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Abstract

Background: As the increasing adoption of information technology continues to offer
better distant medical services, the distribution of, and remote access to digital medical
images over public networks continues to grow significantly. Such use of medical
images raises serious concerns for their continuous security protection, which digital
watermarking has shown great potential to address.

Methods: We present a content-independent embedding scheme for medical image
watermarking. We observe that the perceptual content of medical images varies widely
with their modalities. Recent medical image watermarking schemes are image-content
dependent and thus they may suffer from inconsistent embedding capacity and visual
artefacts. To attain the image content-independent embedding property, we
generalise RONI (region of non-interest, to the medical professionals) selection process
and use it for embedding by utilising RONI’s least significant bit-planes. The proposed
scheme thus avoids the need for RONI segmentation that incurs capacity and
computational overheads.

Results: Our experimental results demonstrate that the proposed embedding scheme
performs consistently over a dataset of 370 medical images including their 7 different
modalities. Experimental results also verify how the state-of-the-art reversible schemes
can have an inconsistent performance for different modalities of medical images. Our
scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a
deterministically adaptable embedding capacity.

Conclusions: Our proposed image-content independent embedding scheme is
modality-wise consistent, and maintains a good image quality of RONI while keeping
all other pixels in the image untouched. Thus, with an appropriate watermarking
framework (i.e., with the considerations of watermark generation, embedding and
detection functions), our proposed scheme can be viable for the multi-modality
medical image applications and distant medical services such as teleradiology and
eHealth.
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Introduction
Advances in adoption of modern information technology has enabled the healthcare
organisations to offer various distant medical services (e.g., teleradiology, eHealth). Those
services allow remote access to, and electronic transmission and interpretation of, medi-
cal images across multiple users and display stations. While such uses of medical images
offer distinct opportunities of improving healthcare access, delivery, and standards,
security protection of the images throughout their lifetime becomes more challenging.
Many new security problems and legal and ethical concerns (e.g., image fraud, distrust and
invasion of privacy) are emerging, which digital watermarking has shown a great potential
to address [1,2].
Digital watermarking is an evolving data-hiding technology that has threemain compo-

nents: watermark- generation, -embedding and -detection [3,4]. Watermark generation
generates watermarks from its input information including medical images and other
radiological information (e.g., EPR—electronic patient records). Watermark embedding
embeds the watermarks in medical images such that they can be detected later by the
watermark detection. Thereby, the authenticity and integrity of the images can be ver-
ified and the meta-data (e.g., EPR) can be imperceptibly annotated in the images [1].
Although this may also require the watermark generation to employ a suitable crypto-
graphic technique (e.g., encryption, digital signature), in this paper, we restrict our focus
on the watermark embedding process.
Watermark embedding has to meet a few strict requirements for medical images [5],

since it incurs an inevitable distortion. They are: (i) continuous protection of the image,
and (ii) “acceptable” embedding distortion in the image. Continuous protection of a med-
ical image requires the watermark to be always embedded in the image. Additionally,
an acceptable embedding distortion guarantees the reliability of a watermarked image
for any medical or clinical uses. To meet these requirements, two types of embedding
schemes are mainly studied: (i) lossless compression of ROIs (regions of interest, to
medical professionals) [6,7] and (ii) reversible embedding [8-16].
The reversible embedding schemes seem to be relatively advantageous, since they usu-

ally can avoid the ROI segmentation (considering the original image can be restored) and
compression. Reversible embedding introduces an invertible distortion in a watermarked
medical image that can be restored to the original, when required (e.g., for medical diag-
nosis purpose). It has different principles and properties that underpin many reversible
watermarking schemes for medical image applications [17]. We briefly review some
prominent reversible schemes in Section “State of medical image watermarking”.
However, the general problem of the reversible schemes is that their watermark embed-

