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Abstract

Clostridiaceae and Enterobacteriaceae.

initial conditions and scale.

Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark
fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this
review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This
review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901.
Qualitative growth characteristics and quantitative normalized results of H, production for more than 2000
conditions are presented in a normalized and therefore comparable format to the scientific community.
Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but
mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family 1)
have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families

The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet
underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred
for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions
and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of

Keywords: Hydrogen yield, Volumetric hydrogen productivity, Specific hydrogen productivity, Closed batch, Batch,
Chemostat culture, Fed-batch, Bioprocess, Result normalization, Scalable physiological parameters

Introduction
A possibility to circumvent the production of non-
carbon neutral greenhouse gasses, such as carbon dioxide
(CO,), is the development and continuous investigation
of alternative biofuels. One promising alternative fuel is
biologically generated hydrogen (H,), which is referred to
as biohydrogen. Biohydrogen production (BHP) has ini-
tially been described in the 19t century [1,2], but eluci-
dation of dark fermentative biohydrogen production was
only done since 1901 [3,4]. Dark fermentative BHP is a
carbon neutral process for production of H, and CO,
from biomass by facultative and obligate anaerobic
microorganisms.

H, offers many beneficial features, such as being harm-
less to mammals and the environment [5-7]. Moreover,
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H, is regarded as a non-polluting fuel, because its com-
bustion product is water (H,O). When comparing volu-
metric energy densities at normal conditions for H, and
methane (CHy) a drawback of H, is emerging, since H,
comprises 3.00 kWh m™ in comparison to 9.97 kWh m™
for CH, [8]. Moreover, H, storage and transmission pro-
blems have been addressed [6,9-12], but research for
optimization is ongoing [13].

H, may be produced by a number of different pro-
cesses including electrolysis of H,O, thermocatalytic ref-
ormation of hydrogen rich substrates and various
biological processes [14-18]. To date, H, is mainly pro-
duced by electrolysis of H,O and steam reformation of
CH,. These processes are very energy intensive, but can
be simply performed. Biological processes can be carried
out at ambient temperatures, but they are more sophisti-
cated in design and performance [18,19]. BHP can be
achieved by direct or indirect biophotolysis, photo-
fermentation and dark fermentation [15,16,18,20-25].
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The main advantage of dark fermentative BHP is that
the hydrogen evolution rate (HER) [mmol L' hYis
higher in contrast to other BHP processes [11,12,17,26].
Major known drawbacks of dark fermentative BHP are
the low yield of H, per substrate consumed (Yo/s))
[mol mol™], which is due to metabolic fundamentals
[27]. Moreover, concomitant production of carbon rich
metabolites (i.e. organic acids, alcohols) and CO, is
shown [28] and must be individually evaluated for each
strain. CO, can be removed or separated from H,, se-
quentially stored in biomass [29], or converted to other
substances, such as CH, [30,31]. Basic microbiological
investigations and bioprocess engineering research was
performed to increase the overall strain performance
of BHP during fermentation of pure microorganisms
[32-34].

For a structured approach, we classified the vast
amount of information available in literature in respect
to the process modes, such as closed batch, batch,
chemostat culture and fed-batch conditions and quanti-
fied the main performance attributes. We reviewed the
exciting work published on microbial strains capable of
dark fermentative BHP with the aim to demonstrate the
versatile portfolio of H, producing genera and the wide
range of possible substrates for this purpose. In the
present contribution the Y(112/s), HER and specific hydro-
gen productivity (qH,) [mmol g h™] of the families
Clostridiaceae, Enterobacteriaceae and Thermoanaero-
bacterales (Family III), as well as mesophilic and
thermophilic cultivation conditions have been statisti-
cally compared. We analyse the microbiological and bio-
chemical engineering approaches for optimization of H,
production and provide a comprehensive summary of
the current status of dark fermentative BHP from more
than 2000 different conditions. Herewith we want to
stress that more quantitative work is urgently needed to
turn this natural capacity into economic processes,
based on physiological scalable parameters, which allow
comparison and targeted optimization. Therefore, as a
significant contribution to future work we propose a set
of physiological scalable parameters for normalized
results.

