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Abstract

Background: Introducing point mutations into bacterial chromosomes is important for further
progress in studies relying on functional genomics, systems- and synthetic biology, and for
metabolic engineering. For many investigations, chromosomal systems are required rather than
artificial plasmid based systems.

Results: Here we describe the introduction of a single point mutation into the Escherichia coli
chromosome by site-directed mutagenesis without leaving any selection marker. We used Red®/
ET®Recombination in combination with rpsL counter-selection to introduce a single point mutation
into the E. coli MG 1655 genome, one of the widely used bacterial model strains in systems biology.
The method we present is rapid and highly efficient. Since single-stranded synthetic
oligonucleotides can be used for recombination, any chromosomal modification can be designed.

Conclusion: Chromosomal modifications performed by rpsL counter-selection may also be used
for other bacteria that contain an rpsL homologue, since Red®/ET® Recombination has been applied
to several enteric bacteria before.

Background mutagenesis must be coupled to a counter-selection

Red®/ET® Recombination is a powerful tool for the chro-
mosomal inactivation of genes or complete operons [1-3].
This method is based on the homologous in vivo replace-
ment of a gene/operon of any size and chosen position
with a resistance cassette (e.g. a gene conferring antibiotic
resistance) in a precise and specific manner by the A-phage
RedyBo recombination system and is applicable to all
enteric bacteria. For certain purposes, the introduction of
single point mutations is required rather than complete
gene replacement or deletion, e.g. to modify a promoter
or specifically inactivate the catalytic center of a certain
gene product. In most cases, positive phenotypic selection
for the introduced mutation is un-achievable, so that

approach. A powerful counter-selection system based on
the rpsL gene (rpsL-neo) and streptomycin selection for
the introduction of point mutations into Bacterial Artifi-
cial Chromosomes (BACs) has been described [4], and
this method was further useful for the recombination of
large DNA-fragments into BACs [5]. This counter-selec-
tion system is based on the rpsL gene encoding the S12
ribosomal protein, which is the target of streptomycin.
Chromosomal mutations within rpsL are responsible for
streptomycin resistance [6]. Many E. coli strains com-
monly used for protein overproduction and/or metabolic
engineering, including MC4100 [7], JM110 [8], Rosetta
DE3 (Novagen, Darmstadt), HB101 (ATCC 33694), and
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TOP10 (Invitrogen, Karlsruhe) carry an altered rpsL gene
conferring streptomycin resistance. The counter-selection
system takes advantage of the fact that mutations within
rpsL leading to streptomycin resistance are recessive in a
merodiploid strain.

Here we describe a rapid method for site-directed muta-
genesis of the E. coli chromosome. We used rpsL counter-
selection in combination with Red®/ET® Recombination
to introduce a single point mutation into the kdpA gene
locus of the MG1655 strain genome. We show that rpsL
counter-selection is applicable for introducing modifica-
tions into the bacterial chromosome. Single-stranded syn-
thetic oligonucleotides can be used for recombination, so
any chromosomal modification can be designed.

Results

Introduction of a single point mutation into kdpA was
chosen to demonstrate rpsL based counter-selection in
combination with Red®/ET® Recombination on the E. coli
chromosome. KdpA is the K+-translocating subunit of the
KdpFABC system, a high affinity K+ uptake system in E.
coli, which is essential for growth under K+-limitation [9].
Previously, clones obtained by random mutagenesis were
screened for their inability to grow under K*-limiting con-
ditions. The mutation in one of these clones (E. coli
TK2204) was mapped to kdpA, and was designated kdpA4
[10]. Detailed analysis of kdpA4 revealed a point mutation
at position 1033 (G to A). This substitution changes gly-
cine 345 to serine. Glycine 345 is located within the K+
selectivity filter of subunit KdpA [11], and the substitution
prevents growth under K+limiting conditions. Since E.
coli strain TK2240 is not isogenic to E. coli MG1655 (Tab.
1), and the latter strain was already used for systems bio-
logical studies of the Kdp system [12], we aimed to intro-
duce the original kdpA4 point mutation into the E. coli
MG1655 chromosome. As kdpA4 prevents growth under
K*-limitation, no positive selection for the mutants was
possible. Thus, we applied the rpsL based counter-selec-
tion method to screen for mutants.

