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Abstract

Background: Cancer is a significant and growing problem worldwide. While this increase may, in part, be
attributed to increasing longevity, improved case notifications and risk-enhancing lifestyle (such as smoking, diet
and obesity), hygiene-related factors resulting in immuno-regulatory failure may also play a major role and call for a
revision of vaccination strategies to protect against a range of cancers in addition to infections.

Discussion: Human endogenous retroviruses (HERVs) are a significant component of a wider family of
retroelements that constitutes part of the human genome. They were originated by the integration of exogenous
retroviruses into the human genome millions of years ago. HERVs are estimated to comprise about 8% of human
DNA and are ubiquitous in somatic and germinal tissues.
Physiologic and pathologic processes are influenced by some biologically active HERV families. HERV antigens are
only expressed at low levels by the host, but in circumstances of inappropriate control their genes may initiate or
maintain pathological processes. Although the precise mechanism leading to abnormal HERVs gene expression has
yet to be clearly elucidated, environmental factors seem to be involved by influencing the human immune system.
HERV-K expression has been detected in different types of tumors.
Among the various human endogenous retroviral families, the K series was the latest acquired by the human
species. Probably because of its relatively recent origin, the HERV-K is the most complete and biologically active
family.
The abnormal expression of HERV-K seemingly triggers pathological processes leading to melanoma onset, but also
contributes to the morphological and functional cellular modifications implicated in melanoma maintenance and
progression.
The HERV-K-MEL antigen is encoded by a pseudo-gene incorporated in the HERV-K env-gene. HERV-K-MEL is
significantly expressed in the majority of dysplastic and normal naevi, as well as other tumors like sarcoma,
lymphoma, bladder and breast cancer. An amino acid sequence similar to HERV-K-MEL, recognized to cause a
significant protective effect against melanoma, is shared by the antigenic determinants expressed by some vaccines
such as BCG, vaccinia virus and the yellow fever virus.
HERV-K are also reactivated in the majority of human breast cancers. Monoclonal and single-chain antibodies
against the HERV-K Env protein recently proved capable of blocking the proliferation of human breast cancer cells
in vitro, inhibiting tumor growth in mice bearing xenograft tumors.
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Summary: A recent epidemiological study provided provisional evidence of how melanoma risk could possibly be
reduced if the yellow fever virus vaccine (YFV) were received at least 10 years before, possibly preventing tumor
initiation rather than culling melanoma cells already compromised. Further research is recommended to confirm
the temporal pattern of this protection and eliminate/attenuate the potential role of relevant confounders as
socio-economic status and other vaccinations.
It appears also appropriate to examine the potential protective effect of YFV against other malignancies expressing
high levels of HERV-K antigens, namely breast cancer, sarcoma, lymphoma and bladder cancer.
Tumor immune-therapy, as described for the monoclonal antibodies against breast cancer, is indeed considered
more complex and less advantageous than immune-prevention. Cellular immunity possibly triggered by vaccines as
for YFV might also be involved in anti-cancer response, in addition to humoral immunity.

Keywords: HERV-K, Cancer prevention, Melanoma, Breast cancer, Ovarian cancer, BCG, Vaccinia, Yellow fever virus
vaccine, Epidemiology
Background
Cancer is a significant and growing problem worldwide
[1,2]. In the United Kingdom, for example, 42% of
people who died in 2008 had a diagnosis of cancer
sometime in their life, and tumors were the cause of
death in 64% of these patients [3].
The improvement of survival observed in the past

20 years is associated with a marked increase in the
average treatment cost for most common cancers [4,5].
The new targeted cancer treatments are expected to
raise even more abruptly in the next future [6], espe-
cially in developed countries such the US where the
population older than 65 is expected to almost double in
2030 [7].
Although improved case notifications, increasing lon-

gevity and risk-enhancing lifestyle (such as smoking, diet
and obesity) have to be taken into account, the burden
of cancer may in part be attributed also to hygiene-
related factors resulting in immuno-regulatory failure
[8,9]. The latter call for a revision of vaccination strat-
egies to protect against a range of cancers in addition to
infections.
Discussion
Human endogenous retroviruses
The human genome contains around 400,000 genetic
loci [10], evolved as a result of past infection by many
different kinds of retroviruses. Approximately 45% of
human genome is actually composed of or derived from
virus-like transposon-related elements [11,12].
Germ cell infections by exogenous retro-viruses oc-