ding process is image- content dependent (i.e., depends on the perceptual or visual con-
tent of the input images). Thereby, they seem to suffer from an inconsistent performance
for different modalitya medical images. Particularly, for a given embedding capacity
requirement, the embedding time and distortion may widely vary with the image modal-
ity. Consequently, a reversible scheme while may perform well for a particular modality, it
may not be equally suitable for other modalities. (We note that the image-content depen-
dent property may be required by the watermark generation, which is beyond the scope
of this paper and should not be confused with the watermark embedding.)
Therefore, as a primary contribution of this paper, we present a content-independent

embedding scheme for medical images (Section “Proposed embedding scheme”). We
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generalise the RONI (region of non-interest; complementary region of ROI) selection
that offers content-independent embedding and avoids the computational overhead of
ROI segmentation. Our proposed scheme further attempts to find a set of suitable least
significant bit-planes (LSB-planes) to maintain a good (perceptual) quality in the embed-
ding region (i.e., RONI), keeping the other pixels in the image (i.e., in ROI) untouched.
We present our experimental results to verify how the reversible embedding affects the
watermarked image quality, and thereby validate our proposed scheme, for different
medical image modalities (Section “Experimental results and discussion”).

State of medical imagewatermarking
Reversible watermarking is arguably most suitable for the medical image applica-
tions. Many reversible watermarking schemes have been reported in the literature,
since the Barton patent [8] in 1997. However, the difference expansion (DE) [10]
and histogram shifting (HS) [14] based reversible watermarking and their recent
developments [11,12,15,16,18] have attracted increasing interest in medical image
applications.
Coatrieux et al. [12] presented a reversible watermarking scheme to continuously pro-

tect the reliability of MR images. However, that scheme may not be suitable for the
other modalities of medical images due to its morphology based RONI segmentation. Lee
et al. [11] proposed a reversible watermarking scheme that employs adaptive embedding
of watermark in the high frequency wavelet coefficients of the medical images for high
embedding capacity with a low level distortion. Nayak et al. [18] proposed a technique
of interleaving patient record in medical images using HS watermarking. Discontinuity
(i.e., when the watermarked image is restored to the original) of security protection and
disregard of RONI embedding may reduce the practicability of those schemes [11,18] for
medical image applications.
Guo and Zhuang [15] presented a DE reversible watermarking scheme for medical

images. That scheme considers a region based embedding to preserve the ROI; but, the
manual ROI selection and information overhead of multiple polygons would possibly
make the scheme less efficient. Tsai et al. [16] proposed a HS watermarking scheme
for medical images by utilizing a linear prediction embedding that offers relatively high
embedding capacity with a low-level distortion. Similar to the schemes in [11,18], Tsai
et al. scheme also does not consider the RONI for embedding, which may raise legal and
ethical concerns about erratically altering medical images [5].
However, as the problem in question, most of the reversible schemes includ-

ing the schemes in [11,12,15,16,18] have an image content-dependent embedding
approach.
As mentioned in Section “Introduction”, for an image content-dependent embedding

scheme, level of distortion in different modality medical images (even of the same sizes)
may not be the same for embedding the same size watermark (or more precisely, the
same size payload—the watermark plus any side information). This also means that the
scheme may always require to check if the capacity is sufficient and the level of distortion
is acceptable, for a given watermark.
Thus, the overall performance of such schemes would possibly vary with the modal-

ity of medical images. Moreover, for reversible schemes, once the watermarked image is
restored to the original, any security protection discontinues.
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In addressing the above limitations in the state-of-the-art medical image watermarking
schemes, in this paper, we propose a content-independent embedding scheme that utilises
the LSB-planes of the RONI.
We substantially extend our earlier work [5,19] to demonstrate the potential of the

content-independent embedding, and its applicability to multi-modality medical images.
We generalise the RONI selection and determine its criteria to facilitate the content-

independent embedding. Further, we investigate the influence of the content-dependent
embedding approach of a prominent medical image watermarking scheme [16] for
different modalities of medical images. Thereby, we verify the consistency in performance
of our proposed scheme and validate its applicability to multi-modality medical images.

Proposed embedding scheme
We now present the development of the content-independent embedding scheme. We
first generalise the RONI selection for different modalities of medical images. Utilising
LSB-planes of the RONI will then help us to achieve the image content-independent
capacity and continuous security protection (using standard cryptographic techniques, as
mentioned in Section “Introduction”).