Classification and quantification tasks

In order to show a complete picture of each strain’s H,
production potential the results of dark fermentative BHP
are presented in Additional files 1, 2, 3, 4, 5. Qualitative
and quantitative characteristics are summarized as fol-
lows: taxonomic classification (genus, species, strain),
quantitative performance attributes of BHP (Y
[mol mol ] (substrate conversion efficiency), the HER
[mmol L h'Y] (volumetric productivity) and the qH,
[mmol g’ h'] (biological production capacity)), and
qualitative attributes (i.e. pH, temperature and substrate).
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Moreover, we introduce a new categorization system in
order to subclassify results according to the experimental
set-up. This was required since many experiments have
been conducted in sealed vials. We denote this cultivation
technique as “closed batch”. This is a very prominent
microbiological cultivation technique, which has to be
distinguished from batch cultivation in open systems (i.e.
bioreactors). Thereafter, the following categorization was
used: batch, chemostat culture and fed-batch.

Many authors stress for the importance to uniformly
present yield and rates of BHP [11,12,35]. Result com-
parison is most suitably to be achieved by using culture
dependent Ya/s) and qH,, as well as the non-culture
dependent HER, because these units completely describe
the strains H, production characteristics. Moreover, the
yield and rates are independent of scale and initial
process conditions. We are certainly aware of the fact
that presentation of results is even more advantageous
based on a C-molar basis of the substrate [36]. There-
fore, experiments have to be performed on defined
media rather than on complex media, because the calcu-
lation of C-molar yield and productivities is not possible
when analysing the performance in complex media.
Thus, sophisticated analysis methods need to be consid-
ered for the evaluation of Y5, HER and qH, based
on C-molar mass balance. In this respect, we want to
generally stress the importance of result presentation
using mass balances, which is very important for quality
assurance and must not be omitted [37]. Complete
quantitative comparison of dark fermentative BHP
would become possible if a C-molar basis of result pres-
entation is used throughout the scientific community.

Review

Pure and defined co-culture experiments

A summarization the distribution of quantitative results
obtained from different experimental set-ups of dark fer-
mentative BHP is shown in Table 1. It becomes obvious
that Y o/s) is most often presented, which is followed by
the HER, whereas qH, is described in less extent. Most
studies on Y5y or HER were performed by either
closed batch or batch fermentation (Additional files 1,
2). A special case represents the fed-batch fermentation,
whereof only five results for Y25y can be found in lit-
erature [38]. Results of BHP from defined co-culture

Table 1 Overview of dark fermentative BHP in respect to
the cultivation technique

Culture Closed Batch Chemostat Fed-batch
parameter batch culture
Y(H2/5) 441 425 253 5
HER 329 333 171 0
agH, 68 78 99 0
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examinations are also presented within the Additional
files 1, 2, 3, 4.

Non-quantitative H, production

Many dark fermentative BHP strains were isolated and
characterized, but quantitative information on H, pro-
duction is missing. These strains and their correspond-
ing growth requirements can serve as a pool to extend
microbiological and bioprocess engineering examina-
tions to new taxa. Furthermore, we are often confronted
with the fact that quantitative results are assessed, but
cannot be normalized by using the units Y5, HER or
qH,, because of missing or undefined entities for recal-
culation of presented results. Consequently, these results
and corresponding conditions are assigned to Additional
file 1, because we have not been able to normalize these
results for comparison purposes.