In contrast to other K-12 E. coli strains (see Introduction),

strain MG1655 contains the wild-type rpsL gene and is
naturally sensitive to streptomycin. Therefore, an altered

Table I: E. coli strains used and their genotypes
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rpsL gene conferring streptomycin resistance was intro-
duced first. For this purpose rpsL150 of E. coli MC4100
was amplified and recombined into E. coli MG1655 carry-
ing plasmid pRed/ET(amp). The temperature sensitive
(ts) origin of replication of plasmid pRed/ET(amp)
restricts replication at 37°C. After each recombination
step cells were incubated at 37°C to remove the plasmid,
and the colonies obtained were tested for plasmid loss.

In general, it is not absolutely necessary to cure strains
from plasmid pRed/ET(amp) after each recombination
step. Since araBAD promoter activity is not completely
down-regulated in the absence of arabinose, the occur-
rence of any rearrangement was prevented. Resistant colo-
nies were not obtained on the control plate (cells equally
treated without Red®/ET® production). The overall recom-
bination frequency was about 4 x 10-8/ug DNA. All clones
obtained were streptomycin resistant and ampicillin sen-
sitive. The efficiency of proper recombination was 100%
(i.e. no false-positives). We observed no differences
between E. coli MG1655 and E. coli MG1655 rpsL150, nei-
ther in growth nor in kdpFABC transcription/KdpFABC
translation fidelity (data not shown).

The general mechanism of rpsL counter-selection is illus-
trated in Fig. 1. A prerequisite for the strain to be used is a
chromosomal encoded resistance to streptomycin con-
ferred by a mutation in rpsL, which implies that this
method can only be applied to bacterial stains with an
rpsL homologue. Briefly, cells carrying a mutated chromo-
somal rpsL gene (e.g. mpsL150), exhibiting streptomycin
resistance, are modified by the introduction of linear DNA
comprising the rpsL-neo cassette with 50 bp homology
arms surrounding the target gene site of interest. The addi-
tional wild-type allele of rpsL provided by the rpsL-neo
cassette is dominant over rpsL150, and cells become sensi-
tive to streptomycin and resistant to kanamycin, when the
cassette has been inserted into the chromosome. In the
next step, a DNA-fragment carrying the mutated site in the
target gene (e.g. kdpA) is introduced into cells, which
recombines and replaces the rpsL-neo cassette. Due to the
loss of the rpsL wild-type allele, recombinants regain
streptomycin resistance again and can easily be selected.
Furthermore, recombinants become kanamycin sensitive

E. coli strain Genotype Reference

MGI1655 wild-type; F-lambda- ilvG rfb50 rph| [31]

MC4100 F-araD 139 A(argF-lac) U169 rpsL150 relAl fib-5301 fruA25 deoCl ptsF25 [7]

TK2204 F- thi rha lacZ(am) nagA kdpA4 trkA405 trkD | [10]

MG1655 rpsL150 F-lambda-ilvG rfb50 rphl rpsL150 (StrR) this work
MG1655 rpsL150 kdpA4:rpsL-neo F-lambda-ilvG rfb50 rph| rpsL150 kdpA:rpsL-neo (KanR, StrS) this work
MG1655 rpsL150 kdpA4 F-lambda- ilvG rfb50 rph| rpsL150 (StrR) kdpA4 this work
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Basic principle of introducing mutations into the bacterial chromosome using rpsL-based counter-selection. Prerequisite for the used
strain is a chromosomal resistance against streptomycin conferred by a mutation in rpsL. If necessary, the strain can be made StrepR before by homologous
recombination of a mutated rpsL gene (e.g. rpsL150) (step 1). Around the point of interest within the target gene, the rpsL-neo cassette is inserted via 50
bp homology arms by Red®/ET® Recombination (step 2). Positive clones are KanR. Due to the additional wild-type allele of rpsL, the strain becomes StrepS
(step 3). In the next step, the rpsL-neo cassette is replaced by Red®/ET® Recombination against the modified double-stranded (ds) or single-stranded (ss)
DNA-fragment of the target gene (carrying the point mutation) (step 4). Positive clones become StrepR again and can therefore easily be selected (step 5).