curred millions of years ago and led to the stable main-
tenance of human endogenous retroviruses (HERVs)
into the human genome. The integration of HERVs into
the host cell happens within the context of their replica-
tion cycle [13,14]. HERVs are estimated to comprise
about 8% of human DNA [15,16] and two hypotheses
have been suggested to justify their persistence in the
human genome during evolution. According to the para-
sitic theory HERVs were neutral and their elimination
was rather difficult [17-21]. Conversely, the symbiotic
theory sees them retained by positive selection, provided
their function was relevant to maintain certain vital con-
ditions [22]. However, the two hypotheses are not mutu-
ally exclusive, as after the initial integration, subsequent
random mutations of the parasitic viral RNA of HERVs
led to the synthesis of important human proteins, enab-
ling retroviruses to persist in the human DNA as symbi-
otic. Zeyl [23] recently reviewed the significance of
symbiotic DNA in eukaryotes.
Unlike typical viruses, HERVs are not infectious

[15,24], but they can be transmitted vertically as pro-
viruses in a Mendelian fashion [25]; furthermore as a
consequence of multiple mutations and deletions, they
are defective and therefore unable to retro-transpose
[26].
HERV expression
After integrating into the host DNA, HERVs can pro-
duce hundreds of copies of themselves and newly inte-
grate throughout the human genome. HERV genes gag,
pol and env are flanked by genetic regulatory sequences
named Long Terminal Repeats (LTRs), used by HERV to
insert their genetic sequences into the host DNA and
able to regulate both retroviral and sometimes functional
human genes.
HERVs generally become non replication competent

by recombinational deletion between the two LTRs and/
or by random mutations occurring while the host gen-
ome is undergoing DNA replication. However, complete
or incomplete gene products can be either directly
coded by HERV genes env or gag or result from recom-
binational mechanisms [27]. Physiologic and pathologic
processes are influenced by some biologically active
HERV families through direct RNA viral transcripts or
mutations generated by retro-transposition [28]. As
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mentioned earlier HERVs indeed code for fundamental
human proteins and have been highly involved in the
intra-uterine development of the fetus as well as in the
evolution of the human species [29,30]. The env region
of three HERVs (ERV-3, HERV-W and HERV-FRD) is
crucial to form the placental syncytiotrophoblast, and
HERV-FRD seems also to contribute in down-regulation
of human immunity against the fetus and prevent its re-
jection [31,32].
HERV antigens are only expressed at low levels by the

host, but in circumstances of inappropriate control the
expression of HERV genes may initiate or maintain
pathological processes [33]. According to microarray
analysis, HERV expression appears to be positively influ-
enced by the exposure to exogenous (e.g chemicals, UV
radiations [34,35]) and endogenous (e.g. cytokines, hor-
mones [34,36,37]) stimuli.
Although the precise mechanism leading to abnormal

HERVs gene expression has to be further elucidated, en-
vironmental factors seem to be involved by influencing
the human immune system [38], and hypo-methylation
of the relevant retroviral genes appears a key factor
[39,40].

The HERV-K family
HERVs are classified in more than 22 different families
[15,41-44] depending on their sequence identity and
partly on the similarity of their primer binding sites to
host tRNAs [15,44,45].
Among the various human endogenous retroviral families,

the K series was the latest acquired by the human species,
between three and six million years ago [46]. Probably be-
cause of this relatively recent origin, the HERV-K is the
most complete and biologically active family, being com-
posed of retro-elements showing polymorphic integration in
the human genome [15,43,47,48].
HERV-K is the only known retroviral family that has

retained functional full-length open reading frames
(ORF) coding for structural and enzymatic proteins
[15,49,50] and appears capable to induce the generation
of replicating viral components [29,47,51].
HERV-K encoding loci are thought to be transcriptionally

silent in normal cells, becoming active after malignant trans-
formation, as found in germ cell tumors [52]. Activation of
HERV-K may initiate or maintain carcinogenesis.
HERV-K expression was detected in different types of

tumors and Hill’s causal criteria for epidemiology have
been recently adapted to assess virus-cancer associations
[53]):