Generalising RONI selection

Generalising RONI selection is a challenging task. Ideally, ROIs in medical images are
both modality- and patient-wise uncorrelated, which make them more or less a random
phenomenon. For example, two head-MRIs of two different patients can have differ-
ent ROIs. A subjective RONI selection [6,7,20-22] is thus often used (e.g., manual ROI
selection by a doctor), which reduces the embedding performance (e.g., increase the
computation time).
Other RONI selection techniques [12,15,23-27] (e.g., using morphological operation,

logical rectangle, ellipse, polygon, etc.) can tackle this problem, but only to certain
modalities.
A general RONI selection technique is still lacking in the literature.
In order to conceptualise the general RONI selection process, we thus start with look-

ing at the individual modality medical images and their usual ROIs’ locations. Necessary
considerations are made based on the observations, then RONI selection criteria are
specified, and the capacity control parameters are determined.
Thereby, a general RONI selection approach is developed below.

Observations on the general ROI location

We propose the border pixels of medical images as the general RONI considering ROI
location to be clustered around the centre of the images.
Irrespective of the modalities and parts of human body under examination, a general

consideration in acquiring medical images is to endeavour to keep the prospective ROIs
at the centre of the images [28]. For example, consider the scenario presented in Figure 1.
Suppose the ROI of a chest X-ray shown in Figure 1(a) was found close to the border
of the image as indicated by the red-circle, where the doctor (and/or medical specialist)
being prudent usually requests another image that places the ROI closer to the centre and
away from the border as shown in Figure 1(b). This fact suggests that the border-pixels
of medical images are of little or no significance to the doctors and can be generally used
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Figure 1 Examples of ROI location in the medical image [19]. (a) close to the border, and (b) close to the
center.

as RONI. The border-pixels of a medical image thus can be conceptualised as the general
RONI based on the following facts [19]:

a) For a medical image, the phenomenon under examination by the doctors or other
medical practitioners would occupy the central part of the image.

b ) In situations, where ROI gets close to the border of the image, the examiner is
expected to seek another image, where the ROI would be placed away from the
border and closer to the centre of the image.

The RONI selection criteria

A set of RONI selection criteria is now to be specified for proceeding with the consider-
ations mentioned above. These criteria would help determine the suitability of the RONI
selection approach for the medical images. As we determined in [19], based on the med-
ical image watermarking requirements, the RONI selection should meet the following
criteria:

a) RONI should have no relevance or impact on the medical objectives for which the
image was obtained.

b ) RONI should provide the required capacity to accommodate the payload.
c) RONI should keep the distortion at the “minimum” level.
d ) RONI should have the “minimum” computational and side-information overhead.

Our scheme can be expected to perform reasonably well for each criterion. The selected
RONI (i.e., border pixels) in our scheme can have minimum impact on the medical objec-
tives, since those pixels of a medical image are considered to be less significant for the
medical uses (for example, see [28]). Our scheme is also expected to provide better flex-
ibility (with a set of capacity control parameters, as discussed in the following section)
for increasing payload size and consistency in performance (in terms of PSNR, MSSIM,
and embedding time). Additionally, since our RONI selection avoids any segmentation
and compression, it should generally be faster than other RONI selection processes for
different modality medical images.
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Capacity control parameters

Determining the capacity parameters for the capacity control is also required for using
the border- pixels in RONI selection. Here, capacity control is the process used to attain
the required embedding capacity with the lowest level of possible distortion. In order
to have an efficient capacity control, we thus consider two parameters, namely; border-
width, NBW and bit-depth, NLSB. The border-width specifies how many pixels in the
border of an image can be suitably used as RONI, and the bit-depth specifies how many
LSB-planes of the selected border-pixels can be used for embedding the payload, while
keeping distortion at the minimum level. Depending on the required capacity, the val-
ues of these parameters are determined using the capacity control of the embedding
scheme.
Thus our embedding scheme can adaptively satisfy the capacity requirement.

