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How do we use therapeutic drug monitoring to
improve outcomes from severe infections in
critically ill patients?
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Abstract

High mortality and morbidity rates associated with severe infections in the critically ill continue to be a significant
issue for the healthcare system. In view of the diverse and unique pharmacokinetic profile of drugs in this patient
population, there is increasing use of therapeutic drug monitoring (TDM) in attempt to optimize the exposure of
antibiotics, improve clinical outcome and minimize the emergence of antibiotic resistance. Despite this, a beneficial
clinical outcome for TDM of antibiotics has only been demonstrated for aminoglycosides in a general hospital
patient population. Clinical outcome studies for other antibiotics remain elusive. Further, there is significant
variability among institutions with respect to the practice of TDM including the selection of patients, sampling time
for concentration monitoring, methodologies of antibiotic assay, selection of PK/PD targets as well as dose
optimisation strategies. The aim of this paper is to review the available evidence relating to practices of antibiotic
TDM, and describe how TDM can be applied to potentially improve outcomes from severe infections in the
critically ill.
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Review
Introduction
Despite advances in contemporary medicine, severe in-
fections and sepsis-related mortality in critically ill pa-
tients remain a global problem [1-4]. An important
consideration of antimicrobial treatment failure in the
critically ill is inadequate drug exposure from use of dos-
ing regimens derived in non-critically ill patients [5].
There is extensive evidence of sub-therapeutic exposure
from standard doses across different antibiotic classes
including beta-lactams [6,7], aminoglycosides [8], glyco-
peptides [9], fluoroquinolones [10], and oxazolidinones
[11]. This can be a direct consequence of pharmacokinetic
alterations emanating from the complex pathophysiologic
processes associated with severe infection. Multi-drug re-
sistant organisms more frequently encountered in the

critically ill also alter the dosing requirements for these
patients [12-14]. Appropriate, timely antibiotic therapy
given at an adequate dose is thought to be of paramount
importance in improving clinical outcome of severe sepsis
[15]. To further increase the likelihood of achieving a good
patient outcome from infection, optimizing antibiotic dos-
ing is crucial. Therapeutic drug monitoring (TDM), a tool
traditionally used primarily to minimize toxicity in drugs
with narrow therapeutic window or drugs with complex
pharmacokinetics, is being increasingly used for antibiotic
dose optimization in the attempt to improve attainment of
pharmacokinetic/pharmacodynamic (PK/PD) targets and
outcomes of severe infections in the critically ill [16-19].
Despite a growth in practice of antibiotic TDM glo-

bally, clinical outcome studies on TDM-based inter-
ventions are limited. To date, definitive benefit is only
demonstrated for aminoglycosides [20,21]. Further, there
is significant variability among institutions with respect
to the practice of TDM including the selection of pa-
tients, sampling time for concentration monitoring, me-
thodologies of antibiotic assay, selection of PK/PD target
as well as dose optimisation strategies [22]. The aim of
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this paper is therefore to critically review the available
evidence of the practices of antibiotic TDM, and de-
scribe how TDM can be utilised to potentially improve
critically ill patient outcomes from severe infections.

Pharmacokinetic changes in the critically ill
Altered pharmacokinetics of antibiotics in ICU patients
with severe infections secondary to dynamic disease pro-
cesses and medical interventions has been widely de-
scribed [10,11,23,24]. Altered drug exposure may also be
observed in patients with severe sepsis outside the ICU.
Specifically, changes in volume of distribution (Vd) and
drug clearance (Cl) may lead to sub-therapeutic or toxic
exposures of antibiotics when standard doses are used.
Table 1 describes common factors that may alter
pharmacokinetics of antibiotics in critically ill patients.
Fluid resuscitation, capillary leakage and third space
losses could substantially increase Vd of hydrophilic anti-
biotics such as beta-lactams and aminoglycosides, the Vd

of which approximates the extracellular fluid volume.
The Cl of antibiotics is dependent on patient organ
function, drug clearance mechanisms and extracorporeal
interventions given to the patient. Renal hypoperfusion,
acute kidney injury and end-organ failure decrease Cl
of antibiotics. On the contrary, augmented renal clear-
ance (ARC) has been described in critically ill patients,
where increased elimination of antibiotics lead to sub-
therapeutic concentrations [25,26]. The impact of in-
terventions such as renal replacement therapy (RRT) and
extracorporeal membrane oxygenation (ECMO) on anti-
biotic pharmacokinetics is multifactorial, variable and
complex and have been discussed in detail elsewhere
[27-30].

