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Abstract

Background: Genetic typing data are a potentially powerful resource for determining how infection is acquired. In
this paper MLST typing was used to distinguish the routes and risks of infection of humans with Campylobacter
jejuni from poultry and ruminant sources

Methods: C. jejuni samples from animal and environmental sources and from reported human cases confirmed
between June 2005 and September 2006 were typed using MLST. The STRUCTURE software was used to assign the
specific sequence types of the sporadic human cases to a particular source. We then used mixed case-case logistic
regression analysis to compare the risk factors for being infected with C. jejuni from different sources.

Results: A total of 1,599 (46.3%) cases were assigned to poultry, 1,070 (31.0%) to ruminant and 67 (1.9%) to wild
bird sources; the remaining 715 (20.7%) did not have a source that could be assigned with a probability of greater
than 0.95. Compared to ruminant sources, cases attributed to poultry sources were typically among adults (odds
ratio (OR) = 1.497, 95% confidence intervals (CIs) = 1.211, 1.852), not among males (OR = 0.834, 95% CIs = 0.712,
0.977), in areas with population density of greater than 500 people/km2 (OR = 1.213, 95% CIs = 1.030, 1.431),
reported in the winter (OR = 1.272, 95% CIs = 1.067, 1.517) and had undertaken recent overseas travel (OR = 1.618,
95% CIs = 1.056, 2.481). The poultry assigned strains had a similar epidemiology to the unassigned strains, with the
exception of a significantly higher likelihood of reporting overseas travel in unassigned strains.

Conclusions: Rather than estimate relative risks for acquiring infection, our analyses show that individuals acquire
C. jejuni infection from different sources have different associated risk factors. By enhancing our ability to identify
at-risk groups and the times at which these groups are likely to be at risk, this work allows public health messages
to be targeted more effectively. The rapidly increasing capacity to conduct genetic typing of pathogens makes
such traced epidemiological analysis more accessible and has the potential to substantially enhance
epidemiological risk factor studies.

Background
Epidemiological risk factor analyses are used to identify
factors that influence the risk of individuals acquiring a
particular infection. Such risk factor analyses commonly
assume that the risk factors associated with different
sources of exposure to infection are homogeneous [1-3].
However, in many cases there are multiple sources of

infection and different risk factors may be associated
with the different sources. Backward-tracing data on the
sources of infection could be used to ascribe different
risks to different sources of exposure.
Infection with C. jejuni can be acquired from con-

sumption of contaminated food as well as through direct
and indirect contact with animal faeces and has multiple
hosts including poultry, ruminants and wild birds [4,5].
Recent developments in the typing of Campylobacter
bacteria permits the tracing of sources of infection for
human cases of Campylobacteriosis [6]. Campylobacter
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can be classified by their allelic profile using Multi-
Locus-Sequence-Type (MLST) typing techniques [7],
which places isolates into specific Sequence Type (ST)
profiles. Using STRUCTURE software [8] it is possible
to calculate a probability of the ST originating from a
particular species [6,9].
Previous studies have identified an association

between human C. jejuni infection in Scotland and
lower social deprivation score (indicating lower social
deprivation) and being a child living in an area of lower
population density [10]. A recent study in New Zealand
[11] typed C. jejuni isolates using MLST and used the
Asymmetric Island probabilistic genetic attribution
model [12] to divide these types into ruminant and
poultry origin types. Logistic regression analysis of the
two types demonstrated that cases of ruminant origin
were more likely to occur in rural areas relative to those
of poultry origin [11]. A similar methodology will be
used in this paper to build on the risk factor analysis of
Bessell et al. [10] by differentiating between the risks
associated with different sources of infection. For exam-
ple, one potential explanation for the association found
by Bessell et al. [10] with lower deprivation could be dif-
ferences in access to outdoor leisure activities. If this
were the case, it might result in the less deprived being
more exposed to ruminant strains should there be
greater exposure to ruminant types in the environment.
By comparing the risk factors that are associated with

infection by ruminant or poultry associated types, this
paper will investigate the value of genetic data, in this
instance MLST, to quantify differences in risks asso-
ciated with different sources. The following hypotheses
will be tested:
1. Infection with ruminant strains is more common in

rural areas with a large ruminant population.
2. Infection with ruminant types is more associated

with lower deprivation than infection with poultry types.
3. Infection with ruminant types is more common in

summer relative to poultry types.
4. Infection with ruminant types is more common

among children rather than adults relative to poultry
types.
5. Infection with ruminant types is associated with

domestic exposures whilst poultry attributed infections
more commonly result from exposure to exotic types
overseas.

