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Abstract
Background: While global breast cancer gene expression data sets have considerable
commonality in terms of their data content, the populations that they represent and the data
collection methods utilized can be quite disparate. We sought to assess the extent and
consequence of these systematic differences with respect to identifying clinically significant
prognostic groups.

Methods: We ascertained how effectively unsupervised clustering employing randomly generated
sets of genes could segregate tumors into prognostic groups using four well-characterized breast
cancer data sets.

Results: Using a common set of 5,000 randomly generated lists (70 genes/list), the percentages of
clusters with significant differences in metastasis latencies (HR p-value < 0.01) was 62%, 15%, 21%
and 0% in the NKI2 (Netherlands Cancer Institute), Wang, TRANSBIG and KJX64/KJ125 data sets,
respectively. Among ER positive tumors, the percentages were 38%, 11%, 4% and 0%, respectively.
Few random lists were predictive among ER negative tumors in any data set. Clustering was
associated with ER status and, after globally adjusting for the effects of ER-a gene expression, the
percentages were 25%, 33%, 1% and 0%, respectively. The impact of adjusting for ER status
depended on the extent of confounding between ER-a gene expression and markers of
proliferation.

Conclusion: It is highly probable to identify a statistically significant association between a given
gene list and prognosis in the NKI2 dataset due to its large sample size and the interrelationship
between ER-a expression and markers of proliferation. In most respects, the TRANSBIG data set
generated similar outcomes as the NKI2 data set, although its smaller sample size led to fewer
statistically significant results.

Background
Over the past decade, a large number of global gene
expression data sets of human breast cancers have become
publicly available [1-6]. These data sets have provided a
wealth of information for the generation and testing of
biological and clinical hypotheses [7]. Clinical and path-

ological factors with relevance to breast cancer are exten-
sively characterized, and the prognostic significance of
these factors is reflected in these publicly available data
sets. These factors include tumor grade, Her2 and estrogen
receptor (ER) expression [8]. Whether gene expression
data contributes additional prognostic information
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beyond what is offered by these clinical factors is debated
[9,10]. Gene expression profiles associated with individ-
ual clinical hallmarks have also been described. For
instance, a large set of genes is associated with ER gene
expression [5,11]. In addition, the molecular basis of
grade has also been examined with results showing a
strong relationship between histological grade and tumor
proliferation [6,12]. Indeed, the consistent prognostic
efficacy of a proliferation signature is now well estab-
lished [13,14].

The strong inter-relationships between clinical features,
gene expression patterns and prognosis has led to the pos-
tulate that, depending upon the underlying relationship
between the clinical and prognostic factors in a given data
set, prognostic gene expression signatures may simply
function as a proxy measure for these established clinical
variables. For example, Gruvberger et. al. showed that a
gene expression signature derived from the van't Veer data
set [15], for which ER status was a strong predictor of the
incidence of metastasis, was not predictive of metastasis
in a data set for which this relationship did not exist [16].
This observation led the authors to propose that deriva-
tion of future prognostic gene signatures stratify analyses
by ER status in order to adjust for the known association
between gene expression and ER status. This suggestion
has been variably implemented, but is often ignored.
Another consequence of the association between progno-
sis and large sets of correlated genes is that a large number
of predictive gene lists can be derived by selecting differ-
ent members of predictive clusters of correlated genes.
This phenomenon can occur even when gene selection
adheres to a standardized protocol due to variations such
as the specific tumors used in training sets (subsets of
tumors used to derive prognostic lists) [10,17].

While breast cancer gene expression data sets have consid-
erable commonality in terms of their data content, the
populations that they represent and the data collection
and analysis methods can be quite disparate. The advan-
tage of this heterogeneity is that it provides an opportu-
nity to test the robustness of a hypothesis across multiple
populations represented in these data sets [18]. However,
a potential disadvantage of this heterogeneity is that sys-
tematic differences between data sets, unrelated to analyt-
ical approaches, may create sources of bias that impact
their intrinsic likelihood of confirming a given hypothe-
sis.

To gain insight into the extent of potential systematic dif-
ferences in obtaining statistically significant results across
breast cancer gene expression data sets, we ascertained
whether there were intrinsic differences in the likelihood
of observing an association between the expression of a

selected set of genes and metastasis using four well-char-
acterized data sets. To minimize bias in our approach, an
unsupervised clustering algorithm was used to segregate
tumors into one of two clusters based on the expression
levels of randomly selected sets of genes (30–400 genes/
set). These clusters were then compared for differences in
metastasis latencies. We found that one data set, the Neth-
erlands Cancer Institute (NKI2) set of young women with
early stage disease, was considerably more likely to give a
significant finding when examining either all tumors or
only ER positive tumors, as compared to the other data
sets examined. Factors that contributed to an increased
likelihood of a random gene list being predictive of metas-
tasis within a given data set were 1) the number of tumors
analyzed and 2) the inter-relationships between ER
expression, proliferation and metastases. We suggest that
these intrinsic differences between the data sets should be
considered in the design and analysis of future studies
incorporating gene expression data.