Closed batch H, production

Dark fermentative BHP is found to be most often per-
formed by strain cultivation in closed vessels (Additional
file 2). Closed batch technique offers the main advantage
that highly sophisticated bioprocess cultivation set-up for
research can be omitted. Moreover, simple incubation
conditions may be easily accomplished, because only in-
cubation in H,O or air bath is necessary. In our opinion a
closed batch investigation is highly advantageous in order
to examine physical factors affecting BHP. For instance
the elucidation of optimum temperature values, the effect
of gas pressure, the influence of illumination or the inves-
tigation of agitation can be investigated. In this respect
the inhibition of CO, and H, was described [39,40]. Add-
itionally, by using closed batch technique, the substrate
utilization spectrum can be investigated. This mode has
the advantage to screen fast, determine optimal physical
parameters, and describe their relationship to the physio-
logical performance. Hence, the application closed batch
is indeed of great value. The elucidation of chemical fac-
tors on BHP, such as the pH value seems to be rather dif-
ficult, because balanced growth at a certain pH value by
means of base addition cannot be simply achieved. The
investigation of the initial substrate concentration and
medium amendments in order to optimize medium com-
position has been conducted, and the results led to an
optimized medium composition [41,42].

A disadvantage of the closed batch technique is the
discontinuous monitoring of culture parameters and the
occurrence of unstable culture conditions due to sample
removal and/or inhibition of BHP by build up of liquid
and gaseous metabolic end products, because these
excreted cellular end products cannot be continuously
removed from the closed culture vessel. Manipulation to
the culture vessel or to the culture itself requires at least
the disruption of one physical factor. This unavoidably
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results in non-continuous cultivation conditions, making
the utilization of closed batch technique rather un-
attractive, if sampling occurs more than once, because
the culture response to changes in environmental condi-
tions occurs rapidly [43]. Considering advantages and
disadvantages of closed batch investigation the most ur-
gent question to be addressed is: how quantitative is
closed batch? Although, balanced growth may not be
achieved, H, production and growth kinetics were suc-
cessfully investigated using closed batch technique
[41,42]. End product inhibition occurring during closed
batch investigation resulting from the production of sol-
vents, organic acids, alcohols, CO, or H, partial pressure
build-up certainly influences the results [39,40]. Hence,
closed batch systems can be used for fast screening, but
open cultivation systems need to be used for subsequent
examination of the physiological potential of the strain
and for quantitative bioprocess development.

Batch, chemostat culture and fed-batch H, production
We provide an overview of dark fermentative BHP in bior-
eactors and similar set-ups, such as modified Erlenmeyer-
flasks and refer to these examination techniques as open
systems, because gas sparging, offgas composition deter-
mination, pH titration and medium supplementation can
be performed. By using a highly controlled and automated
set-up it is possible to quantitatively describe the strains
inherent H, production capacity and growth kinetics. Usu-
ally, this is performed by using fully automated and con-
trolled bioreactor set-ups [34,44]. We compare the strains
based on their BHP potential on glucose, and do not dis-
tinguish between growth on complex or defined medium.
Furthermore, the pH value and temperature was not taken
into account for comparison purposes.

Batch H; production

Many quantitative investigations related to biohydrogen
production were conducted by using batch type fermenta-
tions. Hereof, the genera Bacillus, Caldicellulosiruptor,
Clostridium, Enterobacter and Escherichia were most
widely studied (Additional file 3). Based on Yy we
identified Caldicellulosiruptor owensensis DSM 13100
[44] and Enterobacter cloacae DM 11 [33] showing high-
est Yos) of 4.0 and 3.9 mol mol}, respectively. The
highest HER of 32 mmol L' h™ is shown for Enterobacter
cloacae 11 BT-08 [32], which is followed by Clostridium
sp. strain no. 2 showing a HER of 27 mmol L' h? [45].
When analysing results for the highest qH, we reveal that
Caldicellulosiruptor saccharolyticus DSM 8903 produces
23 mmol g* h™ [28].

Chemostat culture H, production
Dark fermentative BHP has often been investigated in
chemostat culture. The results are summarized in
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Additional file 4. Thereof Caldicellulosiruptor saccharo-
lyticus DSM 8903 is identified to comprise the highest
Y(Hosy of 4.0 mol mol™* [46]. Highest HER of
77 mmol L™ h is reported for Enterobacter cloacae 1I
BT-08 [47]. The highest qH, of 35 mmol g' h™ is
identified for Caldicellulosiruptor kristjanssonii DSM
12137 [34].

