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Abstract

Background: While floods can potentially increase the transmission of dengue, only few studies have reported the
association of dengue epidemics with flooding. We estimated the effects of river levels and rainfall on the hospital
admissions for dengue fever at 11 major hospitals in Dhaka, Bangladesh.

Methods: We examined time-series of the number of hospital admissions of dengue fever in relation to river levels
from 2005 to 2009 using generalized linear Poisson regression models adjusting for seasonal, between-year
variation, public holidays and temperature.

Results: There was strong evidence for an increase in dengue fever at high river levels. Hospitalisations increased
by 6.9% (95% CI: 3.2, 10.7) for each 0.1 metre increase above a threshold (3.9 metres) for the average river level over
lags of 0–5 weeks. Conversely, the number of hospitalisations increased by 29.6% (95% CI: 19.8, 40.2) for a 0.1 metre
decrease below the same threshold of the average river level over lags of 0–19 weeks.

Conclusions: Our findings provide evidence that factors associated with both high and low river levels increase the
hospitalisations of dengue fever cases in Dhaka.
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Background
Dengue fever is a mosquito-borne infection that causes
potentially fatal complications like dengue haemorrhagic
fever (DHF) and dengue shock syndrome. The global in-
cidence of dengue has increased dramatically in recent
decades. About 2.5 billion people living in tropical and
subtropical urban and semi-urban areas are now at risk,
and over 50 million cases of dengue are estimated to
occur annually [1]. In some Asian countries, DHF is a
leading cause of hospitalisation and death in children
[2].
In Bangladesh, sporadic cases of dengue fever were

documented between 1964 and 1999. The first outbreak
of DHF occurred in Dhaka in 2000 [3] and since then,
cases have been reported every year with clear

seasonality, suggesting that weather factors could play a
role, either directly or indirectly.
Climatic conditions directly affect the biology of the

vector mosquitoes, Aedes aegypti and Aedes albopictus
[4-6]. High rainfall and temperatures can provide the
conditions for oviposition, stimulation of egg-hatching,
high vector development and a decrease in the repro-
ductive period of the virus in the mosquito [4-6]. Many
studies have investigated the relationship between
climate and dengue in various locations. High tempera-
tures have been associated with dengue in Brazil [8],
China [9], Costa Rica [10], Indonesia [11], Mexico [12],
Puerto Rico [13], Singapore [14], Taiwan [15] and Thai-
land [16] and high rainfall has been associated with den-
gue in Barbados [17], Indonesia [18], Mexico [12],
Puerto Rico [13], Taiwan [15], Thailand [19], Trinidad
[20] and Venezuela [21]. It has been suggested that
spatial heterogeneity of the short-term associations
between cases of dengue and temperature and rainfall
may be attributed to underlying climate heterogeneity [13].
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Some studies have suggested an association between den-
gue epidemics and El Niño [22-24].
Floods can potentially increase the transmission of

dengue. Standing waters caused by the overflow of rivers
can act as breeding sites for mosquitoes, and thereby en-
hance the potential for exposure of flood-affected popu-
lations to dengue [25]. However, few studies have
reported an association of dengue epidemics with flood-
ing. No dengue infections were reported in relief work-
ers in Puerto Rico after hurricane Georges (1998) [26,27]
and no outbreaks of dengue occurred after hurricane
Jeanne (2004) in Haiti [28]. Only a low incidence of den-
gue was reported in flood-affected areas of Malaysia
[29]. After flooding in Thailand, an increase in the num-
ber of acute pyrexia cases, of which 29% were dengue
and 27% were leptospirosis, was reported [30].
Bangladesh is a low-lying country with bodies of water

that are vulnerable to flooding. Clarification of the potential
role of river levels and weather on the transmission of den-
gue could help provide insights into the pathways of sea-
sonal epidemics of the disease and improve disease control.
This study aimed to estimate the effect of river level and
rainfall on the incidence of dengue in Dhaka while control-
ling for other seasonal determinants.