The asterisk represents the point mutation within the target gene.
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due to the loss of the rpsL-neo cassette. Selection for strep-
tomycin resistant clones is carried out on complex
medium agar plates, so clones grow within 1-2 days of
incubation. Within this short incubation time, clones
with spontaneous rpsL mutations rarely appear.

Insertion of the kdpAG1033A point mutation into the
chromosome is illustrated in Fig. 2. The homology arms
of the rpsL-neo cassette were constructed in a way that a 50
bp homology to kdpA was ensured on each side of the
point mutation, while the downstream homology arm
contained the point mutation. The PCR product kdpA4-
rpsL-neo (1.4 kb) was recombined into E. coli MG1655
rpsL150 carrying plasmid pRed/ET(amp). About half of
the colonies obtained represented false positives based on
the number of colonies observed on the control plates.
Plasmid loss appeared to be a strain MG1655 specific
problem, because other E. coli strains (e.g. HB101,
W3110, DH5a, DH10B) generally exhibit >90% validated
positives. Nevertheless, the overall recombination fre-
quency for the kdpA4-rpsL-neo cassette in E. coli MG1655
was about 3 x 107/pug DNA (25% of clones were correct),
which was checked by testing for sensitivity to streptomy-
cin (StrepS) and ampicillin (AmpS$), and resistance to kan-
amycin (KanR). Introduction of the kdpA4-rpsL-neo

143 bp without cassette
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cassette was verified for two StrepS, KanRand AmpS clones
by PCR analysis using counterA4_sense and counter_A4
antisense primers. For both clones, a fragment of 1.44 kb
was obtained, which corresponded to the inserted kdpA4-
rpsL-neo cassette (Fig. 2, Fig. 3a).

Next, the kdpA4-rpsL-neo cassette was replaced by a DNA-
fragment containing the kdpA4 mutation, which was
obtained by PCR using an E. coli TK2204 chromosomal
DNA template. The DNA-fragment was recombined into
E. coli MG1655 rpsL150 kdpA4:rpsL-neo carrying plasmid
pRed/ET(amp). Depending on the amount of cells plated,
limited background growth was visible as a kind of smear
at this step. Nevertheless, single colonies were clearly visi-
ble. Several hundred clones were obtained, and about half
of the number of clones observed on the recombination
plate was observed on the control plate. The overall
StrepR, Kan® and AmpS clone yield was about 10%, indi-
cating that the recombination frequency was about 2 x 10
7/ug DNA. The replacement of the kdpA4-rpsL-neo cassette
against the mutated kdpA gene fragment (kdpA4) was
tested for two clones which were StrepR, KanSand AmpS by
PCR analysis. As expected, the size of the PCR products
was about 150 bp confirming the loss of the kdpA4-rpsL-
neo cassette (Figs. 2 and 3a).

1442 bp (1299 bp + 143 bp) with inserted cassette

@ @
Pri G1033A Primer
rimer i
counter_kdpA4 (G345s) counter_kdpA4
sense upstream homology arm downstream homology arm antisense
N
|521 B o FEC I R e e e S i(.-a f e T R e lzfj kdpA
50 nt 24 nt 50 nt
Primer neo ‘ Primer
kdpA4-rpsL-neo kdpA4-rpsL-neo
sense . @ antisense
1299 bp
@ @
1399 bp
Figure 2

Primer design to introduce the replacement G1033 to A in kdpA encoding KdpA/G345S. The homologous parts of
the homology arms to kdpA are indicated as well as the primers for introduction and verification of the rpsL-neo cassette
inserted into the kdpA gene. In the lower part, the composition and the sizes of the linear DNA-fragments for recombination
are indicated. The asterisk represents the mutated base in kdpA. In the upper part, the sizes of DNA-fragments confirming the
introduction or loss of the rpsL-neo cassette are indicated. nt = nucleotides.
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Figure 3