Methods
Previously published microarray data sets
Global gene expression and clinical data (including estro-
gen receptor status and metastasis recurrence latencies)
were analyzed in four independent, publicly available
breast cancer gene expression data sets. The Netherlands
Clinical Institute (NKI2) data set contains data on 295
women with early stage breast cancer (downloaded from
http://www.rii.com/publications/default.htm) [4,19].
The Wang data set contains gene expression data on 296
women with lymph node negative disease [1] (GEO series
GSE2034). The KJX64 and KJ125 data sets contain data on
189 women, 64 of which were treated with tamoxifen,
with primary operable invasive breast cancer (GEO series
GSE2990) [6]. The TRANSBIG data set contains data for
183 untreated women from the Bordet Institute (GEO
series GSE7390) [20,21].

All probes from each data set were used in the analyses
except in the NKI2 data set where only the probes where
there was complete data on more than 291 of the 295 sub-
jects were used (n = 24,023 probes). Missing values for
genes in the NKI2 set were imputed using the "impute"
option in the FastClus procedure. Gene expression data
for the NKI2 data set were given as log10 expression
ratios, while data from the TRANSBIG and KJX64/KJ125
sets were log2 expression values. Expression values were
log2 transformed in the Wang gene expression data set.
Each gene probe in each data set was mapped to a unigene
cluster ID using the SOURCE database (source.stan-
ford.edu).

For each gene expression data set, a new data set contain-
ing a single set of expression data for each unique unigene
Page 2 of 11
(page number not for citation purposes)

http://www.rii.com/publications/default.htm


BMC Cancer 2009, 9:214 http://www.biomedcentral.com/1471-2407/9/214
cluster ID was created. In the Wang, Miller and KJX64/
KJ125 data sets, the expression values for each probe was
set to have a median value of 0 and standard deviation of
1. In instances where there were multiple gene probes
with a common unigene cluster ID, the median expres-
sion value of all the common probes was used. There were
11,318 genes with unique unigene identifiers that were
common to all four data sets.

Clustering using random gene lists
Random lists of genes of various sizes (30 to 400 genes per
list) were generated by simple random sampling (Survey-
select procedure). For each randomly-generated gene list,
tumors were separated into two groups using an unsuper-
vised hierarchical clustering procedure that was based on
a correlation matrix derived from standardized centroid
components for cluster assignment (Varclus procedure).
The two groups represent the first bifurcation of the clus-
tering hierarchy. Random gene lists were also generated
using subsets of genes that were identified as being associ-
ated with overall metastases latencies. The subsets of
genes utilized in this analysis were those that had a rela-
tively modest proportional hazards p-value of less than
0.1 in a Cox regression analysis.

Survival analyses
All survival analyses were based on 5-year metastatic
recurrence latencies. All subjects not experiencing metas-
tasis within 5 years were censored at that time point. Cox
proportional hazards regression models were used to
ascertain differences in latencies between groups assigned
by hierarchical clustering (PHReg procedure). Univariate
proportional hazard ratios and p-values are reported for
all analyses and represent the differences in risk between
the relatively "poor" prognosis group as compared to a
relatively "good" prognosis group. In univariate analyses
examining the association between ER status and laten-
cies, hazard ratios represent the change in risk for ER pos-
itive tumors, as compared to ER negative tumors.
Multivariable models adjusted for ER-a expression used
the ESR1 probe in the NKI2 data set and the "205225_at"
gene probe in other data sets.

Determining cluster assignment association with ER status
For each pair of clusters created by the hierarchical cluster-
ing procedure, the percentage of all ER negative and ER
positive tumors contained in each cluster was computed.
The maximum value of the ratio of the ER negative per-
centage to the ER positive percentage among the two clus-
ters was then computed. If ER positive and negative
tumors were assigned to clusters in equal proportions, this
ratio would be approximately 1. Otherwise, this ratio
would be greater than 1, indicating that the clusters con-
tained a relatively disproportionate number of ER nega-
tive tumors, as compared to ER positive tumors.