Methods
Hospital data
The primary outcome for this study is the weekly number
of patients admitted to 11 principal hospitals in the Dhaka
Metropolitan area and diagnosed with dengue fever and
DHF. Figure 1 shows the locations of the 11 hospitals.
These hospitals were selected because they are the major
health service providers in the Dhaka Metropolitan area.
Data for patients admitted between January 2005 and De-
cember 2009 were obtained from their hospitalisation
records. A database was developed to document patient
data, including the date of admission. Diagnosis of dengue
fever was made by physicians in the hospitals and some,
but not all, diagnoses were confirmed by laboratory
investigation.

River level and meteorological data
The daily river levels at 4 monitoring stations (Buriganga
River at Mill Barrack, Tongi Khal at Tongi, Turag River at
Mirpur and Balu River at Demra) in Dhaka (Figure 1) were
obtained from the Bangladesh Water Development Board.
The daily average of the maximum river levels at the four
stations was used in the analysis. We also obtained the
daily rainfall and mean temperature data in Dhaka from
the Bangladesh Meteorological Department. Weekly means
of the daily maximum river levels at the four stations and
of the mean daily temperature, as well as the total weekly
rainfall were calculated from the daily records.

Statistical analysis
We examined the relationship between the number of
weekly dengue cases and river levels and weather variables
(temperature and rainfall) using generalized linear Poisson
regression models allowing for overdispersion [31]. To
account for the seasonality of dengue counts not directly
related to the river levels and weather, Fourier terms up to
the 5th harmonic were introduced into the model. Fourier
terms can capture repeated periodic (e.g., seasonal) patterns
comprising a combination of pairs of sine and cosine terms
(harmonics) of varying wavelengths [32]. The number of
harmonics was chosen as Akaike’s Information Criteria
(AIC). Indicator variables for the years of the study were
incorporated into the model to allow for long-term trends
and other variations between years. An indicator variable
for public holidays was included in the model to control
bias in the event that holidays affected access to hospital.
To allow for the autocorrelations an autoregressive term of
order 1 was also incorporated into the model [33].
To account for delays in the effect of the river levels on

the number of dengue cases, lagged river level variables
were built-in to the model. We considered lags (delays in
effect) of up to 26 weeks (6 months). To identify the
optimum lag period, a linear term for river levels for each
lag (0, 1, 2, . . ., 26 weeks) was sequentially incorporated
into a model comprising indicator variables of years and
public holidays and Fourier terms (i.e., a model with no
controls for weather variables). To create a distributed lag,
lags were added 1 week at a time up to the lag of interest
[34]. The approximately linear increase in the effect in each
additional lag was observed up to a lag of five weeks (i.e., a
six-week period between a given week and the preceding
five weeks), while a linear decrease in the effect was
observed between lags of 6 –19 weeks. The optimal lag for
a high river level effect was chosen when the effect was at
its maximum, from zero to five weeks (the average of the
river levels on a given week and the five previous weeks),
and the optimal lag for a low river level effect was chosen
when the effect was at its minimum, from 0 to 19 weeks.
In the initial analyses, designed to identify the broad

shape of any association, we fitted natural cubic splines
(3 df) [35] to (a) the average river level over lags
0–19 weeks, and (b) the average river level over lags 0–5
and 6–19 weeks, as separate splines simultaneously
included in the model. We have incorporated all variables
of rainfall, temperature and river level as a natural cubic
spline (3 df) with the same lag period in the final model to
adjust for potential mutual confounding. A detailed de-
scription of the final model is given in the supplementary
material.
Because the initial analyses suggested a log-linear asso-