Fed-batch H, production

The literature survey of dark fermentative BHP revealed
only five conditions which have been operated in fed-batch
mode (Additional file 5). The quantitative presentation
of these results is restricted to the Yyy/s). The maximum
Y(Hzss) is identified for a recombinant strain of ATCC
25755 comprising 2.15 mol mol ™! [38]. The limited num-
ber of results available for dark fermentative BHP from
fed-batch fermentation is due to the fact that usually the
application of this technique leads to massive accumula-
tion of organic acids and other reduced end products
(i.e. alcohols) in the culture broth, strongly inhibiting
the growth and H, production kinetics. Consequently,
fed-batch investigation can be applied only by using
broth exchange or cell separation systems [38]. Based
on such experimental set-ups high cell densities and
feed flow rates above the maximum specific growth
rate can be reached [36]. The potential of fed-batch
cultivation for H, production is yet underestimated in
terms of quantity and quality (Additional file 5). Thus,
the quantitative potential of fed-batch cultivation has to
be exploited in more detail for dark fermentative BHP
by using biochemical engineering principles.

Discussion

Comparison of H, production performance of strains
related to Clostridiaceae, Enterobacteriaceae and
Thermoanaerobacterales (Family 1lI)

As summarized in Additional files 2, 3, 4, 5 quantitative
examination of dark fermentative BHP is largely
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performed on strains phylogenetically related to either
the family Clostridiaceae or Enterobacteriaceae, but also
strains belonging to the family Thermoanaerobacterales
(Family III) receive increasing scientific attention, because
they comprise certain beneficial metabolic features
[46,48-51]. According to Table 2 less results for qH, than
for HER compared to the Y/s) are described. This dis-
crepancy in the number of results available in literature is
interesting, because during research the determination of
biomass concentration and H, offgas content could be
easily performed. We analysed Clostridiaceae, Enterobac-
teriaceae and Thermoanaerobacterales (Family III) in
order to elucidate differences of the performance of these
families concerning HER and qH, in respect to Yyys).
The basis for comparison is either any carbon substrate
(Figure 1) or glucose (Figure 2), but irrespectively of
growth conditions and metabolic modifications.

These three culture parameters are plotted against
each other on any carbon substrate (Figures 1A-1F).
Based on the HER Clostridiaceae and Enterobacteriaceae
comprise highest volumetric productivity, whereas in re-
spect to the specific H, productivity Clostridiaceae and
Thermoanaerobacterales (Family III) are indicated to
perform better. Nonetheless, a clear trend towards better
substrate conversion efficiency is revealed: Thermoa-
naerobacterales (Family III) > Clostridiaceae > Enterobac-
teriaceae. Secondly, the HER, qH, and Y are
graphically analysed for the growth of the three families
on glucose, but independent of the utilization of com-
plex or defined medium, cultivation conditions or meta-
bolic modifications (Figures 2A-2F). In principle
analogous trends for the HER, qH, and Yyy/s) of the
three families can be shown for the growth on glucose
compared to the growth on any carbon substrate.

Above paragraph described the interrelations between
the physiological parameters of Clostridiaceae, Entero-
bacteriaceae and Thermoanaerobacterales (Family III).
Subsequently, we want to statistically evaluate their dark

Table 2 Results of the statistical analysis for Clostridiaceae, Enterobacteriaceae and Thermoanaerobacterales (Family I11)

Y (H2ss) Clostridiaceae Enterobacteriaceae Thermoanaerobacterales
[mol mol™ (n=464) (n=295) (Family 1ll) (n=73)
Median 1.785 N 0.82 N 29 )
Mean 1.87+£1.10 1.15+134 292+1.18
HER Clostridiaceae Enterobacteriaceae Thermoanaerobacterales
[mmol L h™] (n=317) (n=318) (Family 1ll) (n=38)
Median 867 4915 96
Mean 9.75+841 11.37£17.71 898 +3.40
qH, Clostridiaceae Enterobacteriaceae Thermoanaerobacterales
[mmol g h™] (h=70) (h=102) (Family 1ll) (n=20)
Median 10.05 375 16.615
Mean 1449+£11.24 12.90 £ 26.02 1861£7.14