Development of our proposed embedding scheme

We now present our proposed embedding scheme based on the above generalised RONI
selection principle. The scheme adaptively uses the LSBs of the RONI, and thus facili-
tates the image content-independent embedding. Specifically, for a given medical image,
I and a watermark, W , the scheme determines the optimum combination of NBW and
NLSB for embedding the payload, P. This ensures that the embedding distortion in RONI
remains at a minimum level, satisfying the capacity condition [19] in equation 3. Here
Ctotal is the total capacity and Cp is the size of payload, where Ctotal and Cp are are
calculated by using 2 and 1 as shown in [19]; and, r and c are the numbers of pixels
in a row and in a column of an input image, respectively. The function Size(·) deter-
mines the bit-length of its input. As shown in Figure 2(a), the Load is the formatted side
information.

Cp = Size (Load) + Size (watermark) (1)

Ctotal = 2NBW × (r + c − 2NBW ) × NLSB (2)

Ctotal ≥ Cp (3)

Figure 2 Data-frame [5,19]: (a) payload, P, and (b) Load forCl = 32.



Nyeem et al. BioMedical Engineering OnLine 2015, 14:7 Page 7 of 19
http://www.biomedical-engineering-online.com/content/14/1/7

In order to find the optimum combination of NBW and NLSB, until the capacity con-
dition is satisfied, NBW and NLSB (initialised at value one, ‘1’) are increased by a unit
step to increase the Ctotal. We observed (from our experiments presented in our previous
work [5,19]) that increasing NBW gives higher capacity for a fixed NLSB than increasing
NLSB for a fixed NBW . Therefore, firstly, NBW is increased successively (after checking
the capacity condition each time) up to its given maximum usable limit, T1. Then, NLSB

is increased by a unit step, when NBW = T1. In this way, until the condition in 3 is
fulfilled, NBW and NLSB are increased up to their maximum usable limits T1 and T2,
respectively.
The threshold pair (T1,T2) has an important role to select the RONI in terms of NBW

and NLSB, and thus to adaptively control the capacity for an increasing size of watermark.
A well defined (T1,T2) is required for all modality medical images to accommodate the
usual size of watermarks used in a particular application. However, for a given (T1,T2),
if the capacity condition is not satisfied (i.e., no NBW and NLSB are found for the given
watermark and image), a user prompt may be required to update (T1,T2), for any special
cases.
Once the optimum NBW and NLSB are determined, the payload is embedded using the

embedding function, E (·) as given in 4.
The function E (·) replaces the bits in the selected RONI’s LSB-planes. We summarise

the steps of our embedding scheme below.
Input: (i) a medical image; and (ii) watermark

Output: a watermarked image

Step 1: We first compute the total capacity, Ctotal using 2.

Step 2: Then we compute the payload size, Cp, which is the size of the input watermark
and predefined data-frame (in bits).

Step 3: We find the optimum combination of NBW and NLSB to satisfy the capacity
condition in 3. (An example of how to find the optimum values forNBW and NLSB is
discussed in Section “An example of the proposed embedding scenario”.)

Step 4: Once the optimum NBW and NLSB are determined for embedding, we compute
the payload, P according the “data-frame” (will be discussed in Section “An example
of the proposed embedding scenario”) shown in Figure 2.

Step 5: We then embed the payload in the LSBs of RONI calculated by the computed
minimum values of NBW and NLSB, and thus obtain the watermarked image.

A detector requiresNLSB, NBW , and the size of the watermark, Cw, to extract the water-
mark independently. These information are formatted in a predefined data-frame of Load
using a function, Format (·), as given in 5. Figure 2(b) illustrates an example of Load data-
frame for a 32-bit of side information. First 8-bit is forNBW , next 8-bit is forNLSB, and the
last 16-bit is for the watermark size, Cw. It is worth noting that this structure may be re-
defined according to the need for any watermarking objectives. Additionally, Figure 2(a)
shows how Load is concatenated with the given watermark,W to compute the payload, P.
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A concatenation function, Concat (·) is given in 6 to concatenate its inputs in their given
order and to output a single bit-stream.