Main pharmacokinetic/pharmacodynamic indices
associated with antibiotic efficacy
The three main PK/PD indices that describe antibiotic
exposure required for bacterial stasis or killing are sum-
marised in Tables 2 and 3. The PK/PD targets for

individual groups of antibiotics proven or proposed to
be associated with clinical advantage based on animal
and clinical studies are also listed. Of note, all PK/PD
targets are expressed in relation to the minimal inhibi-
tory concentration (MIC) of the pathogen, highlighting
that beyond measurement of antibiotics concentrations,
accurate and timely determination of MIC also should
be considered a cornerstone of antibiotic TDM. MICs
for TDM can be defined by various strategies, including
Etest, disc method, micro-dilution broth method and au-
tomated microbiology system (e.g. Phoenix, Vitek 2), or
adoption of local antibiograms, EUCAST and CLSI
breakpoints. Clinicians utilising TDM in treating severe
infections, especially those that involve resistant organ-
isms, need to be aware of the limitations of each me-
thod. These limitations have been discussed in detail
elsewhere [31-35].

How TDM could be utilised to optimize PK/PD in treating
severe infections – clinical evidence and practical issues
Beta-lactams
Given the excellent safety profile of beta-lactams, the
main aim of TDM with these antibiotics is to maximise
efficacy through achievement of therapeutic exposures
[36]. Targets required to achieve a favourable clinical
outcome in the critically ill have been described to be
higher than that supported by studies in animal models
or in non-ICU patients (Table 2). A PK/PD target of
100% f T>MIC as against f T>MIC lower than 100% was as-
sociated with significantly greater clinical cure and bac-
teriological eradication in septic critically ill patients
with bacteremia, lower respiratory tract or complicated
urinary tract infection treated with cefepime and ceftazi-
dime [18]. Tam et al. found similar associations against
gram-negative infections, although proposed an even
higher PK/PD target with cefepime (on concurrent ami-
noglycosides) [37]. Unfortunately, achievement of these
higher drug concentrations in ICU patients is infrequent,
especially in the early phase of sepsis [6,38]. Other dosing
strategies have been proposed for optimizing beta-lactams
exposure, these include dose adjustments made specific to
interventions, continuous infusion and dosing monograms.
However, individual reports still demonstrate the extreme
difficulties in achieving appropriate drug concentrations in
some severely ill patients [30,39-42]. TDM appeared to be a
feasible strategy to adapt beta-lactam dosing and may com-
plement these other measures [12,43]. The potential benefit
of beta-lactam TDM probably warrants evaluation of its
value for treating severe infections in the critically ill, despite
the fact that the optimal PK/PD target remains unclear.
Beta-lactams have a low likelihood of toxicity. How-

ever, given the high drug concentration requirement in
some severely ill patients for difficult to treat infections,
toxicity becomes an issue that could be minimize with

Table 1 Summary of common factors associated with
altered pharmacokinetics of antibiotics in critically ill
patients

Increased Vd Decreased Cl Increased Cl Variable changes
in Vd and/or Cl

Hypoalbuminaemia,
leading to increased
unbound drug

Renal
hypoperfusion

Augmented
renal
clearance

Extracorporeal
interventions
(eg RRT, ECMO)

Capillary leakage Acute kidney
injury

Fluid resuscitation Renal/hepatic
dysfunction

Third space loss
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TDM. No threshold of toxicity has been defined cur-
rently, however TDM could aid early recognition of po-
tential drug-related toxicities (especially neurological
toxicity) in susceptible patients [44-46].

Selection of patients Patients with sepsis or septic shock,
who potentially would benefit from TDM, are those with

labile blood pressure (ie septic shock), dynamic renal func-
tion, burns injury, receiving RRT or ECMO, infected with
resistant organisms, and where neurological toxicity is
clinically suspected [22,47,48].