Methods
Data
Anonymised reports of laboratory confirmed, passively
reported C. jejuni infections were collected by staff at
Health Protection Scotland (HPS) from the Public
Health Teams at the 12 mainland NHS Health Boards

that existed in Scotland prior to 2006. Ethical approval
for the collection and use of the data was obtained from
the Multi-Centre Research Ethics Committee (MREC) in
Scotland; additionally, approval for the research was
obtained from the Research and Development Commit-
tee in each of the NHS Health Boards. Cases that were
confirmed between June 2005 and September 2006 were
typed using MLST [6,7]. Typing data was linked to epi-
demiological and demographic data, where available.
The data included the postcode sector of the main resi-
dence of the case and either the date of onset or more
commonly the date of laboratory report. Cases that were
part of an outbreak were excluded and of the remainder,
101 cases were missing a verifiable postcode; these were
excluded, leaving 3,834 cases. A further 2 cases had no
data on gender and 9 had no record of age; these were
also removed leaving 3,823 cases.
In a recent study, we collected samples of C. jejuni

from food and environmental sources including chicken,
pate and liver, farms with ruminant livestock, livestock
faeces, wild bird faeces and urban areas where animal
faeces and humans coincide, such as parks [9]. C. jejuni
were isolated from these samples and typed using
MLST. Subsequently each isolated ST was assigned a
probability of originating from a particular source -
either poultry, cattle, sheep, wild birds, water and envir-
onmental based on their occurrence in each source [6].
The probabilities were assigned using the STRUCTURE
software [8]. Each of 441 STs isolated from the 3,451
human cases of C. jejuni (372 cases that were infected
with C. coli were removed from the analysis) was
assigned a probability that the ST originated from poul-
try, cattle, sheep, wild bird and environmental sources
as described in Sheppard et al. [6]. STs were assigned to
ruminant (cattle and sheep), poultry or wild bird when-
ever the probability for that species was greater than
0.95; otherwise the case remained unassigned. Very few
cases were assigned to environmental or swine origin, so
these sources were excluded [6]. Cattle and sheep were
merged to form a single ruminant category because
Ogden et al. [13] demonstrated that there are no signifi-
cant differences between probabilities assigned to cattle
compared to probabilities assigned to sheep and there-
fore the two sources are indistinguishable in terms of
their C. jejuni sequence types.

Logistic regression
Three separate case-case logistic regression analyses
were carried out for all combinations of source of infec-
tion assignments. As this is a case-case analysis the
group used for the base of comparison in the logistic
regression are referred to as ‘controls’ despite them
being incidences of disease:
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1. Individuals infected with a poultry assigned type
(cases) versus individuals infected with a ruminant
assigned type (controls).
2. Individuals infected with an unassigned type (cases)

versus individuals infected with a ruminant assigned
type (controls).
3. Individuals infected with a poultry assigned type

(cases) versus individuals infected with an unassigned
type (controls).
As the data points are individual cases, case-specific

data could be included. Such data include the age, gen-
der and time of year of laboratory reports. The following
putative risk factors were included in these analyses:
• The Carstairs deprivation score of the postcode sec-

tor [14] (larger values represent greater deprivation)
taken from the 2001 Scottish census [15].
• Easting and northing of the postcode sector centroid.
• Population density (people/km2) of the postcode sec-

tor using population data from the 2001 Scottish census
[15]. This was split to a binary predictor based around a
cut-off of 500 people/km2.
• Density of cattle, sheep and poultry (head/km2) in the

postcode sector from the June 2004 agricultural census
(EDINA, http://edina.ac.uk/agcensus, 2004 estimates).
• Gender (Female reference level)
• Age: Adult/Child (Adult reference level). Children

defined as being 18 and under.
• Season in which infection reported: Summer/Winter

(Summer reference level). Summer 15 April to 15
October.
• Reporting of recent overseas travel.
To allow for the clustering of certain predictors at the

level of 749 postcode sectors, the postcode sector is
entered as a random effect. Furthermore, the data were
gathered by the 12 mainland NHS Health Boards, so
this was entered as a second random effect. Following
univariate screening all predictors that were significant
at p < 0.25 were entered into a multivariable model
which was subsequently reduced by excluding the least
significant predictors in turn until only those which
were significant at p < 0.05 remained. The effect of
removing predictors on the remaining p-values was
monitored. Sensitivity analysis checked for the effect of
the source assignment cut -off probability by repeating
the analysis for a range of cut-off probabilities from 0.5
to 1 and testing for significant change in the risk factors
in the final reduced model. Multilevel logistic regression
analysis was carried out using the lme4 package [16] in
the R statistical environment [17].

Results
Attribution
For a cut-off probability close to 1 the majority of STs
can not be assigned to a source of origin (Figure 1A).

Relative to the increase in number of wild bird STs as
the cut-off probability falls, the number of ruminant and
poultry assigned STs increases more slowly (Figure 1A).
However, the number of cases assigned to each origin is
relatively robust to the choice of cut-off probability (Fig-
ure 1B). The majority of cases were assigned to poultry
sources (46.4%); 31.0% were assigned a ruminant source
whilst 20.7% did not have a source with greater than

N
um

be
r 

of
 S

T
s

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Source assignment probability

N
um

be
r 

of
 c

as
es

1 0.9 0.8 0.7 0.6 0.5

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

A 

B 

Figure 1 Source assignment by cut-off probability . The
breakdown of the number of unique ST isolates assigned to each
source (Figure 1A) and the numbers of cases assigned to each
source (Figure 1B). Poultry sources are represented by blue bars,
ruminant sources by red bars, wild bird sources by green bars) and
unassigned by grey bars. As the cut-off source probability decreases,
the number of unassigned STs and cases declines.
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0.95 probability (Table 1; Figure 1B). Cases resulting
from STs attributed to wild bird sources are very few
(1.9%). This does not resemble the distribution of STs,
the majority of which (61.3%) were not assigned to a
source. Overall, there were 2.6 cases per ST, whereas for
poultry and ruminant attributed STs there was a mean
of 16.5 and 21.8 cases per ST (Table 1).