Ī ← E : I × P (4)

Load ← Format (Cw,NBW ,NLSB) (5)

P ← Concat (Load,W ) (6)

As a part of detection, the embedded payload is extracted from an input watermarked
image, Ī. A detector initialises the predefined Load data-frame, and obtains the NBW ,
NLSB, and Cw from the extracted Load data. The detector then extracts the Cw-bit from
theNBW border pixels of theNLSB LSB-planes. Considering no bit-error occurs during the
communication of Ī, the extracted Cw-bits should be the same as the embeddedW -bits.

An example of the proposed embedding scenario

We illustrate here the computation of optimum NBW and NLSB and their use in our
embedding scheme. Consider, an 8-bit image (of size 10 × 10) sliced into its 8-bit planes
along Z-axis, as shown in Figure 3. Also consider, a 150-bit watermark (i.e., Cw = 150)
is to be embedded and the given thresholds for NBW and NLSB are T1 = 2 and T2 = 4,
respectively. With a 32-bit Load data frame (i.e., Cl = 32), Cp becomes 182-bit (i.e.,

Figure 3 An example of the proposed embedding scheme for an 8-bit image of size 10×10 with
NBW = 2 andNLSB = 3. (Few arbitrary bit locations in different bit planes, e.g., f (0, 0, 1), f (1, 5, 2), etc. are
shown to realise overall bit locations in the bit-planes.) [5,19].
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Cp = 150+32 = 182). Now, to compute the optimum values forNBW andNLSB that meet
the capacity condition in 3, individual steps of computing Ct using 2 for the given T1 and
T2 are:

when, NBW = 1 and NLSB = 1, Ct = 36
NBW = 2 and NLSB = 1, Ct = 64
NBW = 2 and NLSB = 2, Ct = 128
NBW = 2 and NLSB = 3, Ct = 192

Once the capacity condition is met, the embedding function stops computation ofCtotal.
In this example, when NBW = 2 and NLSB = 3, total capacity, Ctotal becomes higher than
the payload size, Cp, and thus the capacity condition is satisfied. As Figure 2(b) shows,
32-bit Load is now computed for NBW = 2, NLSB = 3, Cw = 150. (We note that a 32-
bit Load data-frame in Figure 2(b) seems to be superfluous for a 125-bit watermark of
this example. That frame in fact allows up to 216 = 65536-bit watermark, which can be
redefined accordingly if required for any higher/lower size of watermark.)
Then, 182-bit P is computed by concatenating the Load and W , and finally embedded

in the LSBs of RONI in a predefined embedding order. For example, embedding can be
started from f (0, 0, 1) to f (5, 8, 3) that occupies 182-bits sequentially. The outer border
pixels come first, then inside-border pixels successively and this follows up to NBW pixels
of all LSB-planes up to NLSB = 3.
In the detection process, the Load information is extracted from the given Ī, and thus

NBW = 2, NLSB = 3, and Cw = 150 are obtained. As in the above example of embedding
order, the watermark bits are extracted following the Load data-frame. In other words,
from the very next bit location of the Load data-frame, 150 bits are extracted from 3
LSB-planes of 2 border pixels, which is the watermark,W .

Experimental results and discussion
In this section, we verify and validate the consistent performance of the proposed
watermark embedding for different modalities of medical image. We conducted several
experiments to evaluate the performance of our scheme and compare it with that of the
Tsai et al. scheme [16]. Choice of the Tsai et al. scheme is based on the prominence of the
scheme which employs the state-of-the-art reversible embedding technique for different
modality medical images.We used a set of 370medical images of different modalities (i.e.,
CT, MR, X-ray, DSA, US, RF and MG) and of different file formats (e.g., DCM, DC3, JPG,
BMP, etc.) Image sizes range from 196 × 258 to 600 × 600 (pixels), and image bit-depths
are 8-bit and 16-bit. A watermark is considered as a set of binary arrays, {0, 1}+. All nec-
essary simulations were carried out in MATLAB (R2012a-7.140.739) and using an Intel
Core i5 3.2GHz CPU.