Sampling time Trough concentrations sampled at steady
state (generally after 3–4 doses given) are appropriate for

Table 2 Summary of time-dependent antibiotics and proposed targets for TDM dose adjustments

PK/PD
index

Antibiotics PK/PD thresholds associated with optimal
bacterial killing and/or clinical outcome

PK/PD threshold for potential toxicity

f T>MIC Beta-lactams Predominantly 100% f T>MIC for TDM purposes [22] Has not been clearly defined. Thresholds
from 100% f T>6xMIC to 100% f T>10xMIC has
been arbitrarily chosen by some centres [22]Penicillins 30% f T>MIC (bacteriostatic)

50% f T>MIC (bactericidal – animal model and clinical
studies in non-critically ill patients) [154]

Cephalosporins 40–70% f T>MIC (animal models) [154]

100% f T>MIC up to 100% f T>4–5xMIC (optimal clinical
outcome observed for cefepime and ceftazidime) [18,37]

Carbapenems 20% f T>MIC (bacteriostatic)

40% f T>MIC (bactericidal)

100% f T>5xMIC (optimal clinical outcome observed for
meropenem) [155]

Monobactams 50% f T>MIC (bactericidal)

Linezolid >85% f T>MIC [125,156]

Table 3 Summary of concentration-dependent with time-dependence and concentration-dependent antibiotics, and
proposed targets for TDM dose adjustments

PK/PD
indices

Antibiotics PK/PD thresholds associated with
optimal bacterial killing and/or
clinical outcome

PK/PD threshold for
potential toxicity

Concentration-dependent
with time-dependence

AUC0–24/
MIC (AUIC)

Vancomycin a) AUIC≥ 400 (corresponds to trough
concentrations of 15–20 mg/Lfor intermittent
dosing; trough of 20–25 mg/L for
continuous dosing)

Trough concentrations >27 mg/L
with intermittent dosing

b) trough concentrations >10 mg/L to avoid
development of resistance [16]

Linezolid AUIC > 80 to 120 (corresponds to trough
concentrations > 2 mg/L) [125,156]

Has not been clearly defined

Theoretical maximum trough
concentrations threshold:
7–10 mg/L [120,157,158]

Recommended maximum:
7 mg/L [158]

Fluoroquinolones AUIC > 125 for Gram negative organisms
[137,159,160]

Aminoglycosides Relation to therapeutic efficacy mainly shown
in animal infection models

Daptomycin AUIC > 666 [151] Trough concentrations >24.3 mg/L [150]

Concentration-dependent Peak
(Cmax)/MIC

Fluoroquinolones Cmax/MIC >10 prevent emergent of resistant
mutants in in vivo and in vitro models [137,161,162]

Aminoglycosides Cmax/MIC 8–10 [163] High dose extended-dosing: troughs
undetectable or <1 mcg/mL

Daptomycin Cmax/MIC 59–94 [152]

Abbreviations: f T>MIC percentage/fraction of dosing interval during which unbound antibiotic concentration remain above the MIC of targeted bacteria,
AUC0–24/MIC ratio of the area under the concentration–time curve (AUC) of the unbound drug from 0–24 hour and the MIC of targeted bacteria, Peak (Cmax)/MIC
ratio of the peak concentration during a dosing interval and the MIC of targeted bacteria.
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determining whether PK/PD targets have been achieved.
Additional sampling (e.g. at mid-dosing interval) is appro-
priate for a more accurate calculation of pharmacokinetic
parameters and would be useful for a Bayesian-driven dose
adaptation using appropriate computer software.

Assay Liquid chromatography is the most widely used
assaying method for beta-lactam TDM [49-53]. A variety
of published protocols are available to suit clinical and
laboratory needs in different institutes [22]. The high
equipment and personnel costs as well as the relatively
prolonged processing time (between 6–24 hours) are
disadvantages of the method that might hinder the wider
application of beta-lactam TDM. Direct measurement of
unbound drug concentrations is also recommended in
critically ill patients with hypoalbuminaemia receiving
highly protein-bound antibiotics [54].

Dose adjustment strategies Generalized but non-specific
dose adjustment methods including changing dose amount
or frequency, utilization of extended or continuous infusion
have been used in most units practising TDM routinely
[22]. New dosages can be determined more accurately by
calculating the individual patient’s drug clearance from
measured beta-lactam concentrations. Dosing nomograms
and PK softwares for dose adjustment are available but have
not been widely tested nor validated [39,55].