� consistency of the association. Transcripts of HERVs
have been detected by many independent
investigators in different tumors: breast cancer
[25,54-60], ovarian cancer [61], lymphoma [54],
melanoma [25,62,63], germ line tumors [51,60,64],
haematological neoplasms [65,66], sarcoma [25],
bladder and prostate cancer [25], primary skin
tumours and lymphatic metastases [50,55];

� strength of the association. HERV genes are rarely
expressed in normal tissues [25,67] and adjacent
tissues of breast [58] and other types of cancers [68];

� temporality. Environmental factors − both
exogenous (chemicals [35], UV radiation, [34,69,70],
smoking [71], viruses [72]) and endogenous
(estrogen [36], and cytokines [37]) − facilitate HERV
expression;

� biological plausibility. HERV proteins reduce
expression of glutathione peroxidase, thus increasing
the levels of reactive oxygen species with subsequent
cumulative cell damage [73];

� experimental evidence. Vaccinating against a peptide
from a mouse endogenous retrovirus was shown to
prevent, though not to cure, established melanoma
in mice [74].

HERV-K and Melanoma
The abnormal expression of HERV-K seemingly triggers
the pathological processes leading to melanoma onset,
but also contributes to the morphological and functional
cellular modifications implicated in melanoma mainten-
ance and progression [62]. Figure 1 shows the presumed
cascade of events between HERV-K expression and mel-
anoma initiation. The molecular mimicry of HERV-K
transcript with Oxygen Responsive Element Binding
Protein (OREBP) decreases the expression of glutathione
peroxidase and increases the toxicity from free radicals
leading to higher risk of cancer [38].
Conversely to benign melanocytic lesions, specimen

from patients with primary or metastatic melanoma as
well as melanoma biopsy-derived cell lines were reported
to express HERV-K antigens such as the viral reverse
transcriptase (RT) [50,55]. Down-regulation (by RNA
interference) and pharmacological inhibition of RT
resulted in a reduced proliferation, induced morpho-
logical differentiation and reprogrammed gene expres-
sion in melanoma cells. Discontinuation of anti-RT
treatment reversed the latter figures, suggesting a pos-
sible epigenetic level of control by RT [75].
Down-regulation of HERV-K led to rejection of melano-

ma cells in immune-competent mice [76] and decreased
cancerogenic capacity of melanoma cells inoculated into
nude mice [77]. It has been hypothesized that HERV-K
expression contributes to evade immune-surveillance in
immune-competent mice, thus promoting the growth of
transformed cells and stimulating tumour progression
[63,77].
An immune-dominant epitope on the Env protein is

recognized by antibodies from sera of patients with
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Figure 1 Cascade of events due to homology sequence between the HERV-K Env protein and OREBP [38].
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melanoma. The prevalence of antibodies against the
immune-dominant epitope of the HERV-K Env protein
was significantly higher in sera from 81 melanoma
patients with American Joint Committee on Cancer
(AJCC) stage I–IV disease, compared with 95 control
sera from healthy individuals [78]. In another study anti-
bodies against HERV-K gag and env transcripts have
been observed in 16% (=51/312) sera of melanoma
patients but not in 70 healthy controls [79]. Furthermore
antibodies specific for a HERV-K trans-membrane enve-
lope protein were reportedly found in 22% sera from
patients with metastatic melanoma (N = 60), but again
their prevalence in sera from 20 normal blood donors
and patients with alopecia was nil [55]. There is evidence
that the antibody response against HERV-K proteins in
AJCC stages I–III melanoma patients is associated with
poorer survival, and has thus been proposed as an add-
itional prognostic factor [79].
However, the presentation of HERV-K epitopes on the