Performance evaluation of the proposed scheme

We started our experiments with the performance evaluation of our scheme. Embedding
capacity, watermarked image quality, and embedding time were considered as the per-
formance evaluation parameters. We tested our scheme with NBW ∈ {1, 2, · · · , 5}, and
NLSB ∈ {1, 2, · · · , 8}. AlthoughNBW and NLSB can be increased in need of higher capacity
requirement as discussed in Section “Development of our proposed embedding scheme”,
we considered that the above limits of NBW and NLSB will be reasonable to verify and



Nyeem et al. BioMedical Engineering OnLine 2015, 14:7 Page 10 of 19
http://www.biomedical-engineering-online.com/content/14/1/7

validate the consistent performance of the proposed scheme. As expected, the capac-
ity, embedding time, and image quality degradation have increased gradually with the
increase of NBW and NLSB, as shown in Figure 4(a)–4(d).
Particularly, the adaptable embedding capacity of our scheme is verified. This means

that the embedding capacity of our scheme can be controlled with changing NBW and
NLSB as evident in Figure 4(a). Additionally, the embedding time varies almost linearly
with the parameters, NBW and NLSB. Figure 4(a) and 4(b) show that for higher NLSB,
increasingNBW has relatively high impact on the increasing capacity and embedding time.
This suggests that increasing NBW would be more effective to achieve a high capacity
requirement.
On the other hand, the image quality of our scheme drops gradually with the increase

of NBW and NLSB. Figure 4(c) and Figure 4(d) show that the degradation in image quality
(calculated over the whole image, although only border pixels are used for embedding)
in terms of PSNR and MSSIM, respectively. The PSNR–peak signal-to-noise ratio esti-
mates the perceived errors without any consideration of the subjective quality of an image.
This means that the changes of the same number of LSBs in ROI and RONI (of a med-
ical image) separately can have similar PSNR value, although they may have different
perceptual outcomes. PSNR is therefore not suitable for our scheme, where almost all
of the perceptually significant image pixels (in ROI) are left untouched in the proposed
embedding.

Figure 4 Performance of the proposed embedding scheme: (a) capacity, (b) embedding time,
(c) PSNR, and (d) MSSIM.
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In contrast to PSNR, a particularly designed image quality metric, MSSIM–mean
structural similarity index illustrates a more reasonable relationship of image quality
degradation with NBW and NLSB, as shown in Figure 4(d). In fact, MSSIM measures
the local similarity of perceptual contents thus it mainly accounts for the changes
in perceptually significant information [29-31]. Therefore, we used MSSIM instead of
PSNR for the performance comparison of our scheme, which will be discussed below
in Section “Performance comparison”. The general formulation of MSSIM [29] is given
below in 7.

MSSIM(X,Y ) = 1
M

M∑
j=1

SSIM
(
xj, yj

)
(7)

SSIM(x, y) =
(
2μxμy + c1

) (
2σxy + c2

)
(
μ2
x + μ2

y + c1
)(

σ 2
x + σ 2

y + c2
) (8)

where, xj and yj are the image content at j-th local window and their structural similarity
index, SSIM

(
xj, yj

)
is computed using 8. Here, μx and μy are the average values of x and

y, and σ 2
x and σ 2

y are the variance of x and y, respectively; σxy is the covariance of x and
y; and c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabilize the division with weak
denominator for the L dynamic range of the pixel values. The default values of the weight
factors, k1 and k2 are set to 0.01 and 0.03, respectively.
Examples of the original and watermarked versions of different modality medical

images for our embedding scheme are given in Figures 5 and 6. These images not only
indicate the imperceptibility of the watermarked images for the proposed embedding
scheme, but also support our consideration of border pixels as a general RONI for differ-
entmodalities ofmedical images. In order to demonstrate the distortion in the embedding
region more clearly, Figure 7 shows a typical case of the absolute difference between
the original and watermarked versions of the medical images. This suggests that the
embedding region (i.e., RONI) has an almost imperceptible distortion.