Aminoglycosides
With activity against gram-negative bacteria, aminogly-
cosides are an inexpensive group of antibiotics frequently
used in the ICU for treatment of severe infections. Once-
daily administration to maximize its concentration-
dependent effect and post-antibiotic effect is widely
accepted as the standard regimen in general ward pa-
tients, and in ICU patients as well. For gentamicin, the
regimen itself has been proven to provide small improve-
ment in efficacy and/or reduced nephrotoxicity, and the
benefit is augmented with active TDM [19,56-59]. Genta-
micin, tobramycin and amikacin are the three antibiotics
mostly subjected to TDM. In non-critically ill patients, the
aim of TDM for extended interval aminoglycoside dosing
is mainly to reduce toxicity, as arguably the single high
dose would provide an adequate Cmax (maximum concen-
tration in dosing interval) in most cases [60]. However,
these doses in critically ill patients are associated with a
decreased rate of achievement of peak and AUC (area
under the concentration-time curve) targets [8,61-64]. Al-
though minimizing the likelihood of toxicity using TDM
is important in critically ill patients, dose adaptation to
avoid under-dosing and maximize efficacy is also valuable.
Given the high mortality rate of severe infections in the
critically ill, high variability in aminoglycoside PK, and the
proven benefit of aminoglycoside TDM in general patient

populations, TDM practice tailored to the critically ill
population is advised.

Selection of patients Measurement of Cmax concentra-
tions is advisable in patients with conditions associated
with an increased Vd (eg. burns, septic shock). Those
with unstable hemodynamic and/or renal function, un-
dergoing RRT, infected with resistant pathogens would
also benefit from routine TDM. AUC based monitoring
is preferred, but where not possible, trough concentration
monitoring to minimize toxicity is suggested especially for
patients receiving regimens exceeding 48 hours [65-68].

Sampling time Traditionally, measuring one random
concentration between 6–14 hours after commencement
of antibiotic infusion with interpretation using a no-
mogram has been used for aminoglycosides. Given these
nomograms are more commonly developed in non-
critically ill patients, use of this approach in the critically
ill is not recommended [57,69]. TDM with two samples
drawn at 1 (30-mins post completion of drug infusion)
and 6–22 hours post administration [70,71] allows de-
scription of peak concentrations and AUC using linear
regression or Bayesian approaches and a more accurate
prediction of future dosing requirements.

Assay Commercially available immunoassays are the
most frequently used method for aminoglycoside TDM.
Although other methods such as capillary zone electro-
phoresis and chromatography offer higher precision, the
inexpensive immunoassays have been validated and are
appropriate for routine daily clinical practice [72,73].

Dose adjustment strategies The PK/PD targets conven-
tionally used for aminoglycoside TDM are described in
Table 3. To the best of our knowledge, no other targets
have been established especially for the critically ill popula-
tion. Calculation of the AUC for an individual patient and
subsequent dosage adjustment using dosing software should
be considered the ideal approach. Although clinical advan-
tages of using software based dosing methods have not been
demonstrated, they should be considered preferred for crit-
ically ill patients with severe infections [74-76].

Vancomycin
The benefit of vancomycin TDM both for avoidance of
toxicity as well as improving clinical outcome remains
controversial. Conflicting evidence exists in regards to
correlation of nephrotoxicity with high serum vancomycin
concentrations [77-84]. A recent meta-analysis [85] con-
cluded that the collective literature favours the association.
However it is still debatable whether the high concentration
or kidney damage is the preceding event. Similarly contro-
versy exists with respect to ototoxicity [86,87] as well as
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benefit in clinical outcome [17,84,88-90]. A meta-
analysis by Ye et al. [91] suggested TDM significantly
increases the likelihood of clinical efficacy and decreases
the rate of nephrotoxicity. There is also a good agreement
in the benefit of TDM to prevent the emergence of
vancomycin resistant organisms with trough concentra-
tion above 10 mg/L [90,92,93].

Selection of patients TDM is warranted to avoid toxicity
in patients receiving high doses; during concomitant ther-
apy with other nephrotoxic or ototoxic agents, in patients
with unstable renal function, those receiving prolonged
therapy (>3 to 5 days), during RRTand in hemodynamically
unstable critically ill septic patients [16,94].

Sampling time Trough concentrations are modestly corre-
lated with AUC enabling prediction of the target AUC/MIC
[95,96]. Based on available techniques, samples should be
taken at pharmacokinetic steady state, which would usually
be after about four doses (assuming 12-hourly dosing)
[97]. In patients with renal dysfunction where half life
is prolonged, steady state may not be achieved at the
fourth dosing and therefore a trough concentration at this
time may underestimate steady-state antibiotic exposure
[97,98]. This should be taken into consideration when
making any dose adjustment.

