design vac-
cines using these antigens. At least as importantly, evalua-
tion of T-cell responses to these defined antigens is now
possible, and may permit evaluation of the immune
responses induced by vaccine strategies, and to dissect the
immune response. As outlined below, it has become clear
that this approach can aid in optimizing vaccines. Peptide
vaccines provide the unique opportunity to evaluate the T
cell responses specifically to defined immunogens.

Application of defined antigens to tumor 
vaccines
Peptide epitopes for melanoma-reactive cytotoxic T-cells
were first identified in 1991, and epitopes for melanoma-
reactive helper T cells have been identified in recent years.

Some of these agents have been employed in experimen-
tal melanoma vaccines over the past 10 years or less. Pep-
tide vaccines have theoretical and practical appeal, but
also have certain drawbacks, as summarized in Tables 1
and 2.

With peptide vaccines, it has been possible to generate
antigen-specific T cells at frequencies of 0.1% to greater
than 2% percent of circulating CD8 T cells in many indi-
viduals [[25-29], and unpublished results]. However,
when vaccines contain only single peptides, or small
numbers of peptides, targeting CD8 T cells responses
only, low clinical response rates have been observed [30].
In reality, that should not be surprising, especially in the
setting of advanced tumor burden. Antigenic heterogene-
ity is the rule in tumor deposits. Adoptive therapy with T
cell clones specific for a single antigen has led to eradica-
tion of melanoma cells expressing that antigen, but the
tumors have not regressed, because of the persistence of
antigen-loss variants [31]. Furthermore, T cells infiltrating
tumor deposits are commonly found to be anergic or
poorly responsive to antigenic stimulation, leading to the
perception that the tumor microenvironment is hostile to
the T cell response [32]. Effective immune therapy will
require induction of T cell responses to multiple antigens
simultaneously, and promotion of T cell activity in tumor
tissue. Additional approaches to block immunoregulatory
mechanisms may well also be needed for immune therapy
to be successful.

Is adoptive immunotherapy more fashionable than cancer 
vaccines?
Recent clinical successes in one study with adoptive T cell
therapy in patients with metastatic melanoma have
heightened enthusiasm for adoptive therapy [33]. In the
wake of this renewed enthusiasm for adoptive T cell ther-
apy, it has been stated that current peptide vaccines have
failed [30]. Furthermore, a corollary argument is surfac-
ing, that peptide vaccines (or other active specific immu-
notherapy for cancer) may not be worthy of continued
investigation. This could not be more wrong. Perhaps the
greatest failure of the tumor immunology research com-
munity is its reliance on fashion. Historically, encourag-
ing early results with various immune therapies have
induced great enthusiasm, followed soon thereafter by
dashed hopes as the therapy proves not to be as effective
as originally hoped. A lesson can be learned from the fail-
ures and successes of immunotherapy with monoclonal
antibodies. In the 1970s and early 1980s, monoclonal
antibodies were popularly considered magic bullets, and
antibody therapy was in high fashion. Subsequently, in
the 1980s, numerous therapeutic clinical trials with mon-
oclonal antibodies led to very disappointing results. Con-
sequently, monoclonal antibody therapy fell out of
fashion. However, some persistent investigators focused
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on studying antibodies with certain specificities and on
learning how to overcome HAMA reactions by humaniz-
ing monoclonal antibodies. The result has become com-
mon knowledge: multiple monoclonal antibodies are
now used for several FDA approved therapies against can-
cer, such as herceptin (anti-Her-2/neu) and Rituximab
(anti-CD20), and more recently Avastin (anti-VEGF).
These successes took decades, but they now have firmly
established immune therapy as a standard treatment
option for multiple cancers. The lesson from this history
is that one should persist in developing therapeutic

approaches as long as they are promising and are built on
continuous progress in the understanding of pathophysi-
ological mechanisms. T cell immunotherapy of solid
tumors is still in its experimental phase. Investigators in
this field can and will bring together innovative tools and
scientific reasoning in order to maximize the likelihood
that the next generation of cancer vaccines will have ther-
apeutic value.

Similarly, adoptive therapy approaches have been studied
for many decades, with many false starts and failures prior
to the current exciting results. The recent successes with
adoptive therapy are welcome and offer promise for fur-
ther development. However, as with cancer vaccines, there
remains much work to optimize adoptive therapy.