The level of significance for comparison is p=0.01.
" denotes most significant result.
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Figure 1 A graphical overview is shown irrespective of the utilization of the carbon substrate, medium composition and cultivation
conditions of the HER of Clostridiaceae (A), Enterobacteriaceae (B) and Thermoanaerobacterales (Family lll) (C) plotted against the
Y#2ss)- The qH, of Clostridiaceae (D), Enterobacteriaceae (E) and Thermoanaerobacterales (Family 1lI) (F) is shown in relation to the
Y(Hass)- It is indicated that Clostridiaceae and Enterobacteriaceae perform better than Thermoanaerobacterales (Family Ill) in
respect to the volumetric productivity. The gH, for Clostridiaceae and Thermoanaerobacterales (Family Ill) is shown to be higher than
for Enterobacteriaceae. Regarding the substrate conversion efficiency (Y25 the following ranking is indicated: Thermoanaerobacterales
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fermentative BHP potential. Firstly, a comparison has
been done based on the median in order to identify a su-
perior performance of one of the three families regard-
ing the Y25, HER and qH, [52]. Secondly, the mean
between these families has been individually analysed by
using the Welch-test, or where applicable by using the
Student’s t-test, at a level of significance of p =0.01 [52].
Normalized results available in the Additional files 2, 3,
4, 5 have been used for comparison purposes. The
results are summarized in Table 2.

By comparing the median in respect to the Yyy/s)
HER and qH, we can show that strains perform as fol-
lows: Thermoanaerobacterales (Family III) > Clostridia-
ceae > Enterobacteriaceae. Statistical analysis of the
mean only allows a most significant statement for the
Y(Ho/s) but not for the HER and qH,. Herewith we
present evidence that strains of Thermoanaerobacter-
ales (Family III) perform most significantly better in
respect to the Ygya/s) of Clostridiaceae and Enterobac-
teriaceae. Also strains from the family Clostridiaceae
are found to comprise a most significantly higher Y yo/s)
than strains of the family Enterobacteriaceae. Based on
our statistical investigation we reveal that strains of
the family Thermoanaerobacterales (Family III) have to
be clearly preferred when aiming to achieve a high
Y (H2/s) in comparison to the families Clostridiaceae and
Enterobacteriaceae.

Comparison of mesophilic and thermophilic H, production
In order to compare the dark fermentative BHP per-
formance of mesophilic (20-44 °C) and thermophilic
(45-80 °C) strains we used the results shown in Add-
itional files 2, 3, 4, 5. As mentioned above statistical ana-
lysis has been carried out to evaluate the difference in
terms of Ya/s), ¢H» and HER. The results are summar-
ized in Table 3. We can clearly show that thermophilic
strains are superior to mesophilic strains in respect to
the Y(12/5). This result is also supported in the values for

Table 3 Statistical analysis of mesophilic and thermophilc
dark fermentative BHP

Y(Hass) Mesophilic Thermophilic
[mol mol™] (n=695) (n=244)
Median 1.22 230
Mean 146+1.18" 220+142"
HER Mesophilic Thermophilic
[mmol L' h ™ (n=587) (=129
Median 6.29 3.89
Mean 992+1327 562+545
qH, Mesophilic Thermophilic
[mmol g'1 h" (n=147) (n=50)
Median 7.65 9.70
Mean 11.53+£16.00 1251+£10.79

The level of significance for comparison is p=0.01.
" denotes most significant result.
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the median, which also shows the higher Yy of
thermophilic strains. Herewith most significant evidence
is presented to favour mesophilic over thermophilic
strains in respect to the HER, which is also reflected in
the value determined for the median. Unfortunately our
statistical analysis of qH, cannot present a beneficial re-
sult of one or the other group, but nevertheless the
mean and the median show a trend to favour thermo-
philic over mesophilic strains. Thus, we are able to
present statistical evidence demonstrating to use ther-
mophilic strains when aiming on a high Yy/s), but to
use mesophilic strains to achieve a high HER.