Verification of the insertion/replacement of the rpsL-neo cassette in kdpA by PCR (A) and verification of the
kdpA4 phenotype (growth deficiency under K*-limitation) (B). A Two positive clones of each recombination step
were analyzed by colony PCR. On the left panel, insertion of the rpsL-neo cassette into kdpA was verified, on the two middle
and the right panel the replacement of the kdpA4-rpsL-neo cassette by the double-stranded and the two single-stranded kdpA4-
fragments (kdpA containing the point mutation G1033A) was confirmed. Below the gels pictures, the respective DNA-fragment
used for the recombination is indicated. ds = double-stranded, ss = single-stranded, nt = nucleotides. B Cells were grown over-
night in minimal medium containing 10 mM K*, washed three times in minimal medium containing 0.02 mM K*, diluted, and 2 pl
of each suspension containing the indicated number of cells was spotted onto a minimal medium agar plate containing 0.02 mM
K* or 10 mM K*, respectively. Cells were incubated overnight at 37°C
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In principle, this method should work for engineering a
mutation into the chromosome using single-stranded
synthetic oligonucleotides. To test this, two oligonucle-
otides were used for recombination, one 79 nucleotides
(nt) and one 99 nt in length, consisting of 39 nt and 49 nt
length homology arms, respectively, surrounding the
point mutation. The recombination frequency for both
oligonucleotides was observed to be about 2 x 10-7/ug
DNA, comparable to that observed for double-stranded
DNA. Replacement of the kdpA4-rpsL-neo cassette against
the mutated kdpA gene fragment (kdpA4) was confirmed
for two StrepR, KanS and AmpS clones from each recombi-
nation setup (79 nt and 99 nt oligo) by PCR analysis (Figs.
2 and 3a).

DNA sequencing confirmed the accurate homologous
recombination of the fragments within the kdpA gene, and
introduction of the G1033A mutation. Furthermore,
strain MG1655 with the point mutation in kdpA was
tested phenotypically for growth under K*-limitation. As
shown in Fig. 3b, cells with a kdpA4 mutation exhibit
growth defects under K+*-limiting conditions (0.02 mM
K+).

Discussion

New approaches to introduce point mutations into bacte-
rial chromosomes are important for advancing functional
genomics and systems biology investigations as well as for
metabolic engineering. In this way, mutations are intro-
duced and copy numbers of the encoded proteins are
retained. Moreover, it is important to avoid polar effects
from remaining antibiotic resistance cassettes in the gene
of interest.

Here we demonstrated that rpsL counter-selection in com-
bination with Red®/ET® Recombination is an efficient
approach to modify the E. coli chromosome. We intro-
duced a single point mutation into the kdpA locus of E. coli
MG1655, one of the bacterial model strains used widely
in systems biological approaches. The method described
here is convenient because a selectable marker is used in
each step. Furthermore, there is no need for cloning the
gene fragment into a special vector, which makes the
method time efficient. Recombination between the two
rpsL alleles is improbable, because Red®/ET® Recombina-
tion starts recombination at the ends of a linear fragment
(Y. Zhang, personal communication), and the wild-type
rpsL allele located on the linear PCR-fragment is flanked
by about 300 bp 50 of which are responsible for precise
recombination. The method that we present works with
synthetic oligonucleotides as well. Thus it might also be
used for the replacement of multiple nucleotides, for dele-
tions or insertions within the gene of interest.

http://www.microbialcellfactories.com/content/7/1/14

Other counter-selection methods have been described.
The introduction of a single point mutation into the E. coli
chromosome (at the galK locus), has been described using
A prophage suicide counter-selection [13]. thyA- and galK-
based counter-selection systems have been successfully
applied to the modification of BACs [14,15], and these
methods allow modification of DNA without leaving a
selectable marker at the modification site likewise rpsL-
based counter-selection. While the rpsL marker gene is
only slightly modified, these methods require complete
deletion of the respective marker gene. Furthermore, in
the case of rpsL counter-selection, cells can be grown in
complex medium instead of in minimal medium, which
speeds up the process and circumvents spontaneous
mutations.