The particular adoptive therapy study cited above is a
modification of prior adoptive therapy approaches. Early
enthusiasm for adoptive therapy with lymphokine-acti-
vated killer (LAK) cells in the 1980s was based on similar
successes at the NCI, but subsequent multicenter investi-
gations suggested that all or most of the therapeutic effect
associated with LAK cell therapy could be mimicked by
systemic therapy with high-dose IL-2 alone [34-37].

Table 1: Practical and Theoretical Advantages of Peptide vaccines for cancer

Characteristic Detail Advantage vs

Tumor cell antigen 
sources

adoptive cellular 
therapy

Pure Avoid tolerizing cellular antigens; exclude normal protein, avoid 
autoimmunity.

X

Processed Avoid effects of immunoproteasome X
Cheap Feasible to study without corporate support X X
Easier Lower regulatory hurdles X X
Evaluable Excellent cancer vaccine model, allowing direct evaluation of response 

to the specific immunogen
X

Modifiable Create synthetic peptides better than native peptides X
Immunogenic Induce T cell responses in patients
Combinable Multipeptide vaccines may mimic immune effects of whole cell vaccines.

Table 2: Limitations of peptide vaccines

• Limited by MHC restriction.
• Unique individual tumor-specific antigens difficult to include.
• Rapid degradation in vivo.
• Heterogeneity of tumor antigen expression.
• Ignorance. We don't yet know how best to vaccinate with them. *
• Clinical responses have been rare in most series (with peptide or any 
vaccine alone).*

* The last two points apply equally to practically all T cell vaccines, not 
just peptide vaccines.

Table 3: Rates of clinical tumor regression in studies of adoptive transfer of tumor-reactive lymphocytes

Type of therapy Initial rate of objective 
responses

Subsequent rate of 
objective responses

Conclusion

LAK cell therapy + high-
dose (HD) IL2

44% (11/25) [ref 34] 22% (23/106) [ref 35] Response rate not better than HD IL2 alone (28 vs 22%), 
but trend toward improved survival with LAK+IL2 for 
melanoma (p = 0.064) [refs 36,37]

TIL therapy + HD IL2 55% (11/20) [ref 38] 22% (9/41) [ref 39] Not better than HD IL2 alone [ref 39]. Median duration of 
partial responses 4 months [ref 40].

Selected TIL therapy after 
lymphoablation + HD IL2

51% (18/35) [ref 33] Pending Results preliminary
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Subsequent studies with adoptive transfer of tumor-infil-
trating lymphocytes (TIL) expanded ex vivo in IL-2 were
associated with clinical regressions in 55% of patients in
early studies [38], but this has largely been abandoned
due to failure to maintain response rates that were con-
vincingly better than that expected from high dose IL-2
alone [39,40]. The new approach to adoptive therapy at
the NCI involves peripheral lymphoablation followed by
adoptive transfer of TIL expanded ex vivo after selection for
tumor lytic potential [33,41,42]. It is currently unclear
whether the improved results with this combination ther-
apy are due primarily to the lymphoablation, the adoptive
transfer, or the type of T cells expanded for the adoptive
transfer. Also, the high rate of objective clinical regres-
sions in the current NCI experience (51%) is very similar
to the high rate reported in prior NCI studies, which were
not maintained in subsequent experience (Table 3).

Is it all about quantity or about quality?
One of the major arguments for use of adoptive cellular
immune therapy for cancer is that it can achieve much
higher numbers of circulating CD8 cells with anti-tumor
specificity. Certainly it is true that patients treated with
lymphoablation and adoptive TIL therapy plus high dose
IL-2 have had extremely high numbers (and frequencies)
of tumor-antigen specific T cells in circulation, with over
90% of circulating CD8 cells reacting to the immunodo-
minant HLA-A2 restricted MART-1/MelanA antigen in one
patient, and with a large proportion of patients having
more than 10% of circulating CD8 cells with anti-tumor
specificity [42].

A major observation is that the generation of high num-
bers of circulating anti-tumor CD8 T cells is insufficient to
induce clinical tumor regressions in about half of patients,
and is often insufficient to control melanoma completely
in the large majority of patients. It can safely be con-
cluded, thus, that factors other than the number of anti-
tumor CD8 T cells affect immune control of cancer. These
factors are being elucidated gradually, and they are the
primary obstacles against which the next 5–10 years of
translational and clinical research in immune therapy
need to be targeted.