ciation, we fitted a linear threshold model, comprising
linear terms for river level. Guided by the spline analysis,
we based the low and high river level terms on the 0–19
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Figure 1 Locations of the 11 hospitals and river level monitoring stations in Dhaka, Bangladesh that were used in this study.
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and 0–5 week averages, respectively. The choice of
thresholds was based on the maximum likelihood esti-
mation for the river level over a grid of all possible one-
decimal point values within the range indicated on the
river level-dengue graphs, and constrained for interpret-
ability so that low threshold (ηl) = high threshold (ηh)
where unconstrained estimates gave ηl > ηh. Likelihood
profile confidence intervals (CIs) for the threshold were
calculated as the thresholds for which deviance of the
model was 3.84 more than the minimum. An increase or
decrease in the number of cases that were associated
with a 0.1 metre increase or decrease in a given measure
of river levels, estimated as coefficients from the regres-
sion model, was reported as percentage change.
Using the simple threshold model, we examined the

lag effects in more detail by fitting linear unconstrained

distributed lag models comprising terms for low and
high river level at each lag in the preceding 19 weeks
[34].
To investigate whether the main results were sensitive

to the levels of control for seasonal patterns, the analyses
were repeated using Fourier terms up to the 12th har-
monic per year adding one harmonic at a time (0–10 pairs
of harmonics). Instead of Fourier terms, indicator variables
for each month were also examined. To investigate the
sensitivity of the main results, the river level data from
each of the monitoring stations were analysed separately.
All statistical analyses were carried out using Stata ver-

sion 10.0 (Stata Corporation, College Station, Texas).

Ethics Statement
This study has been approved by the ethics committee
of the University of Dhaka and all data analyzed were
anonymized.

Results
There were 3130 admissions for dengue fever to the
11 hospitals from 2005 to 2009. Descriptive statistics
for the number of patients and weather variables are
displayed in Table 1. Dengue fever had a single peak
at the end of the monsoon (weeks 29–40) following a
lag of 0–13 weeks with the peak river level (Figure 2).
The relationships between the number of dengue
fever cases and river level, adjusted for season, inter-
annual variations, holidays, temperature and rainfall
are shown in Figure 3. An increase in dengue fever
was seen with high river levels at lag 0–5 weeks, and
an increase in the number of cases with low river levels

Table 1 Distribution of daily number of dengue patients
admitted to 11 hospitals and the average of the
meteorological and river level data in Dhaka, 2005-2009

Variable (unit) Mean SD Minimum Maximum

Dengue fever 12.0 15.9 0 72

River level (m)

Maximum 3.16 1.27 1.51 6.33

Minimum 2.90 1.39 1.13 6.28

Rainfall (mm) 45.1 71.5 0 497

Temperature (°C)

Mean 26.6 3.8 16.5 32.4

Maximum 31.0 3.3 21.0 37.6

Minimum 22.3 4.6 11.1 28.8
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Figure 2 Seasonal variations in the number of dengue cases per week, and river level, temperature and rainfall data in Dhaka, 2005–2009.
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was observed at lag 6–19 weeks. An increased number
of dengue cases with low river levels were observed at
lag 0–19 weeks. Maximum likelihood estimates of the
threshold for high and low river levels coincide at 3.9
metres (95% CI: 3.7–4.0) for average river levels over
lags of 0–5 and 0–19 weeks calculated using a double
thresholds model. For a 0.1 metre increase above the
threshold, the number of dengue fever cases increased
by 6.9% (95% CI: 3.2–10.7). For a 0.1 metre decrease
below the 3.9 metre average river level at lag 0–
19 weeks, the number of cases increased by 29.6% (95%
CI: 19.8–40.2).
In the distributed lag model, a “high river level” effect

was observed at shorter lags with the highest estimate at a
lag of six weeks followed by lower estimates in later lags
(Figure 4A). In contrast, the positive effect of a low river
level was observed at longer lags; the estimate was lowest
at a lag of five weeks followed by an increased effect up to
a lag of 19 weeks (Figure 4B).
The relationship between the number of dengue fever