Global adjustment of gene expression data
To eliminate correlations between all genes in the NKI2
data set and either ER-a or proliferation genes, the data
were globally adjusted by fitting a least-squares regression
line to each probe in the dataset and then computing the
residuals (GLM procedure) [14]. Each probe was the
dependent variable and either ER-a or a proliferation gene
was the continuous independent variable. The residuals
(adjusted values) for each probe represent the new expres-
sion values for that probe. This new adjusted value is no
longer linearly correlated with the independent variable.
The gene selected to adjust each data set for proliferation
was based on a previously published analysis and repre-
sents the gene probe that was the most predictive member
of a set of correlated proliferation-associated genes linked
with an increased risk of developing metastases [14]. The
specific genes used in each data set were UBE2C (NKI2
and TRANSBIG), HMMR (KJX64/KJ125) and RACGAP1
(Wang).

Determining the total variance explained by a gene cluster
The total variance for a data set was computed by sum-
ming up the variances for each gene in the data set. To
determine the variance explained by globally adjusting a
data set for a gene, the total variance of the adjusted data
set was computed and the percent change of this value rel-
ative to the unadjusted value was determined. The propor-
tion of the proliferation-associated variance explained by
adjusting for ER-a was calculated using the equation:

where Var(EP) is the percent change in variance after
sequentially adjusting a data set for ER-a and proliferation
and Var(E) and Var(P) are the percent changes in variance
after individually adjusting for either the ER-a or prolifer-
ation genes, respectively.

Statistical packages
All calculations were performed using SAS version 9.1
(SAS Institute, Cary, NC). All statistical tests were two-
sided, and a p-value less than 0.01 was considered statis-
tically significant.

Results
Intrinsic bias in gene expression data sets
We sought to ascertain whether there may be intrinsic bias
among publicly available breast cancer gene expression
data sets that would influence the likelihood of observing
a significant difference in metastatic tumor recurrence
latencies based on gene expression patterns of primary
tumors. To address this question, we employed an empir-
ical approach whereby we determined the probability of
identifying groups of tumors with statistically significant
differences in recurrence latencies using hierarchical clus-

(( ( ) ( )) ( )) / ( )Var E Var P Var EP Var P+ -
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tering that was driven by randomly generated lists of
genes. Four previously published data sets were examined.
Marked differences in the ability to segregate good and
poor prognosis tumors were observed between the data
sets using randomly generated gene lists of various sizes
(figure 1A and Additional File 1). The highest likelihood
of obtaining a positive result was observed in the NKI2 [4]
data set where 60.1% of 1000 random lists of 70 genes
each were able to stratify tumors into two groups with sig-
nificant differences (p < 0.01) in recurrence latencies (fig-
ure 1A). The lowest likelihood of obtaining a positive
result occurred with the KJX64/KJ125 [6] data set, where
none of the 70-gene lists generated clusters with a signifi-
cant difference in recurrence latencies.

We next assessed whether the differences among the data
sets was the result of differences in the content of the
genes represented on the microarrays used in each study.
We performed clustering analysis using a set of 5,000 ran-
dom lists (70 genes/list) that were comprised of genes that
were common to all four data sets (figure 1B). For this
analysis, each data set was modified so that it included
only 1 instance of a given gene. Consistent with our initial
observations, there was a significantly higher likelihood
of obtaining a significant result when examining recur-
rence latencies in the NKI2 data set (61.6%), as compared
to the other data sets. For the Wang [1] and TRANSBIG
[20] data sets, use of a data set with only a single instance
of each gene resulted in an increase in the proportion of
predictive gene lists to 15% and 21%, respectively. This
discrepancy is explained by the fact that decreasing the
number of redundant probes in these data sets increased
the relative proportion of genes predictive of outcome.
Thus, these data sets likely contain multiple probes for
many genes that are not associated with metastases.

In light of the known association between estrogen recep-
tor (ER) status and disease outcome [22] and the fact that
expression of numerous genes is associated with ER status
in breast cancer expression data sets [11,16], these find-
ings could be due to cluster assignment dictated by the
ERa-correlated gene expression network. Among the four
data sets we evaluated, ER status was associated with sig-
nificant differences in latencies in the NKI2 and TRANS-
BIG data sets (table 1). In multivariable Cox regression
models adjusting for ER-a gene expression, there was a
significant attenuation in the number of random gene
lists that were predictive in the NKI2 and TRANSBIG data
sets (table 1B). In the NKI2 set, there was a 60% reduction
in the number of predictive gene lists. However, approxi-
mately 25% percent of the random gene lists were still
predictive. In contrast, none of the gene lists in the
TRANSBIG gene set were predictive after ER-a adjustment,
suggesting that none of the significant gene clusters were