These obstacles to success of adoptive transfer therapies
are the same that interfere with the clinical efficacy of can-
cer vaccines. Some of the obstacles to immunologic
control of tumor progression are listed in Table 4. It is far
more important for investigators in immunotherapy and
cancer immunology to join forces in identifying and over-
coming these factors than for us to argue whether peptide
vaccines, viral vaccines, adoptive transfer, or other immu-
notherapy approaches are superior or inferior to others.

Some patients enrolled in peptide vaccine studies have
had marked expansion of antigen-reactive CD8+ T cells,
with 5–10% of circulating CD8 cells reactive to antigen in
some cases, and over 1% reactive to antigen in many cases
[25-29]. While it is worthwhile to induce further expan-
sion of T cells after cancer vaccines, it is likely that the
quality of the immune response, rather than simply its
magnitude, is critical to the success of immune therapy.
Several approaches for improving immunotherapy with
cancer vaccines need to be pursued, as listed in Table 5.

Table 4: Known or possible obstacles to immunologic control of tumor progression, which impact on both active immunotherapy 
(cancer vaccines) and adoptive immunotherapy.

1) Expression of tumor antigens in the absence of costimulatory molecules on tumor cells, leading to tolerance
2) Chronic antigen exposure, leading to upregulation of immuno-regulatory mechanisms

a) CTLA4 expression
b) Accumulation of regulatory T cells in the tumor microenvironment

3) Downregulation of MHC molecule expression by tumor cells
4) Downregulation of tumor antigen expression by tumor cells
5) Secretion of anti-inflammatory cytokines by tumor cells or tumor-associated stroma

a) IL-10
b) TGF-β
c) Others

6) Expression of enzymes in the tumor microenvironment that interfere with T cell function
a) Arginase
b) Indoleamine 2,3-dioxygenase (IDO)

7) Propogation of a tumor microenvironment that is hostile to T cell activation
a) Immunoregulatory function of dendritic cells
b) Anergic tumor-infiltrating lymphocytes

8) Tumor-associated VEGF and other neovascularity-enhancing mechanisms may have immunoregulatory properties as well.
9) Homeostatic mechanisms in the host may limit expansion of tumor-specific T cell responses, and may limit expansion and persistence of tumor-
specific T cell responses.
10) Resistance of tumor cells to apoptosis
11) Elaboration of compounds associated with tumor necrosis, that inhibit anti-tumor immunity locally
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Proof of principle of vaccines for cancer
The current manuscript is focused primarily on vaccine
therapy, especially peptide vaccines, for solid tumors such
as melanoma. However, a very important paradigm of
cancer immunotherapy should be mentioned in this dis-
cussion. For those cancers whose primary etiologic factor
is a known viral infection, vaccination against infection
with that virus promises to have significant oncologic
value. Specific examples are listed in Table 6.

There are differences between these clinical settings,
where vaccines may prevent cancer by preventing the
causative viral infection, and the more common scenario

where vaccines are being considered to treat patients
already diagnosed with cancer. The latter clinical setting
represents chronic (vs. acute) antigen exposure and the
reality that a cancer that progresses clinically has likely
developed one or more mechanisms of immune escape or
tolerance. Also, cancer progression commonly is associ-
ated with antigenic heterogeneity, which complicates the
development of successful multi-antigen immuno-
therapy. However, the clinical and immunologic successes
of anti-idiotype vaccines for some B cell lymphomas show
that vaccines can induce protective immunity against a
defined tumor-specific antigen, even in the setting of prior
chronic antigen exposure [49,50]. Where the antigen is

Table 5: Potential avenues for improving therapeutic value of cancer vaccines

Obstacle Potential solution Status

Heterogeneity of antigen expression Multi-antigen vaccines 12 peptide vaccine induces T cell responses in 
100% of patients. Peptide competition for 
MHC binding does not inhibit immunogenicity 
[ref 43]

MHC downregulation on tumor cells Targeting peptides associated with multiple 
MHC molecules

Being investigated in many centers

Failure of T cells induced in the periphery with 
vaccines to expand in the tumor 
microenvironment (inadequate memory)

Addition of melanoma (or other cancer) 
associated helper peptides in vaccines [refs 24, 
44]

Early data inadequate to address the question 
refs [45–47]. Data in the HIV setting supports 
this approach [ref 48.] ECOG 1602 trial will 
address the questions with a cocktail of 6 
melanoma helper peptides.