Performance comparison

To validate the potential of content independent embedding over the content dependent
embedding for different modalities of medical images, we now compare the performance
of our proposed scheme with that of the Tsai et al. [16]. As explained in Section “Perfor-
mance evaluation of the proposed scheme”, we tested our scheme forNBW ∈ {1, 2, · · · , 5}.
However, as we observed that up to 5 LSB-planes the embedding impact on quality of the
border pixels remains almost imperceptible (Figure 4(d)), we considered here NLSB = 5
and kept it fixed for the rest of our experiments presented in this paper. We examined the
variation in performance of the schemes mainly in terms of image quality (MSSIM) and
embedding capacity (bits) as illustrated in Figures 8, 9 and Figures 10, 11, respectively.
Here, the dotted-lines indicates the trends in MSSIM and embedding capacity variation
with the increase of image size, for the Tsai et al. scheme and our scheme. The vertical
bars in the performance curves indicate the range of variation in the performance (i.e.,
MSSIM or embedding capacity) of the schemes, for the images of same size (but of dif-
ferent perceptual content). The higher the length of the bar means the wider range of
variation in the performance.
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Figure 5 Original (left column) and watermarked (right column, forNBW = 5 andNLSB = 5) versions
of medical images of different modalities: (a) CT, (b) MR, (c) X-ray, and (d) DSA.

The proposed scheme shows a consistent image quality for different modality medical
images, which almost linearly varies for the higher image size, which is not the case for
the Tsai et al. scheme. Figure 8 and Figure 9 show that, for a standard size of 512 × 512
(which gives 2.6× 105 pixels) or higher, our scheme has steadily shown theMSSIM in the
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Figure 6 Original (left column) and watermarked (right column, forNBW = 5 andNLSB = 5) versions
of medical images of different modalities: (a) US, (b) RF, and (c) MG.

Figure 7 Absolute difference image of the original and watermarked (NBW = 5 andNLSB = 5)
versions of a medical image: (a) full image, and (b) negative of the partial image (as marked at the
top-left corner in (a)).
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Tsai et al. [16], NBW=1, NBW=2, NBW=3, NBW=4, NBW=5
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Figure 8 Perceptual quality (MSSIM) of the proposed scheme and Tsai et al. [16] for different
modalities. (a) CT, (b)MR, (c) X-ray, and (d) DSA. (Here, NLSB = 5 and the no. of images in different
modalities are: CT = 84, X-ray = 41, MR = 195, DSA = 12. Image sizes are shown in total no. of pixels).

range of [0.999, 1]. Whereas, the MSSIM of Tsai et al. scheme randomly varies in a wide
range of [0.97, 1]. In other words, the MSSIM of Tsai et al. scheme not only varies with
the image size, but it also varies for the same size images. Particularly, for the lower size
images (e.g., below the size of 512×512) this randomness and variation are relatively high.
Similarly, the embedding capacity of our scheme linearly increases with the image size,

irrespective of the image modalities, whereas that of the Tsai et al. scheme does not.
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Tsai et al. [16], NBW=1, NBW=2, NBW=3, NBW=4, NBW=5
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Figure 9 Perceptual quality (MSSIM) of the proposed scheme and Tsai et al. [16] for different
modalities. (a) RF, (b) US, and (c)MG. (Here, NLSB = 5 and the no. of images in different modalities are: RF =
19, US = 14, and MG = 5. Image sizes are shown in total no. of pixels).

Figure 10 and Figure 11 show how the Tsai et al. scheme has widely varying embed-
ding capacity, which has different ranges for different modalities. For example, while that
scheme has the capacity (bits) range of [ 50K , 380K ] for CT images, the range changes to
[ 20K , 170K ] for the X-ray images, as shown in the Figure 10.
Unlike the proposed scheme, this random variation of the MSSIM and embedding

capacity of the Tsai et al. scheme for different modalities of medical images would not be
desirable for the practical applications.
Additionally, the proposed scheme can adaptively control the capacity requirement as