Random genes lists have disparate prognostic frequencies across breast cancer gene expression data setsFigure 1
Random genes lists have disparate prognostic fre-
quencies across breast cancer gene expression data 
sets. Each graph is a histogram showing the percentage of 
random gene lists (70 genes/list) that were significantly pre-
dictive of metastatic recurrence latencies in 4 gene expres-
sion data sets. A. The bars represent analyses based on 1,000 
random lists of 70 genes derived from all genes within a data 
set. B. Cox regression analyses based on 5,000 random gene 
lists (70 genes/list) selected from 11,318 common unigenes 
IDs for either a univariate or multivariable model adjusting 
for expression of the ER-a gene. C. Analyses of tumors strat-
ified by ER status based on 5,000 random gene lists (70 
genes/list) selected from 11,318 genes that had a unique uni-
gene identifier common to all 4 data sets. The same 5,000 
lists were separately evaluated in either ER positive (ER+) or 
ER negative (ER-) tumors within each data set.
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measuring significantly more information than ER-a gene
expression. The Wang data set was relatively unaffected by
ER-a adjustment.

Gruvberger et. al. has suggested that prognostic gene lists
be tested independently on ER positive and negative
tumors in order to control for the effects of ER-a gene
expression on tumor assignment [16]. We re-examined
our prognostic lists separately in ER positive and negative
tumors. While none of the lists were predictive amongst
ER negative tumors, the NKI2 data set continued to show
a significantly higher likelihood of giving a positive find-
ing, as compared to the other data sets (figure 1C). Specif-
ically, 38% of the lists were predictive in the NKI2 set
versus 11% and 4% in the Wang and NKI2 data sets,
respectively. Again, no random lists were predictive in the
KJX64/KJ125 data set.

In summary, these results indicate that there is a large dis-
parity in the likelihood of observing significant differ-
ences in metastasis risk among breast cancer data sets
using arbitrary gene expression levels as a classifier. In par-
ticular, it was 4–5 times more likely to obtain a signifi-
cantly predictive gene list in the NKI2 data set than the
other data sets, even in stratified analyses examining ER
positive tumors.

Cluster assignment is associated with ER status
The fact that multivariable adjustment for ER-a decreased
the number of predictive gene lists in the NKI2 and
TRANSBIG data sets suggests that the hierarchical cluster-
ing algorithm is functioning in large part by stratifying
tumors into groups based on ER status. To confirm this,
we examined the association between ER status and clus-
ter assignment across the data sets. Specifically, we deter-
mined if there were disproportionate proportions of ER
negative, as compared to ER positive, tumors in the differ-
ent prognostic groups that were produced by the 5,000
random gene lists (70 genes/list) (figure 2A). In the NKI2,
Wang and TRANSBIG data sets, tumors were frequently
assigned to groups with disproportionate numbers of ER
positive and negative tumors with approximately equal

frequency, though the TRANSBIG data set had a higher
proportion of clusters with a 3 or more fold difference in
the proportion of ER negative tumors in one of the cluster
pairs. A far lower proportion of the lists in the KJX64/
KJ125 data set were skewed with respect to ER status.
Based on these results, stratification by ER status and the
established significant association between ER status and
the risk of metastasis likely underlies the high proportion
of predictive lists in the NKI2 and TRANSBIG data sets.

While clustering is associated with ER status, it is not clear
whether this association is due to the specific contribution
of ER-a correlated genes, as has been suggested [16], or
whether other gene clusters associated with ER status may
be driving this association. To directly ascertain the contri-
bution of ER-a correlated genes to cluster assignment, the
gene expression data were globally adjusted to eliminate
the correlations between all genes in a data set and the ER-
a gene [14,23]. To accomplish this, we fit a least-squares
regression line to each probe in the dataset, using ER-a as
the independent variable, and then computed the resid-
ual. This residual represented the new expression value for
that probe. After adjustment, the tumors were reclustered
using the previously generated 5,000 lists of 70-gene lists
and reanalyzed. Global adjustment eliminated the pro-
pensity for clusters to be associated with ER status in all
data sets except the KJX64/KJ125 data set, in which there
was only a modest attenuation (figure 2B). This anomaly
may be due to the fact that we observed that ER-a gene
expression was poorly correlated with ER status in the
KJX64/KJ125 data set (data not shown), as compared to
the other data sets. ER-a adjustment of the NKI2 and
TRANSBIG sets showed a similar attenuation in the pro-
portion of predictive gene lists observed using multivaria-
ble adjustment for ER-a. This indicates that ER-a
correlated genes make a significant contribution to the
efficacy of the predictive gene lists in these data sets (figure
2C). In contrast, ER-a adjustment substantially increased
the proportion of lists that were predictive in the Wang
data set from 15% to 34%. This observation is likely
explained by the fact that ER status is not associated with
outcome in this data set. Hence, removing the constraint

Table 1: ER status is predictive of metastasis in the NKI2 and TRANSBIG data sets.