Increased regulatory T cells in patients with 
advanced cancer, and in tumor 
microenvironment

Inhibition of T reg function (anti-CTLA4 
antibody); specific depletion of CD25+ 
regulatory T cells (Ontak); depletion of 
regulatory cells with chemotherapy (eg: 
cytoxan)

Clinical trials with all of these agents are 
underway.

Limited expansion of antigen-specific T cells 
after vaccination

Pre-vaccine lymphodepletion to allow 
vaccination in the setting of naturally induced 
cytokines supporting homeostatic proliferation 
(eg IL7 and IL15)

Studies are being designed to address this 
approach

T cells induced by vaccination may not be 
activated effector cells

Increase adjuvant function, perhaps by use of 
Toll-like receptor agonists

CpGs and other TLR agonists being 
investigated as adjuvants [29]. Randomized 
phase II trials with immunologic endpoints 
needed.

Table 6: Virally-induced cancers subject to control by vaccines.

Cancer histology Etiologic virus Vaccine strategy Current use Clinical value

Hepatoma Hepatitis B Protein subunit vaccine In common use for high-risk 
populations.

Protection against Hepatitis B infection 
is prolonged after three vaccines. 
Worldwide protection against 
hepatoma may have dramatic impact.

Cervical 
adenocarcinoma

Human Papilloma 
Virus

Viral and other vaccines 
against E6 and E7

Strong evidence for efficacy in 
certain populations

Likely will protect against cancer, 
especially for patients without access to 
Pap smears

Burkitt's lymphoma, 
Nasopharyngeal cancer

Epstein-Barr Virus Some T cell antigens 
identified

Vaccines would have to be 
administered very early in life

Untested.
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integral to the malignant cell, targeting that antigen can
have encouraging clinical results.

Ultimately, the ideal cancer vaccine will be effective at
inducing protective immunity, and will be safe enough to
administer early in life before the initial carcinogenic
events. Cancer vaccines, but not adoptive cellular therapy,
hold out the prospect of being useful for cancer preven-
tion on a wide scale.

Objective clinical responses in patients enrolled 
in experimental melanoma vaccine trials
In numerous published clinical trial results with cancer
vaccines, one or more objective clinical tumor regressions
have been observed. Though the overall objective
response rate is low [30], even these infrequent clinical
responses are proof of principle of cancer vaccines. Most
current vaccines target only one or a few cancer antigens,
restricted usually by just one MHC molecule. Since anti-
genic heterogeneity is the hallmark of cancer, it is most
remarkable that these simple vaccines can lead to clinical
regressions in any patients. The majority of current vac-
cines also target only CD8+ T cells and largely ignore
CD4+ T cell responses, and responses of the innate
immune system. Again, considering how simplistic the
early peptide-based vaccines are, it is remarkable, and
even encouraging, that they have been associated with any
clinical tumor regressions. Some published studies have
reported the proportion of patients with regressions of
even just one lesion, and thus describe a higher propor-
tion of clinical tumor regression than would be reported
using RECIST criteria. However, a summary review of the
NCI experience with vaccines and of the global experience
with antigen-specific cancer vaccines, reveals that objec-
tive clinical response rates globally are in the range of 3–
4% with recent cancer vaccines [30]. While this is certainly
low, it is relevant that reported response rates with
approved systemic therapy are only 12% for DTIC (dacar-
bazine), 11% for CVD (cisplatin, vincristine, dacar-
bazine), 16% for high-dose interleukin 2, and 17% for
biochemotherapy [51-53]. Considering the low toxicity of
peptide vaccines, an argument can be made that even cur-
rent cancer vaccines have a prospect of clinical benefit for
patients that rivals that of approved therapies, when one
considers the risk:benefit ratio.