discussed in Section “Proposed embedding scheme”, and thus can address the higher
embedding capacity requirements. One may argue here that the Tsai et al. scheme
has higher embedding capacity, which eventually causes more MSSIM drop than our
proposed scheme. However, as Table 1 illustrates, generally the MSSIM of the proposed
scheme still seems higher than that of the Tsai et al. scheme for similar embedding
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Tsai et al. [16], NBW=1, NBW=2, NBW=3, NBW=4, NBW=5
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Figure 10 Embedding capacity (total) of the proposed scheme and Tsai et al. [16] for different
modalities. (a) CT, (b)MR, (c) X-ray, and (d) DSA. (Here, NLSB = 5 and the no. of images in different
modalities are: CT = 84, X-ray = 41, MR = 195, DSA = 12. Image sizes are shown in total no. of pixels).

capacity. For example, for 512 × 512 size images and with NLSB = 5, when Tsai
et al. scheme has an average capacity of 95.83 Kbits, its MSSIM becomes 0.9895; whereas,
the proposed scheme provides the embedding capacity of 100.40 Kbits with MSSIM of
0.9974.
This means that the proposed scheme is more likely to have better capacity-distortion

performance than the Tsai et al. scheme for higher capacity requirement.
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Tsai et al. [16], NBW=1, NBW=2, NBW=3, NBW=4, NBW=5
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Figure 11 Embedding capacity (total) of the proposed scheme and Tsai et al. [16] for different
modalities. (a) RF, (b) US, and (c)MG. (Here, NLSB = 5 and the no. of images in different modalities are:
RF = 19, US = 14, and MG = 5. Image sizes are shown in total no. of pixels).

Table 1 Overall Performance comparison formedical images of size 512× 512 and
NLSB = 5
Methods MSSIM Capacity (Kbit)

Tsai et al. [16] 0.9895 95.83

Proposed (NBW = 1) 1.0000 10.20

Proposed (NBW = 2) 1.0000 20.40

Proposed (NBW = 3) 0.9999 30.54

Proposed (NBW = 4) 0.9998 40.64

Proposed (NBW = 5) 0.9995 50.70

Proposed (NBW = 6) 0.9992 60.72

Proposed (NBW = 7) 0.9989 70.70

Proposed (NBW = 8) 0.9985 80.64

Proposed (NBW = 9) 0.9980 90.54

Proposed (NBW = 10) 0.9974 100.40
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This capacity-distortion performance analysis of our scheme, however, is a separate
study and will be addressed in our future research.
The proposed scheme consistently and almost linearly performs over different modal-

ities of medical images. We note here that for a few modalities such as MG, US and
DSA, we have used a limited test-set of images. Although the inconsistent performance
of Tsai et al. scheme is more or less evident in those modalities, our conclusion is based
on the other modalities studied in this paper, where we used a relatively high number of
test-images.

Conclusions
In this paper, we proposed a new content-independent embedding scheme for multi-
modality medical image watermarking. We generalized RONI, specifying its selection
criteria and determining parameters to adaptively control it. While the proposed scheme
keeps the ROI pixels in the images untouched, it also maintains a good image quality
in the RONI. The proposed scheme avoids the computational overhead of segmentation
used for RONI selection inmedical images. Our experimental results successfully demon-
strated the consistent performance of the proposed scheme for different modalities of
medical images. Our findings also suggest that the performance of the state-of-the-art
reversible schemes would be modality-wise inconsistent.
As a final remark, with an appropriate watermarking framework (i.e., with the con-

siderations of watermark generation, embedding and detection functions), our proposed
scheme can be viable for the multi-modality medical image applications and distant
medical services such as teleradiology and eHealth.
In our future work, we will focus on determining suitable limits for the capacity con-

trol parameters and the capacity-distortion performance of the proposed scheme to meet
higher capacity requirements.

Endnote
aThere are many modalities of medical images. In this paper, we consider the

commonly used modalities: Computed Tomography (CT), Magnetic Resonance (MR),
X-ray, Digital Subtraction Angiography (DSA), Radio Fluoroscopy (RF), Ultrasound
(US), and Mammography (MG).
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