Recurrence Event1 Recurrence2

(ER+ vs ER-)
Data set ER+ (n) ER- (n) ER+ (%) ER- (%) HR p-value

NKI2 225 70 24 47 0.4 <0.0001
Wang 209 77 32 35 0.8 0.5

TRANSBIG 136 64 13 28 0.4 0.005
KJX64/KJ125 149 34 22 29 0.7 0.4

1. The percentages indicate the proportion of patients that had metastases within 5 years, stratified by the ER status of their primary tumors.
2. Hazard ratios (HR) and p-values are based on Cox proportional hazards regression analyses and represent the changes in the risk of experiencing 
a metastatic event for ER positive tumors, as compared to ER negative tumors.
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on the clustering algorithm to assign tumors to clusters
associated with ER status increased the influence of other
sets of correlated genes associated with prognosis on the
clustering program. Adjustment did not have any impact
on the KJX64/KJ125 data set.

In summary, these data show that ER-a correlated genes
can serve to either increase or decrease the likelihood that
a random set of genes will cluster tumors into groups with
significant differences in latencies. The differences in the
direction of the effect are related to the underlying associ-

ation between ER status and the risk of metastasis in each
data set.

Proliferation-correlated genes eliminate the prognostic 
contributions of ER-  correlated genes
It has been previously shown that genes associated with
cellular proliferation are strong predictors of metastases
[13,14,24-26]. To ascertain the impact of adjusting for
proliferation-correlated genes on cluster assignment and
outcome, each data set was globally adjusted for prolifer-
ation. Adjustment almost completely eliminated the

Clustering associated with ER-a expression in the NKI2, Wang and TRANSBIG data setsFigure 2
Clustering associated with ER-  expression in the NKI2, Wang and TRANSBIG data sets. All graphs were based 
on unsupervised hierarchical clustering analyses using the 5,000 randomly-generated unigene gene lists. A. Percentage of lists 
that segregate tumors into groups that contain a disproportionately high number of ER negative tumors as compared to ER 
positive tumors for each data set. A ratio greater than 1 indicates that the clusters contain a disproportionate number of ER 
negative tumors, as compared to ER positive tumors. The grey bars and black bars show the percentage of gene lists where 
this ratio is 2 and greater than 3, respectively. B. Percentage of lists that segregate tumors into groups that contain a dispropor-
tionately high number of ER negative tumors as compared to ER positive tumors in data sets that were globally adjusted for 
ER-a expression. C. Percentage of lists that were significantly predictive of metastatic recurrence latencies in unadjusted data 
sets (grey bars) or data sets that were globally adjusted for either ER-a expression (black bars) or a marker of proliferation 
(white bars). D. Percentage of lists that segregate tumors into groups that contain a disproportionately high number of ER neg-
ative tumors as compared to ER positive tumors in data sets that have been globally adjusted for a marker of proliferation.
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prognostic abilities of all of the random gene lists in the
NKI2, Wang and TRANSBIG data sets (figure 2C), con-
firming the prognostic efficacy of the proliferation gene
cluster. Interestingly, while adjustment for proliferation
decreased the rate of disproportional cluster assignment
associated with ER status, especially in the TRANSBIG
data set, it did not eliminate it (figure 2D). Thus, the prog-
nostic ability of the gene lists can be eliminated while
maintaining a predilection for cluster assignment associ-
ated with ER status. These results suggest that the prognos-
tic contribution of ER-a correlated genes can be explained
by their correlation with proliferation genes.

The relationship between ER-  and proliferation varies 
across data sets
While global adjustment for proliferation eliminated the
predictive capacity of the random gene lists in the NKI2,
Wang and TRANSBIG data sets, adjustment for ER-a had
differential effects across these data sets. To better charac-
terize the relationship between genes that are correlated
with ER-a or proliferation and cluster assignment, we
characterized the inter-relationships between these gene
clusters. We first examined the proportion of the total var-
iance in each data set accounted for by adjustment for
either ER-a or proliferation correlated genes (figure 3a). In
the NKI2, Wang and TRANSBIG data sets, the genes corre-
lated with each of these factors accounted for approxi-
mately similar amounts of the total variance in the data
sets. This proportion was significantly higher for ER-a cor-
related genes in the KJX64/KJ125 data set. In all sets, ER-a
correlated genes accounted for a larger proportion of var-
iance than proliferation-correlated genes. For instance, in
the NKI2 data set, ER-a adjustment accounted for 5.9% of
the total variance versus 4.6% explained by proliferation
genes. The higher proportion of variance accounted for by
ER-a correlated genes, as compared to proliferation genes,
allows these genes to be more influential in determining
cluster assignment, as compared to proliferation genes.
Surprisingly, while ER-a correlated genes explained a
larger proportion of the variation in the KJX64/KJ125 data
set, they did not promote clustering by ER status in this
data set. Again, this is likely due to the poor correspond-
ence between ER-a gene expression and ER status in this
data set.