Microbiological potential for enhancing H, production
Microbial potential of H, production by strain isolation

The initial microbiological investigation of strains for
biological H, production offers the opportunity to
characterize the microbes in full detail, for instance in
respect to pH, temperature and substrate utilization
spectrum. Moreover, phylogenetical information will
eventually be retrieved during strain characterization.
We suggest using the information on strains and condi-
tions available in Additional files 1, 2, 3, 4, 5 to extend
studies of dark fermentative BHP to broader substrate
diversity. These strains offer promising experimental
endeavours to microbiologists for physiological studies,
because many of these strains are yet not characterized
in detail [53-56]. Many wild-type strains were found to
comprise a high Y5/s) and high qH, [44,51,57]. More-
over, basic research efforts need to be increased to iso-
late novel dark fermentative BHP strains from the
environment, because up to date only few of the esti-
mated existing microbes have yet become cultivable
[58,59]. Still the optimization of dark fermentative BHP
by using wild-type microbes is an alternative.

Evaluating the microbial H, production potential by
application of in silico analysis

Another highly noteworthy field related to dark fer-
mentative BHP is the strain identification based on in
silico analysis. The information gain is not restricted to
phylogenetical knowledge, but also sequence informa-
tion on enzymes is available [60,61]. Therefore, sub-
stantial information on the catalytic units for H,
production can be retrieved. Moreover, screening for
specific enzymes in respect to substrate breakdown
and utilization can also be done. Isolated information
on certain microorganisms can be retrieved, but also
whole genomes of several dark fermentative BHP
strains are sequenced and provide full access for
physiological and in silico analysis, offering putative
modification possibilities towards metabolic engineering
objectives.
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Optimization of H, production by application of metabolic
engineering

Metabolic engineering is especially important for dark
fermentative BHP strains that comprise high Ys/5) and
qH,, but whereof high volumetric production rates are
either inherently limited by metabolic bottlenecks (i.e.
organic acids, solvent and alcohol production) or, when
concerning thermophilic strains, by their achievable cell
densities. Usually Escherichia coli is the target for meta-
bolic engineering [62-68]. Since Clostridia spp. show
high Y2/5) and high qH, in comparison to Escherichia
spp., metabolic strain engineering is an interesting op-
tion in order to increase HER. Nevertheless, Escherichia
spp. can be genetically modified relatively easy in respect
to their facultative anaerobic growth characteristic
[64,65,67,69], hence, allowing unsophisticated achievable
growth in a variety of culture vessels. Clostridia spp.,
Caldicellulosiruptor spp. and other strict anaerobic gen-
era in turn require more sophisticated cultivation set-up,
because they are obligate anaerobes. Nevertheless,
strains of both genera have been genetically modified
[64,65,67,69-72]. In this respect the application of direc-
ted evolution [73] towards optimization of cultivation
conditions or the substrate utilization spectrum could be
another favourable approach.

Biochemical engineering potential for increasing H,
production

Optimization of H, production by bioprocess engineering
For a robust and commercial usefully application of dark
fermentative BHP several factors have to be addressed.
Firstly, chemical (i.e. pH, ionic strength, CO, solubility)
and physical factors (i.e. temperature, partial pressure of
H, and CO,, agitation) influencing the Y55y and qH,
need to be identified, which are usually already known
and differ between various strains [28,40,74-77]. By
using open cultivation systems removal of inhibitory gas-
eous compounds could be and is done by continuous
stripping with inert gas. Secondly, factors for increasing
the HER (cell retention, end product inhibition) have to
be elucidated. In order to enhance the HER, an increase
of the biomass concentration is required. This may be
accomplished by using membrane filtration to separate
unwanted metabolites and retain the biomass within the
bioreactor. Hence, fed-batch cultivation for dark fermen-
tative BHP can become a promissing approach.