cases and the rainfall adjusted for season, interannual varia-
tions, holidays, river level and temperature is shown in Fig-
ure 5. There was no obvious association at lag 0–5 weeks,
while the pattern showed a positive slope with high rainfall
at lag 0–19 weeks, and a possible threshold at around 60–
80 millimetres of rain. The estimated threshold was 70
millimetres (95% CI: 59–79). For a 10 mm increase above
the threshold, the number of cases increased by 29.0% (95%
CI: 14.0–46.0). The relationship between the number of
dengue fever cases and temperature was also examined but
no statistically significant association was observed. AIC
and model deviances for combinations of independent vari-
ables are displayed in Additional file 1: Table S1. The mini-
mum AIC value was for model 3, which considered rain
and river level as covariates.
When the analyses were repeated using river level data

from each of the 4 monitoring stations separately, simi-
lar patterns for the effects of high and low river level
were obtained. For the four individual stations, the high
river level slope varied from 2.8% to 7.9% above the
same threshold (3.9 metres) and the low river level slope
varied from 6.7% to 25.3% below the threshold.
In the sensitivity analyses, when the degree of seasonal

control was varied from two to ten harmonics, the esti-
mates of the effect of high and low river levels changed lit-
tle while the estimates decreased when no seasonal control
was built-in to the models (Additional file 1: Figure S1).

Discussion
In this study, we found a significant association between
hospital visits for dengue and high river levels with a
short lag time (0–5 weeks) and with low river levels with
a longer lag time (6–19 weeks) in Dhaka, Bangladesh.
The results indicate that the number of dengue cases
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Figure 3 Relationship between the number of dengue cases and
average river levels over lags of (A) 0–5 weeks, (B) 6–19 weeks
and (C) 0–19 weeks (shown as a 3 df natural cubic spline)
adjusted for seasonal variation, interannual variations, public
holidays, temperature and rainfall. RR represents the relative risk of
dengue (scaled against the mean weekly number of cases). The centre
line in each graph shows the estimated spline curve, and the upper
and lower lines represent the 95% confidence limits

Hashizume et al. BMC Infectious Diseases 2012, 12:98 Page 5 of 9
http://www.biomedcentral.com/1471-2334/12/98



increased when a prolonged low river level preceded a
high river level. This result is consistent with a report
that found that the number of DHF cases was higher
when prolonged drought preceded the rainy season [36].
Previous reports had indicated that the incidence of

dengue rarely increases after water-related disasters such
as floods and hurricanes [26-29]. Flood water may create
stagnant pools or fill containers already in the environ-
ment. Stagnant ground pools except for sewage water
and septic tanks [37,38], however, are not a common lar-
val site for the container-inhabiting Aedes mosquito and
flood water caused by overflows of river water may not
be of optimal quality for the development of Aedes lar-
vae. Flooding in Dhaka is not caused by flash floods.
Levels in water bodies scattered throughout the city
gradually increase every monsoon season, and river
levels can be good indicators of the level of water bodies
in the community irrespective of the overflow of the
major rivers. Thousands of pieces of garbage, including
plastic containers, are scattered along water bodies.
When water remains in discarded containers after the
increased water levels recede, breeding conditions for
the Aedes mosquitoes that are capable of spreading den-
gue may be created. Eggs of Aedes mosquitoes are
desiccation-resistant and are commonly laid above the
waterline in tree holes, tires or other water-holding cav-
ities [39]. When dry conditions prevail during the

previous 6–19 weeks, water levels in the cavities grad-
ually decrease and the eggs end up at varying distances
above the waterline as a result of several ovipositions at
different times. Thus, eggs laid by different female mos-
quitoes will accumulate in a cavity as the water level
drops (and the area of the inner wall above the water
increases); this is one of the cumulative effects of low
water levels. The eggs will hatch when submerged in
water as a result of an increase in the level of water bod-
ies [40]. Our hypothesis is supported by a previous re-
port that a large number of Aedes albopictus was
identified in a flooded area [41]. Mechanistic models to
estimate Aedes mosquito abundance in response to
flooding have shown that forcing by flooding is able to
underpin changes in Aedes mosquito population dynam-
ics [42,43]. Aedes albopictus is more likely than Aedes
aegypti to breed and transmit dengue outside the home
[40], and it is the principal vector of dengue transmis-
sion in Dhaka [44]. Dhaka has unique topographical
characteristics where the low-lying land and abundant
bodies of water may be related to the observed associ-
ation between river level and dengue incidence. Further
environmental and entomological studies are necessary
to elucidate the causal pathways of these associations.
Intensive and integrated control by source reduction,