It is important to note that the variation explained by the
ER-a and proliferation-correlated genes is not independ-
ent. Thus, in contrast to the above similarities between the
data sets, the proportion of the proliferation-associated
variance that is explained by ER-a differs substantially
(figure 3B). In the NKI2 and TRANSBIG data sets, ER-a
accounted for approximately 35–40% of the prolifera-
tion-associated variance. This relatively high proportion
likely explains the significant association between ER sta-
tus and prognosis and the impact of adjusting for ER-a on
the prognostic abilities of the random gene lists in the
NKI2 and TRANSBIG data sets. In the Wang data set, ER-a
expression only accounted for 12% of the proliferative
variance, hence explaining the weak association between
ER status and prognosis.

Proliferation-correlated genes do not explain disparities in 
class prediction among the data sets for ER positive tumors
To gain more insight into possible differences between the
NKI2, Wang and TRANSBIG data sets, we next examined
the ER positive tumors. Amongst ER positive tumors, a
random gene list was substantially more likely to give a
significant result in the NKI2 data set, as compared to the

ER-a expression account for more variance in the expression of proliferation markers in the NKI2 and TRANSBIG data setsFigure 3
ER-  expression account for more variance in the 
expression of proliferation markers in the NKI2 and 
TRANSBIG data sets. A. The graph shows the percentage 
decrease in the sum of the variances of all genes within a data 
set after globally adjusting that data set for either ER-a 
expression (grey bars) or a marker of proliferation (black 
bars). B. The graph shows the percentage of the variance 
associated with adjustment for proliferation that is accounted 
for by adjustment for ER-a expression. This percentage 
reflects the extent to which genes whose expression follows 
proliferation-associated genes also fluctuate in response to 
changes in ER-a expression.
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other data sets. Among ER positive tumors, global adjust-
ment for proliferation also eliminated the prognostic abil-
ities of all of the random gene lists in the NKI2, Wang and
TRANSBIG data sets (figure 4A). The consistency across
data sets demonstrates that each of these data sets relies
on a common feature to produce a significantly different
prognostic cluster. Based on this observation, one expla-
nation for the differences in frequency of positive findings
across the data sets is that the proliferation-correlated
genes account for a larger proportion of the total variance
in ER positive tumors in the NKI2 data set. When the total
variance explained by the proliferation genes was meas-
ured, it was found to be approximately equal in each of
these data sets, though slightly higher in the TRANSBIG

data set (figure 4B). Thus, the contribution of this predic-
tive cluster of proliferation-associated genes to tumor
assignment would be expected to be approximately equal
in each data set and likely does not contribute to the
highly increased probability of obtaining a positive result
among ER positive tumors in the NKI2 data set.

A larger sample size may account for differences between 
the NKI2 and TRANSBIG data sets
Another explanation for the disparities in the probability
of identifying significantly different classes of tumors with
random gene classifiers between the data sets, especially
the NKI2 and TRANSBIG data set which share many com-
monalities, is differences in the sample sizes (table 1). The
NKI2 and Wang data sets are considerably larger than the
TRANSBIG data set. A larger sample size typically gives

ER positive tumors depend upon proliferation genes for clus-ter assignments with significant differences in latenciesFigure 4
ER positive tumors depend upon proliferation genes 
for cluster assignments with significant differences in 
latencies. A. This graph was based on unsupervised hierar-
chical clustering analyses using the 5,000 randomly-generated 
unigene gene. The graph shows the percentage of lists that 
were significantly predictive of metastasis recurrence laten-
cies in ER positive tumors in either unadjusted data sets (grey 
bars) or data sets that were globally adjusted for prolifera-
tion (black bars). B. The graph shows the percentage 
decrease in the sum of the variances of all genes in ER posi-
tive tumors after globally adjusting each data set for a marker 
of proliferation.