Assay Immunoassay is the most widely used commercial
assay [99]. Currently there is no data indicating the su-
periority of any of the immunoassay methods over the
others [100]. However, bias due to lack of between-method
standardisation and high variability of measurement
between methods is likely [101,102]. Immunoassays remain
appropriate for daily clinical TDM.

Dose adjustment strategies Dose adjustments can be made
by proportionally increasing or decreasing the dose relative
to the ratio of the measured and the target concentration.
The target concentrations commonly used for intermittent
(15–20 mg/L) and continuous dosing (20–25 mg/L) are not
the same with a higher continuous infusion target required
to ensure the achievement of the same AUC as the inter-
mittent dosing. Methodologies for dose individualization
based on calculation of individual pharmacokinetic parame-
ters and PK/PD targets (AUC/MIC) are available but not
widely adopted in clinical practice [103]. Real time Bayesian
forecasting coupled with TDM is thought to be most accur-
ate for dose adaptation [104,105].
No conclusive evidence supports the benefit of CI as a

dose optimization strategy. It is not superior to intermit-
tent dosing in terms of microbiological and clinical out-
comes [106-111]. It may be considered though as a
faster means to achieve consistent therapeutic concen-
trations given an adequate loading dose is used to avoid

initial sub-therapeutic exposure [9,112-114]. A recent
meta- analysis [115] suggested a potential benefit of CI
in reducing risk of nephrotoxicity.

Linezolid
The variability in linezolid pharmacokinetics was trad-
itionally regarded less significant than with other antibi-
otics and consequently dose adjustments were considered
unnecessary even in patients with renal and hepatic im-
pairments [116]. However, accumulation of linezolid in
renal insufficiency has been shown to be likely and results
in toxicities such as pancytopenia, thrombocytopenia and
liver dysfunction [117-120]. Reduced clearance has also
been suggested in moderate hepatic insufficiency [121].
Contrasting reports exist on the possibility of disease re-
lated pharmacokinetic alterations. Consequently standard
doses may result in a variable pharmacodynamic exposure
[122], and are reported in the critically ill population with
burns injuries [123,124]. Elevated plasma concentration
and associated risk of toxicity have also been reported
[125-127]. In general, data to date indicates that TDM
may be required in about 30 to 40% of patients to avoid
dose-dependent toxicity as well as therapeutic failure
[24,122]. The impact of linezolid TDM on clinical out-
come is yet to be demonstrated.

Selection of patients A universal TDM program for li-
nezolid is not supported based on current clinical data.
Critically ill patients with sepsis, burns, pleural and peri-
toneal effusions, organ failure; patients infected with
multidrug resistant bacteria; those receiving concomitant
therapy with drugs that alter linezolid concentrations as
well as those receiving long term linezolid therapy may
benefit from TDM [121,127,128].

Sampling time Trough concentrations are well correlated
with AUC and are sufficient for linezolid TDM and estima-
tion of an AUC/MIC ratio [122,129]. The initial TDM sam-
ple should be taken just after pharmacokinetic steady state
is achieved (usually considered on the third day of therapy).

Assay HPLC methods have been published for linezolid
TDM in plasma [128,130], dried plasma spots [131,132] and
oral fluid [133] with good correlations between methods.

Dose adjustment strategies Dose adjustments can be
made by proportionally increasing or decreasing the dose
in reference to the target concentration range (Table 3).
CI may be a valuable strategy to provide a stable thera-
peutic exposure.

Fluoroquinolones
Difficult-to-predict pharmacokinetics of fluoroquinolones,
particularly ciprofloxacin, can occur in critically ill patients

Wong et al. BMC Infectious Diseases 2014, 14:288 Page 5 of 11
http://www.biomedcentral.com/1471-2334/14/288



as well as other patient groups. TDM may be beneficial
given this pharmacokinetic variability to avoid treatment
failure as well as minimise the emergence of resistance,
particularly in the presence of less susceptible pathogens
such as Pseudomonas aeruginosa which may have MICs
of >0.5 mg/l [21,134,135].
Ciprofloxacin accumulation necessitating dose reduc-

tion has been reported in non-critically ill patients with
renal impairment [136], although Van Zanten et al. [10]
argued that dose reduction is unnecessary in critically ill
patients despite their observation of increased AUCs.
Other authors [137-139] also do not support dose reduc-
tion since accumulation is generally rare. It is likely that
in patients with renal and gastrointestinal failure, dose re-
duction will be required as both clearance mechanisms
will be affected. However, factors such as significant extra-
corporeal clearance due to RRT could influence variability
of concentration in the critically ill [140,141]. TDM may
thus be an advantage for ciprofloxacin, although has yet to
be described for levofloxacin or moxifloxacin.