surface of affected cells appeared also to represent the
“Achilles’ heel” in the pathological changes induced by
HERV-K [8]. These epitopes could indeed potentially
serve as targets for immunity response aiming at repair-
ing or eliminating the compromised cells.
Similarly to antiviral vaccines now used to prevent cer-
vical cancer (anti-HPV vaccine) or hepatocellular carcin-
oma (anti-hepatitis B vaccine) preventive vaccines
against usually non-expressed retroviral antigens may
stimulate long lasting CD8+ T lymphocytic response in
an otherwise vulnerable host that could then become
able to eradicate early malignancies expressing these
retroviral antigens [58].
Nearly 85% of malignant melanocytes express an anti-

gen called HERV-K-MEL, a product of a pseudo-gene
incorporated in the HERV-K env gene [25,80,81]. The
HERV-K-MEL antigen, already previously defined as a
marker of melanoma risk, is not present in normal tis-
sues, but is significantly expressed in the majority of dys-
plastic and normal naevi, as well as other tumors like
sarcoma, lymphoma, bladder, breast and ovarian cancer
[25].
The FEBrile Infections and Melanoma (FEBIM) multi-

centre case–control study provided evidence how the
Bacillus of Calmette Guerin (BCG) and vaccinia virus
vaccination given in early childhood or acute infectious
diseases acquired later in life were associated with a
lesser melanoma risk [81]. This evidence was further
examined and confirmed in another multi-centre case-



Table 2 Comparison between amino acid sequence of
HERV-K-MEL and proteins from different viruses [38]

HERV-K-Mel M L A V _ I S C A V

BCG L * * * DV V P I * *

Vaccinia virus S * * * V * A * *

Yellow fever virus S * * * _ _ * S * *

A = Alanine; L: Leucine; V = Valine; I = Isoleucine; S = Serine; M = Methionine;
C = Cisteine; P=Proline; D=Aspartic Acid; G= Glycine; * = Identical amino
acids; _ = Missing amino acid.
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control study conducted on 603 incident cases of malig-
nant melanoma and 627 population controls (Table 1)
[82].
A protein bearing a high homology sequence of amino

acids with the antigen HERV-K-MEL is expressed by
BCG and vaccinia virus vaccine (Table 2). The yellow
fever virus vaccine (YFV) was also found to express an
antigen with a strict homology sequence of amino acids
with HERV-K-MEL (Table 2) [38].
Sera from four Rhesus macaques before and four

weeks after being administered with YFV were incubated
with melanoma cells from two randomly selected
patients: immune reactivity was observed at indirect
immune-fluorescence in most apes post vaccination
[Hunsmann & Krone 2005. Vaccination against malig-
nant melanoma. European Patent EP1586330A1].
This suggests that YFV might confer a protection against

melanoma, by molecular mimicry (Figure 2).
To assess this protective effect, a cohort study (28,306

subjects vaccinated with YFV) and a case-control study
nested in the cohort (37 melanoma cases vs. 151 tumours
not expressing HERV-K-MEL) was recently performed in
North-Eastern Italy [83]. The time elapsed since YFV up to
end of follow up (TSV) was split into the following year
intervals: 0-4; 5-9; 10+. In the case control study contrasting
melanoma with tumors non-expressing HERV-K-MEL, the
Odds Ratios (OR) for the above mentioned time bands
adjusted for age and sex were 1.00, 0.96, (95% CI: 0.43-2.14)
and 0.26 (95% CI: 0.07-0.96). The risk of melanoma was
therefore reduced if YFV had been received at least 10 years
before, as a result of prevention of tumor initiation rather
than culling of already compromised melanoma cells [83].
Hodges Vasquez et al. [84] recently conducted a case-

control study on 7,010 members of the US military to
test the association between YFV and melanoma risk.
Total cases of melanoma in this cohort were 638 diag-
nosed from 1999 to 2009 and each of them was con-
trasted with 10 healthy controls from active duty
military service members. The study concluded that no
significant association between YFV 17D and melanoma
risk was found. However the maximum TSV was only
11.5 years and controls were presumably selected among
Table 1 Case-control study (FEBIM-1): Combined effect of
infections and vaccinations on the risk of melanoma;
Odds ratios (95% confidence interval) for melanoma risk,
adjusted for study centre, gender, age, skin phenotype,
freckling index, number of naevi and solar burns [82]