Hazard ratio point estimates tend to be larger in the TRANS-BIG data set for ER positive tumorsFigure 5
Hazard ratio point estimates tend to be larger in the 
TRANSBIG data set for ER positive tumors. The 
graphs were based on unsupervised hierarchical clustering 
analyses using the 5,000 randomly-generated unigene gene. 
Bars represent the median hazard ratio (HR) from univariate 
Cox regression analyses and the whiskers represent the 
inter-decile range (10%–90%) of the values. A. Results from 
analyses based on all tumors in each data set. B. Results from 
analyses based on ER positive tumors.
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smaller standard errors of measurement and, conse-
quently, smaller p-values. Thus, rather than using a p-
value as an outcome, we examine hazard ratio (HR) coef-
ficients, which show the magnitude of the differences in
risk between cluster pairs, independent of sample size.
When looking at all tumors in the NKI2, Wang and
TRANSBIG data sets the median size and range of the HRs
for the NKI2 and TRANSBIG data sets were approximately
comparable (median of 2.0 vs. 1.9, respectively) (figure
5A). The median was only 1.2 in the Wang data set. How-
ever, when looking at only ER positive tumors, the
TRANSBIG had the largest HR median value and range of
the three data sets (figure 5B). Median values were 1.9, 1.4
and 2.2 in the NKI2, Wang and TRANSBIG data sets,
respectively. There was very little variation in the range of
HR values in the KJX64/KJ125, suggesting that, regardless
of the random gene list utilized, the clustering algorithm
created virtually identical clusters of tumors for each gene
list. Overall, these data suggest that the larger number of
significantly predictive random gene lists seen in the NKI2
versus TRANSBIG data set is likely the result of the larger
sample size of the NKI2 data set.

Discussion
In the present study, we show that there are marked differ-
ences in the likelihood of observing a positive association
between the expression patterns of a set of genes and
metastasis across four breast cancer global gene expres-
sion data sets. Most striking was the observation that over
60% of randomly selected lists of 70 genes each could seg-
regate tumors into two groups with significant differences
in outcome in the NKI2 data set. This finding is particu-
larly salient in light of the fact that this data set has been
frequently used to both generate and verify prognostic
lists of genes [4,6,19,27-29]. The ability of the majority of
random gene lists to predict outcome calls into question
the biological validity of obtaining a positive finding in
this data set, as a vast number of combinations of likely
biologically unrelated genes are predictive of metastasis.

Gruvberger et. al., noting a strong association between ER
status and outcome in the van't Veer data set [15], sug-
gested that analyses of prognostic gene lists be stratified by
ER status to ascertain whether the lists were simply func-
tioning as proxies of ER-a gene expression [16]. ER status
was associated with the risk of metastases in two of the
data sets that we analyzed, the NKI2 (a partial superset of
the van't Veer data set) and TRANSBIG data sets. In three
of the four data sets, we found that tumors tended to clus-
ter by ER status. This was directly attributable to genes cor-
related with ER-a expression, as elimination of the
variance in gene expression associated with ER-a expres-
sion completely attenuated disproportionate clustering by
ER status. Adjusting for the expression of ER-a decreased
the proportion of predictive gene lists in the NKI2 and

TRANSBIG data sets, as would be expected. It also sub-
stantially increased the proportion of predictive gene lists
from approximately 15% to 35% in the Wang data set
where ER status is not an independent predictor of metas-
tasis. Thus, a gene list which gives disparate results in the
Wang versus NKI2 or TRANSBIG data sets may, indeed, be
functioning as a proxy for ER expression.

While ER-a expression may be an important contributor
to cluster assignment, it is not the primary determinant for
obtaining a significant prognostic gene list. When each of
the data sets was globally adjusted for proliferation, there
were almost no significantly predictive gene lists, even
though tumors tended to cluster by ER status. Genes asso-
ciated with proliferation have been shown to be the essen-
tial contributors to an effective prognostic gene list in gene
expression data sets of combined ER positive and negative
tumors or just ER positive tumors [13,14,26]. We show
that the extent to which adjusting for ER expression
impacts a prognostic gene list is related to the extent to
which the expression the ER-a gene and proliferation
genes covary. Hence, ER status is predictive of prognosis to
the extent to which it functions as a confounder to the
relationship between the expression of proliferation genes
and the risk of metastasis.