Monitoring
One of the arguable values of adoptive therapy is the abil-
ity to enrich or to deplete the cellular reagents and to
define the specificity of the T cells used for therapy. With
vaccines, it is not possible to select particular lymphocyte
populations from the patient directly. However, the com-
partments of the immune system are natural
environments for optimal expansion of T cells and for the
complex interplay among innate and adaptive immune

mechanisms. It is presumptuous to believe that our
understanding of this complexity and our technologies
are adequate to allow us to recreate optimal immune
effectors in vitro and to expect them to perform as we
desire upon re-infusion. However, it is possible in patients
on clinical trials, to enrich for specific effectors by vaccina-
tion with defined antigens, and to measure their
responses to each antigen simultaneously, in various com-
partments (eg: lymph node, blood, and tumor)
[27,32,43,54]. Furthermore, manipulations can be per-
formed in vivo, to enrich or to deplete certain T cell sub-
sets. Reagents exist for depletion of regulatory T cells
(Ontak), for depletion of T cells (OKT3) or B cells (Ritux-
imab), and there is increasing evidence that numerous
cytotoxic chemotherapy agents have immunomodulatory
effects that may be useful for augmentation of immuno-
therapy. Our challenge is to characterize these agents and
their effects on development of protective immunity in
patients treated with cancer vaccines.

All such studies require careful immune monitoring, both
to assess the effects of immune modulations over time,
and to determine whether such changes are useful and
evaluable. We would like to point out that surrogate end-
points for vaccine efficacy should be re-emphasized,
despite some current sentiment to the contrary. For the
development of new generation vaccines, we must rely on
knowledge derived from basic research. In infectious dis-
eases, it is well established that antigen specific lym-
phocytes must be activated substantially for successful
(i.e. protective) vaccination. Consequently, assessing
responses of antigen specific lymphocytes is an important
step in the evaluation of novel vaccines.

There are a number of new techniques permitting investi-
gators to dissect T cell responses ex vivo. It is now possible
to determine molecular features of human T cell
responses in great detail, going much beyond what is usu-
ally done to assess T cells in animal models [55-57]. Eco-
nomical and ethical considerations require that one takes
maximal advantage by studying each patient in depth.
Moreover, many issues in modern vaccinology must be
assessed specifically in humans, since species differences
do not allow to draw direct conclusions from experimen-
tal models.

It is generally accepted that a protective T cell response
includes T cells with high avidity T cell receptors, with
expression of effector molecules and function, and with
appropriate homing capability. Such features can and
need to be determined by analyzing patients' T cells ex vivo
before and after vaccine therapy, allowing evaluation of
the potential value of a given vaccine. Many new vaccine
candidates are being proposed to treat cancer patients.
The scientific community is well advised to use biological
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readouts extensively in order to assess thoroughly the T
cells from study patients. By doing so, one can rapidly
eliminate useless approaches and promote good vaccine
components for further development.

Summary
Immune therapy of cancer may take many forms, specific
or non-specific, adoptive or active, and may target anti-
body, T cell, and innate immune mechanisms. Each of
these approaches has proven or potential value, and the
complexity of the host: tumor relationship is such that a
narrow focus on a single immunotherapy strategy is likely
to fail. Adoptive T cell immunotherapy studies have pro-
vided strong proof of principle that antigen-specific CD8+
T cell responses to cancer can mediate dramatic cancer
regressions. However, adoptive therapy is cumbersome
and expensive, and difficult in the current regulatory envi-
ronment. Vaccines, on the other hand, are more readily
adaptable for therapy outside of highly specialized cent-
ers. In particular, peptide vaccines are easily produced,
standardized, and administered. The current appeal of
adoptive therapy is that antigen-specific T cells can be
expanded and activated at high numbers ex vivo, more
readily than they can be expanded in vivo in cancer
patients. However, we argue that the lesion in current
approaches to cancer vaccine therapy is our poor under-
standing of the mechanisms that limit expansion, activa-
tion, and effector function of tumor-antigen specific T
cells. Bypassing this process by use of adoptive therapy is
a reasonable short-term effort, but ultimately to advance
the field of tumor immunology and immunotherapy it
will be critical to elucidate the immunobiology of the
host-tumor relationship. Appropriate design of cancer
vaccines using multiple antigens should be combined
with careful monitoring of T cell expansion and T cell
function. Optimally, immune monitoring should be per-
formed in multiple compartments (peripheral blood,
tumor tissue, lymph nodes). The next wave of investiga-
tion in cancer immunotherapy has begun, and will
include combination therapies designed to activate innate
and adaptive immunity simultaneously and to down-
modulate tumor-associated immune regulation. Vaccines
with defined antigens are ideal for investigations of this
type.
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