Number of severe infections

0 ≥1

No vaccine 1.0 0.37 (0.10-1.42)

BCG or Vaccinia 0.57 (0.33-0-96) 0.29 (0.15-0.57)

BCG and Vaccinia 0.40 (0.23-0.68) 0.33 (0.17-0.65)
healthy subjects. Selecting controls among individuals
with malignancies other than melanoma from the same
cohort of vaccinees (as done in the above Italian study)
might influence the strength of the association, as study
subjects would be a better choice. If the interaction be-
tween YFV and HERV-K-MEL prevents melanoma,
healthy individuals could not be accepted as controls be-
cause some of them could be “cases of melanoma pre-
vented by YFV” rather than simply subjects without
disease. Prevention of melanoma could occur frequently
because numerous infectious agents produce homolo-
gous epitopes capable of generating cross-reactive
immunity.
The presumed causal structure of the relationships be-

tween YFV, HERV-K, and melanoma can be conveyed in a
directed acyclic graph (DAG) [85]. DAG #1 of Figure 3
relates to tumors expressing HERV-K-MEL. It can be seen
that the cause (symbol A) is YFV; the confounders (B) in-
clude recreational solar exposure and high social class; the
outcome (C) is cancer; and the mediators are expression of
the HERV-K-MEL (D) and the immune response (E). The
confounders may increase the use of YFV, affect expression
of the HERV-K-MEL gene (and of other HERV-K genes)
coding for putative oncogenic proteins, thus increasing the
risk of cancer. YFV may induce a cross-reactive immune re-
sponse that could decrease the expression of HERV-K genes
and destroy or repair the cancer or its precursor cells by
means of CD8+ T-lymphocytes. Since the corresponding
paths are both open, YFV can be postulated to increase
cancer through confounders (top path) as well to decrease
it through immune response (bottom path). DAG #2 of
Figure 3 relates to tumors not expressing HERV-K-MEL. It
can be seen that YFV may be postulated to only increase
cancer risk through confounders as the specific immune re-
sponse is unlikely to affect these tumors.
HERV-K and ovarian cancer
It was reported that multiple HERVs are simultaneously
expressed in ovarian cancers [61]. Antibodies against
HERV-K Env, HERV-E Env o ERV3 proteins have been
detected in sera of patients affected by ovarian cancer,
but not in healthy controls [61]. The presence of these
antibodies provides indirect evidence of how HERV-K
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proteins might be immunogenic and act as tumor asso-
ciated antigens.
The production of specific HERV-K antibodies indi-

cates a lack of immunity tolerance and might signify that
HERV-K expression during ontogenesis did not happen
for ovarian cells, as proposed for melanoma [55].
Patients affected by ovarian cancer seem thus able to
mount an immune response against specific HERVs, and
immunotherapy against HERV-K proteins might be ef-
fective against ovarian cancer. In this regard it is import-
ant to note that HERV-K proteins are expressed in 90%
of epithelial ovarian tumors, whereas their expression is
nil in normal tissues or epithelial tissues from benign
ovarian cancers [61].
Activation of HERV-K expression in ovarian cancer

might happen in response to a transcriptional factor
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detected specifically in malignant epithelial cells of ovar-
ian cancers [86-88]. This activation might be the result
of hypo-methylation of HERV-K genomic DNA during
tumor transformation and progression [61]. Retrotran-
sposons have been reported as potential targets of hypo-
methylation during cellular transformation [89]. An
enhanced HERV-K expression has been reported as a re-
sult of DNA hypo-methylation in urothelial cancer [90]
and germ line tumours [91]. A similar mechanism could
occur also for ovarian cancer.
Assessment of HERV-K expression may therefore rep-

resent a new screening tool for ovarian cancer in the fu-
ture, and served as target for detection, diagnosis and
treatment of this neoplasm [61].