Another counter-selection method is recA- dependent,
which relies on the integration and resolution of a special
shuttle vector, and has been successfully applied to mod-
ify BACs [16,17]. This method requires time-consuming
restriction and ligation steps. These same time-consuming
steps are necessary for the "gene gorging" method
described previously [18], and most of the other counter-
selection systems which use recognition sites for rare-cut-
ting restriction endonucleases, like I-Scel. Nevertheless,
these methods were successfully utilized for the modifica-
tion of BACs, and the E. coli genome [19,20]. Recently,
counter-selection using I-Scel rare restriction sites has
been applied to modify the Salmonella enteritidis genome
using PCR-based recombination cassettes, thereby over-
coming the disadvantages described above [21]. Another
common, simple method is sacB-based counter-selection
[22], but this method implies a high frequency of sponta-
neous point mutations in the selection marker sacB,
which significantly increases the background after nega-
tive selection [15]. Likewise, spontaneous point muta-
tions within the rpsL-neo cassette might also promote the
occurrence of false-positive clones. Such false-positive
clones can easily be identified by checking for streptomy-
cin sensitivity after recombination of the rpsL-neo cassette.

Conclusion

We present an efficient and non-disruptive approach to
introduce point mutations into the E. coli chromosome.
Chromosomal modifications performed by rpsL counter-
selection may also be used for enteric bacteria that contain
an rpsL homologue and in which Red®/ET® Recombina-
tion is functional. Red®/ET® Recombination or analogous
methods have been efficiently applied in Salmonella [23],
Yersinia [24], Shigella [25], Citrobacter [26], and Serratia
[27] species, and all of these species have a rpsL homo-
logue. The versatility of this system illustrates its potential
for furthering studies in an important clade of organisms.
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Materials and methods

Plasmids and Strains

E. coli strains are listed in Tab. 1. Plasmid pRed/ET(amp)
was obtained from the "Quick and Easy E. coli Gene Dele-
tion Kit" (Gene Bridges, Heidelberg), and the rpsL-neo
template DNA was obtained from the "Counter-Selection
BAC Modification Kit" (Gene Bridges, Heidelberg). All
oligonucleotides were obtained from Operon GmbH
(K6ln) in a salt-free grade.

Media and Growth Conditions

Cells were grown in LB broth [28] under aerobic condi-
tions at the designated temperature. For solid media,
1.5% (w/v) agar was added. Antibiotics were used at the
following final concentrations: ampicillin (50 pg/ml),
carbenicillin (50 pg/ml in solid media), kanamycin (15
pg/ml), streptomycin (50 pg/ml), and tetracycline (3 pg/
ml). For verification of the K*-dependent growth deficient
phenotype, a phosphate buffered minimal medium was
used containing variable amounts of K* (0.02 mM and 10
mM, respectively) [29].

Competent cells and transformation

Transformations of cells by introduction of linear DNA-
fragments for recombination were performed by electro-
poration according to the protocol recommended by the
technical manual of the "Quick and Easy E. coli Gene
Deletion Kit" (Gene Bridges, Heidelberg). Briefly, two 1.4
ml cultures of the designated strain were cultivated in 2.0
ml LidBac tubes (Eppendorf, Hamburg) in a thermomixer
at 30°C. At an absorbance of 0.3 (600 nm), freshly pre-
pared L-arabinose was added (0.35% w/v, final concentra-
tion) to one of the cultures inducing redyBo/recA
expression, and expression was continued at 37°C. A con-
trol culture with no arabinose was incubated as a control.
After 45 min, cells were harvested by centrifugation,
washed twice with 10% (v/v) ice cold glycerol, and resus-
pended in a final volume of 30 pl in 10% (v/v) ice cold
glycerol. DNA-fragments (400-600 ng ds-DNA, 150 ng ss-
DNA) were then added to both samples, and mixtures
were incubated on ice for 2 min. Subsequently, samples
were transferred to electroporation cuvettes (BioRad,
Miinchen), and electroporation was carried out with a
MicroPulser (BioRad, Miinchen) at constant 2.5 kV for ~5
ms (Ec2 program). Cells were immediately removed from
the cuvettes by mixing with 1 ml LB medium, and then
incubated at 37°C for 3 h. Cells were collected by centrif-
ugation, and all cells (~10°) were plated on LB agar con-
taining the appropriate antibiotics.