Stratifying our analyses by ER status had differential
effects on the data sets. In the NKI2 data set, almost 40%
of gene lists were predictive in ER positive tumors, while
less than 5% were predictive in the TRANSBIG data set.
This result is interesting since both data sets had a similar
proportion of events occurring among ER positive and
negative tumors and ER status was associated with out-
come in both data sets. When we examined the distribu-
tion of the hazard ratio estimates, which show the
magnitude of the differences in rates of metastases of the
tumors in the cluster pairs, the hazard ratio estimates
tended to be larger in the TRANSBIG data set. This analy-
sis suggests that clusters generated with the random gene
lists tend to have larger differences in the metastasis laten-
cies in the TRANSBIG data. Thus, the most likely explana-
tion for the difference in the proportion of significant
findings between these data sets is the larger sample size
of the NKI2 data set. Other than sample size variations,
these data sets were similar in many regards. The similari-
ties may reflect commonalities in their patient popula-
tions, both of which were derived from young women in
northern European countries.

In contrast to the ER positive tumors, virtually none of the
random gene lists was prognostic in ER negative tumors in
stratified analyses. This observation may suggest that,
among these data sets, there is not a large, dominant clus-
ter of correlated genes associated with prognosis among
these tumors. Another possible explanation is that there is
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more heterogeneity among ER negative tumors, which can
be comprised on Her2 amplified tumors, basal as well as
familial forms of breast cancer [30-32]. We would note,
however, that gene-expression based prognostic signa-
tures for ER negative tumors have been described [33,34],
suggesting that robust common prognostic features likely
exist amongst these tumors.

We found that, in general, random gene lists were less pre-
dictive of recurrence in the Wang data set. In analyses of
all tumors, this effect could be partially attributed to the
lack of an association between ER status and outcome in
this data set, as described above. The random gene lists
were also far less predictive among ER positive tumors in
this data set, as compared to the NKI2 data set. This differ-
ence cannot be attributed to sample size differences as
these data sets are approximately the same size. Like the
TRANSBIG data set, the Wang data set is comprised of
lymph node negative patients. While this difference could
account for disparities between the Wang and NKI2 data
sets (which utilized tumors from patients with node pos-
itive and negative disease), it would not account for differ-
ences between it and the TRANSBIG data set. Thus, the
relevance of the difference in tumor composition with
respect to this clinical variable is not clear. Another nota-
ble difference between the data sets is the older age repre-
sentation among participants in the Wang study which
could contribute additional heterogeneity amongst these
tumors. It is also interesting to note that random gene lists
containing genes that were independently predictive of
metastases were only predictive approximately 55% per-
cent of the time in this data set, versus 90% or more of the
time in the other data sets (see Additional File 1). This
might suggest that there are more independent clusters of
genes predictive of prognosis in this data set. Consistent
with this hypothesis, we have previously found a higher
degree of correlation among independently predictive
genes in NKI2 data set versus the Wang data set [14].
Michiels et. al. showed in the van't Veer data set that the
set of genes selected for a prognostic classifier is highly
variable depending upon the training set used to identify
prognostic genes [35]. Based on our findings, we would
anticipate an even greater degree of variability in the genes
identified if their analysis was repeated using the Wang
data set.

The KJX64/KJ125 data set produced considerably different
results than the other data sets. Virtually none of the ran-
dom gene lists were prognostic in this data set. It is impor-
tant to note that it is possible to generate a large set of
prognostic genes lists in this data set, as we found that
97% of random gene list derived from genes independ-
ently associated with metastasis were indeed predictive
(see Additional File 1). In addition, this data set has also
been used to generate other validated gene lists [6]. We

found anomalies in this data set that may account for dif-
ferences in its behavior, as compared to the other data
sets, such as the fact that the ER-a gene probe levels were
poorly correlated with ER status. This might suggest that
there are issues with scaling of the raw data or that there
are a large proportion of gene probes which did not per-
form optimally. However, regardless of how we rescaled
the data, we obtained nearly identical results. Further-
more, this data set was derived using the same gene
expression technology (Affymetrix) as the TRANSBIG and
Wang data sets. Hence, differences in behavior cannot be
attributed to differences in technology.

Conclusion
In summary, these analyses demonstrate that there are
systematic differences among the four breast cancer gene
expression data sets examined herein. Most notable is the
fact that the NKI2 data set provides a very high likelihood
of obtaining a significant association between expression
and metastases for a given set of genes. This disparity per-
sists when examining all tumors in the data set or when
looking only at ER positive tumors. The TRANSBIG data
set behaved similarly to the NKI2 data set and the lower
likelihood of obtaining a positive result in this data set is
likely attributable to its smaller sample size. Fewer ran-
dom gene lists are predictive in the Wang data set due to
the lack of an association between ER status and the risk
of metastasis. These differences in data sets should be con-
sidered when using them for developing new prognostic
classifiers or assessing the robustness of classifiers that
were generated with other data sets.
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