HERV-K and breast cancer
Breast cancer is the leading cancer type and the second
cause of cancer death among women of industrialized
countries [92]. About 10% of breast cancer is attribut-
able to genetic predisposition [93,94], with approxi-
mately 30% familial cases due to BRCA-1 or BRCA-2
genes mutations [95].
Earlier studies have suggested that protection from

breast cancer is associated with early exposure to some
common viruses, whereas exposure later in life increases
the risk [96].
Breast cancer cell lines and tissues were found to ex-

press HERV-K env transcripts, whilst non-malignant
breast tissues did not [93]. HERV-K expression was sig-
nificantly higher in most breast cancer tissues than in
normal breast tissues and a statistical correlation be-
tween estro-progestin stimuli and HERV-K env tran-
scripts in breast cancer cells was reported by various
authors [59,97,98]. In particular, HERV-K RT was found
to be expressed in different human breast cancer cell
lines but not in normal human breast tissues [98]. The
exact role of HERV-K proteins in breast cancerogenesis
is still obscure [98], but HERV-K env may contribute to
cancer proliferation [57].
Expression of HERV-K env was recently detected in

66% (=148/223) human breast cancers inoculated into
mice, and lymphnode metastatis were more likely to
occur in HERV-K positive tumours [57]. Similarly to
melanoma, HERV-K RT expression and humoral re-
sponse against HERV-K antigens was identified as a
novel marker and prognostic factor in disease free
patients for breast cancer [57,79,98].
Monoclonal and single-chain antibodies against the

HERV-K Env antigen proved capable of blocking prolif-
eration of human breast cancer cells in vitro, inhibiting
tumor growth in mice bearing xenograft tumors. In par-
ticular, immune-therapy selectively suppressed breast
cancer cell growth but not non-malignant breast cells.
Results showed that treatment of breast cancer cells with
anti-HERV-K Env monoclonal antibodies induced apop-
tosis and activated the signaling pathway of TP53, a
tumor suppressor protein with a key role in apoptosis
and cell senescence [57].

Summary
According to Hill’s criteria of modern epidemiology [99],
an association is consistent when results are replicated
in studies in different settings using various methods.
This signifies that, for a relationship to be causal it has
to be consistently found in different studies and different
populations.
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The above Italian study [83] raised the possibility that
YFV is able to afford protection against melanoma at a
very early stage of malignant transformation, perhaps
preceding the clinical presentation of melanoma by
many years. However, the evidence is based only upon
three cases.
Further research appears recommended to confirm and

elucidate the temporal pattern of the protection from mel-
anoma attributable to YFV in other geographic areas and
larger populations. It appears also appropriate to eliminate/
attenuate the effect of potential confounders such as other
vaccinations (namely BCG, vaccinia virus and possibly fur-
ther vaccinations recommended for travelers to tropical
areas) and especially socio-economic status, the latter being
a significant risk factor for various malignancies, including
melanoma [100,101] and breast cancer [100,102,103].
In view of the above, extending this investigation also

to the potential protective effect of YFV on breast cancer
appears indicated. Sarcoma, lymphoma, bladder and
ovarian cancer should also be considered, as all these
malignancies express significant levels of HERV-K Env
epitopes [25,57-59,61].
If the above evidence were confirmed new possible

pathways for the prevention of cancer could be opened.
Despite monoclonal antibodies against HERV-K Env

proteins recently showing interesting results as a potential
immunotherapeutic in breast cancer [57], cancer im-
munotherapy is still considered more complex and less
advantageous than cancer immuno-prevention [80,104].
Furthermore, the efficacy of anti-HERV-K immunotherapy
in the above study was only evaluated in mice bearing
xenograft tumors, hence it should also be tested in breast
cancer patients [57]. By contrast, YFV is largely affordable,
reliable [105,106] and able to stimulate preventive cellular
immunity against cancer, as antibody response is likely
not to be the only immune mechanism involved against
malignancies [38].
Several pathogens express antigens with an amino acid se-

quence homologous to the HERV-K-MEL epitope, but ei-
ther the relevant proteins are not used to arrange the
respective vaccines (e.g. tetanus toxoid and acellular pertus-
sis vaccine), or most non-viable preparations are formulated
to induce humoral response rather than cellular immunity
[38]. Lastly, despite the evidence in favour of vaccinia and
BCG vaccinations against the risk of melanoma [38], and
the increasing global incidence of tuberculosis, the re-
introduction of these two vaccines seems questionable [80].
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