Selection of patients Universal TDM is not recommended
and no specific patient groups have been shown to benefit
most from TDM. Patients with infections caused by organ-
isms with a high MIC (>0.5 mg/L) may benefit most, as
traditional dosing is likely to result in sub-optimal exposure
in high proportion of these patients.

Sampling time At least two samples (peak and trough)
should be taken to estimate the AUC. Both of these sam-
ples should be measured at steady state. The peak should
be sampled in the post distribution phase, i.e. at least
30 min from the end of bolus infusion [137].

Assay HPLC is the predominant method for measuring
fluoroquinolones in plasma [142,143] with dried blood
spots [144] also used for TDM. A method using capillary
electrophoresis has also been described [145] and immuno-
assay may be a more convenient future alternative [146].

Dose adjustment strategies. A wide range of targets has
been proposed, however AUC/MIC of 125 or a Cmax/MIC
of 8–10 is mostly accepted for treatment of Gram negative
pathogens. A validated approach for dose adjustment is
not currently available. Generally, to increase the AUC0–

24, increasing the dose (e.g. IV 400 mg to 600 mg) or the
frequency of dose (12-hourly to 8-hourly) are the more
common methods for dose adaptation.

Daptomycin
TDM data on daptomycin is limited. The high protein
binding and variable renal clearance make daptomycin a
plausible candidate for TDM to increase the likelihood
of achieving PK/PD targets [147-149]. TDM might also

be useful in reducing the risk of musculoskeletal toxicity
where it is highly associated with a trough concentra-
tion (Cmin) of >24.3 mg/L [150], especially when higher
than standard doses are used. Current data is probably
not sufficient to support a systematic TDM program for
daptomycin. In vivo and small patient cohort studies re-
ported efficacy cutoffs of AUC/MIC of 666 and Cmax/
MIC of 59–94, the optimal PK/PD target for clinical ap-
plication is yet to be elucidated [151,152]. However, critic-
ally ill patients with sepsis, thermal burn injuries,
profound hypoalbuminaemia, those infected by less
susceptable bacteria, and those receiving RRT could po-
tentially benefit from TDM-guided therapy as a means
of ensuring achievement of PK/PD targets. Validated
chomatographic assay methods are available for quanti-
fication of daptomycin [153], but given the high
protein-binding of daptomycin and prevelance of
hypoalbuminaemia in the critically ill, direct measure-
ment of unbound drug concentrations might be pre-
ferred for clinical practice.

Conclusion
TDM has traditionally served as a mechanism to mini-
mize the toxicity of drugs. However, the approach to use
TDM to maximize the therapeutic effects of less toxic
compounds is becoming increasingly common. In the
context of critical illness, there is strong data demon-
strating that standard dosing regimens for many antibi-
otics frequently fail to provide optimal PK/PD exposure
in critically ill patients. Given that pharmacokinetic ex-
posures can be very difficult-to-predict in some patients,
TDM is valuable to identify these patients and guide
dose optimization. TDM can ensure attainment of PK/
PD surrogate indicators of antibiotic efficacy, and there-
fore potentially improve patient outcome. A conservative
approach to development of TDM programs is sug-
gested because for many antibiotics, the personnel and
resource costs are moderate and studies demonstrating
conclusive clinical outcome advantages remain elusive.
Based on the available data, a well-designed randomized
controlled trial to determine the effect of TDM-guided
dosing is supported.

Abbreviations
AUC: Area under the concentration-time curve; f AUC/MIC: Ratio of area
under the concentration–time curve of the unbound drug and the minimal
inhibitory concentration of the pathogen; Cmax: Peak concentration during
a dosing interval; Cmin: Trough concentration during a dosing interval;
CLSI: Clinical and Laboratory Standards Institute; ECMO: Extracorporeal
membrane oxygenation; EUCAST: European Committee on Antimicrobial
Susceptibility Testing; % f T>MIC: Percentage/fraction of dosing interval during
which unbound antibiotic concentration remain above the minimal
inhibitory concentration of the pathogen; HPLC: High-performance liquid
chromatography; ICU: Intensive care unit; MIC: Minimal inhibitory
concentration; PK/PD: Pharmacokinetics/pharmacodynamics; RRT: Renal
replacement therapy; TDM: Therapeutic drug monitoring.
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