Transformations of cells by introduction of plasmids were
performed with chemically (RbCl) competent cells as
described elsewhere [30].

http://www.microbialcellfactories.com/content/7/1/14

In vitro amplification of DNA-fragments

Linear DNA-fragments comprising either the wild-type or
mutated rpsL gene (rpsL150) were obtained by polymerase
chain reaction using primers rpsl,_up1 (5'-CTTGACAC-
CTTTTCGGCATCGC-3') and rpsl_downl (5-CGTTGT-
TAATTCAGGATTGTCC-3') with genomic DNA from E.
coli MG1655 or MC4100, respectively, as templates. The
kdpA4-rpsL-neo cassette was amplified using primers with
homology arms consisting of 50 nucleotides upstream
and downstream of the targeted point mutation and 24
nucleotides homologous to the rpsL-neo cassette (kdpA4-
rpsL-neo sense 5'-
GCGTGCTGGTCAGTAGCCTGTITIGCGGTCGTGACGAC
GGCGGCITCCTGTGGCCTGGTGATGATGGCG-
GGATCG-3/; kdpA4-rpsL-neo antisense 5'-
ACCATGCCACCGAGAGCGGTAAACGAATCATGCATCG
CAATCACCGCGCTTCAGAAGAACTCGTCAAGAAG-
GCG-3") using the rpsL-neo template DNA (Gene Bridges,
Heidelberg). For amplification of the mutated kdpA gene
(kdpA4), primers that bind upstream and downstream,
respectively, of the homology arms were used
(counter_kdpA4_sense 5'-AGGTAAAGAGAGCCGTT-
TCGG-3', and counter_kdpA4_antisense 5'-ATTTGCAT-
CAGCCACATCGGC-3'), and the DNA-fragment was
obtained by PCR using genomic DNA of E. coli TK2204 as
template. For further verification of the point mutation in
kdpA, the targeted portion of the kdpA gene was amplified
with primers kdpA2_sense (5'-CCAACGGCGCTGT-
GCTITGCC-3') and kdpA2_antisense  (5'-GAAT-
AGCGCCAGTTGTITACG-3'). For all amplifications
Phusion™ polymerase (New England Biolabs, Frankfurt)
was used, and the protocol recommended for this
polymerase was applied (30 cycles, 10 sec 98°C, 20 sec
50°C, 15-30 sec 72°C). For large amounts of DNA, each
PCR was performed in parallel several times. PCR prod-
ucts were separated by agarose gel electrophoresis, and
DNA was isolated and concentrated by elution in a final
volume of 10 pl using the MinElute Gel Extraction Kit
(Qiagen, Hilden). For replacement of the kdpA4-rpsL-neo
cassette by single-stranded oligonucleotides, we used oli-
gonucleotides kdpA4_80_cassette (5'-
GTAGCCTGTITGCGGTCGTGACGACGGCGGCITCCTG
TAGCGCGGTGATTGCGATGCATGATTCGTITAC-
CGCTCTCGG-3') and  kdpA4_100_cassette  (5'-
GTGCTGGTCAGTAGCCTGTTITGCGGTCGTGACGACGG
CGGCTTCCTGTAGCGCGGTGATTGCGATGCATGAT-
TCGTTTACCGCTCTCGGTGGCATGGTG-3')  harboring
the kdpA4 mutation. For verification of correct clones, col-
ony PCR was performed.

Abbreviations
BAC: Bacterial Artificial Chromosome; nt: nucleotides; ds:
double-stranded; ss: single-stranded.
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