The medium contains the carbon substrate for bio-
mass and H, production and is a very important starting
point for optimization during bioprocess development.
Many conditions, which are presented in Additional files
1, 2, 3, 4, 5, do not properly reflect the status of a pure
carbon source for H, production. Hence, in many
experiments complex medium amendments are used.
Since most of the undefined compounds undergo
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temporal fluctuations from lot to lot during the produc-
tion process, its composition is not always consistent.
Hence, the use of complex compounds does not easily
allow conclusions on the influence of the carbon source
on H, production. In order to establish a robust biopro-
cess quantitative work on defined medium needs to be
performed for strain characterization. This is an import-
ant consideration in order to elucidate the strains
growth parameters and inherent potential of H,
production.

Use of Design of Experiments strategy for optimization of
H, production

Many articles have analysed the impact of the medium
composition in order to increase Y5, HER or qH,
[35,78-82]. These investigations have been performed
invariantly, thus by changing only one culture variable,
but more and more examinations use the advantage of
Design of Experiments (DoE), which has proven to be
very successful [41,55,83-89]. This experimental strategy
allows multivariate analysis by modification of several
variables at one time, and moreover to optimize for the
response(s) of interest. During the successive steps of a
DoE application, optimization of BHP can be achieved
by elucidation of medium components, but also on other
products than H,, such as CO,, organic acids, solvents
and alcohols or even other inhibitory compounds. More-
over, the influence of chemical and physical parameters
on H, production may be included in the investigation.
Hence, a comprehensive DoE is much faster in identifi-
cation of the optimal operation point, to be individually
optimized for the bioprocess of interest. DoE screening
and successive optimization results in an amended
medium composition, identifies the corresponding cul-
ture parameters and concomitantly the optimum cultiva-
tion conditions for improved H, production.

Our review shows the inherent potential and the need
for quantitative investigation of pure culture dark fer-
mentative BHP. Especially the elucidation of non-food
substrates for H, production is possibly of higher poten-
tial commercial applicability. From this point of view,
the use of complex media for H, production could ra-
ther represent a putative real case scenario. However,
strain characterization is crucial and has to be per-
formed in defined media for elucidation of the strain's
full physiological potential. Herewith we propose a set of
physiological scalable parameters for characterization
and optimization of dark fermentative BHP strains by
using bioprocessing. The first step should be a sound in-
vestigation by appication of DoE for elucidation of the
following culture parameters: Y yz/5, MER and qH,. In
a successive investigation the addition of complex or un-
defined medium componets should to be investigated
and compared in respect to initial elucidated culture
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parameters. Hence, future investigations in this field of
bioprocessing could be rapidly completed.

Conclusions

This review summarizes the work done on pure and defined
co-culture dark fermentative BHP since the year 1901.
Qualitative growth characteristics and quantitative normal-
ized results of H, production for more than 2000 conditions
are presented. Now these normalized and comparable
results become available to the scientific community.

Statistically based evidence shows that thermophilic
strains comprise high substrate conversion efficiency, but
mesophilic strains achieve high volumetric productivity.

Microbes of Thermoanaerobacterales (Family III) have to
be preferred when aiming to achieve a high Yy/s) in com-
parison to the families Clostridiaceae and Enterobacteria-
ceae, based on a comprehensive statistical substantiation.

The limited number of results available on dark fermen-
tative BHP from fed-batch cultivations indicates the yet
underestimated potential of this bioprocessing application.

For an efficient bioprocess development the optimization
of H, production by using DoE strategy for medium modi-
fication, cultivation condition improvement and inhibitory
compound analysis should be preferred and a set of physio-
logical scalable parameters is suggested.

Comparability of key culture parameters of dark fer-
mentative BHP is of utmost importance and thus the
following entities should be used for the presentation of
results: Y ya/s) [mol C-mol™], HER [mmol L h'] and
qH, [mmol g'1 h.
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