chemical control (larviciding and adulticiding) and health
promotion were reported to minimize the adverse effects
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of flooding [29]. Individual preventive behaviours like
sleeping in air-conditioned rooms and wearing long-
sleeved clothing were also reported to reduce the chance
of mosquito bites [27]. Thus, appropriate public health
interventions can minimize the number of dengue cases
even after water-related disasters. Insufficient control
measures like source diminution, insecticide spraying
and health promotion potentially contribute to the flood-
associated increase in dengue cases in Dhaka. In
addition, recent urbanisation and population growth,
especially in the slum areas of Dhaka, may have increased
the city’s susceptibility to flood-associated dengue.
There are some limitations to this study. First, we used

the aggregated number of dengue cases from 11 hospi-
tals as the database, and the average river level of four
rivers surrounding Dhaka city as the indicator of water
levels in the community. There could be discrepancies
between the residential areas and flood-affected areas.
Because this is a random misclassification model, the
estimates found in this study could be underestimated.
The estimates of the effect may be more precise if the
exposure of the cases was measured based on the river
level at the monitoring station closest to the domiciles
of the cases. Second, we used hospitalisation data from
the principal hospitals in Dhaka. The hospitals included
in the study may not cover all residents in the city; how-
ever, they are the main referral hospitals in the city and,
therefore, the most severe cases are likely to have been
included. Third, the diagnoses of dengue fever were
made by physicians and not all of the diagnoses were
confirmed in the laboratory. The differential diagnosis of
dengue from leptospirosis is especially important be-
cause the clinical symptoms of dengue and leptospirosis
are similar [45]. Although, after the first outbreak of
dengue fever in Dhaka in 2000, physicians in the hospi-
tals included in this study were generally well trained in
differential diagnosis [46], there is still a possibility of as-
certainment bias in the study. Fourth, we did not exam-
ine the effect of population immunity on the models.
There are 4 serotypes (DEN-1, DEN-2, DEN-3 and
DEN-4) of the genus Flavivirus and, while individuals
acquire permanent immunity to each serotype infecting
them, there is no evidence of cross-immunity [39]. How-
ever, we consider that population immunity will not ma-
terially alter the results because immunity to re-infection
does not change over time and it is unlikely to have
obscured the short-term (less than 6 months) associa-
tions between dengue and the factors investigated in this
study.

Conclusions
No vaccine is yet available for dengue and there is no
specific treatment; so that dengue control is primarily
dependent on and a function of the control of the Aedes
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mosquito. Thus, the development of an early warning
system is an important public health goal. The integra-
tion of climate or hydrological data into predictive fra-
meworks for dengue has not yet been realized. Our
study provides the basis for the early prediction of den-
gue epidemics and has the potential to improve disease
control.
Because systematic mosquito data for the study area

were not available, the findings of this study do not rep-
resent a causal connection. However, this study points to
the possibly important role of river levels on predicting
dengue incidence in Dhaka. Further studies that incorp-
orate entomological information are warranted.

Additional file

Additional file 1: Table S1. Diagnostics of dengue-rainfall/river level
models. Figure S1. Sensitivity analysis. Percent change (and 95% CIs) in
the number of dengue cases for “high” (A; per 0.1 m increase above
threshold) and “low” river level (B; per 0.1 m decrease below threshold)
with each number of harmonics and indicator variable of month (M).
Presented results are from final models adjusted for seasonal variation (5
harmonics), interannual variations, public holidays, temperature and
rainfall.
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