Logistic regression analysis
Compared to ruminant assigned cases, poultry assigned
cases are more common in winter, in adults, in females,
in postcode sectors with population densities greater
than 500 people/km2 and more common in individuals
reporting overseas travel (Table 2). Relative to ruminant
assigned cases, unassigned cases were also more common
in winter and in adults, more common in individuals
reporting overseas travel (Table 3), and there was an
interaction between season and population density such
that there was a stronger seasonal effect among unas-
signed cases in areas of high population density (Table 3;
Figure 2). The only significant risk factor for being a
poultry assigned case compared to an unassigned case
was overseas travel (OR = 0.318, 95% CIs = 0.231, 0.439)
and therefore no further results are presented. Addition-
ally the results were tested for sensitivity to the choice of

cut off probability for assignment of STs to a source, but
adjusting this had no significant effect on the model.

Discussion
By using the MLST technique to attribute isolates from
C. jejuni cases to host sources [6], this paper has

Table 1 The numbers of cases and STs assigned to
different sources based upon a probability of greater
than 0.95

Attribution Number
of cases (%)

Number
of STs (%)

Cases
per ST

Poultry 1599 (46.3) 97 (22.0) 16.5

Ruminant 1070 (31.0) 49 (11.1) 21.8

Wild bird 67 (1.9) 22 (5.0) 3.0

Unassigned 715 (20.7) 273 (61.9) 2.6

Table 2 Logistic regression comparing risk factors for
being infected by a ruminant attributed type (control)
with those for a poultry attributed type (case)

Predictor Unit OR (95% CIs) z-value p-value

Intercept NA 0.213 0.831

Age Child 1 - -

Adult 1.497 (1.211, 1.852) 3.772 < 0.001

Season Summer 1 - -

Winter 1.272 (1.067, 1.517) 2.678 0.007

Sex Female 1 - -

Male 0.834 (0.712, 0.977) -2.248 0.025

Overseas travel No 1

Yes 1.618 (1.056, 2.481) 2.212 0.021

Population dens < = 500/km2 1 - -

> 500/km2 1.213 (1.030, 1.431) 2.313 0.027

Table 3 Logistic regression comparing risk factors for
being infected by a ruminant attributed type (control)
with those for an unassigned type (case).

Predictor Unit OR
(95% CIs)

z-
value

p-
value

Intercept NA 8.094 < 0.001

Age Child 1 - -

Adult 1.524
(1.156, 2.008)

2.994 0.003

Season Summer 1 - -

Winter 1.919
(1.399, 2.632)

4.035 < 0.001

Overseas travel No 1

Yes 4.808
(3.165, 7.299)

7.377 < 0.001

Population dens < = 500/km2 1 - -

> 500/km2 1.359
(1.071, 1.724)

2.520 0.012

Season * pop.
dens

Summer *
< = 500/km2

1 - -

winter * > 500/
km2

0.605
(0.395, 0.926)

-2.316 0.021
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Figure 2 Case origin by season. The proportion of cases with
unassigned or ruminant origins broken down by season and
population density corresponding with the interaction in Table 3.
Lines represent 95% binomial confidence intervals.
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demonstrated that risk factors for infection depend
upon the source of the pathogen. Whilst there is a
range of potential sources of C. jejuni infections, this
paper has demonstrated that human infections of C.
jejuni that are attributable to sources in ruminants are
more seasonal and occur more in rural areas than those
assigned to poultry sources. Those that were unassigned
had very similar epidemiologies to the poultry attributa-
ble types.
The work of Sheppard et al. [6] on assigning source

probabilities to individual STs has made this analysis
possible and it demonstrates that the majority of human
cases were attributable to sources in poultry and rumi-
nants or were unassigned (Table 1). However, the
majority of STs were not assigned to a source of infec-
tion with a probability of greater than 95%. This is in
part reflects the large number of STs that represented a
small proportion of human infections (Table 1 Figure
1), and suggests that there are either a large number of
C. jejuni to which humans have low susceptibility or to
which humans are rarely exposed. Consequently,
changes in human behaviour or environmental expo-
sures could result in exposure to a large additional pool
of bacteria. Twenty-two C. jejuni STs were assigned to
wild bird origins, but there were only in 67 reported
human cases assigned to an origin in wild birds. This
suggests that whilst wild birds are a reservoir there is lit-
tle mechanism for human exposure, although exposure
to preschool children in playgrounds has been suggested
elsewhere [18].
The comparisons of poultry attributed cases, ruminant

attributed cases and unassigned cases (Tables 2 and 3)
showed that ruminant assigned types were more com-
mon in children in rural areas in summertime. This may
reflect a tendency to play outdoors in the summertime
coupled with poor hygiene after playing outdoors. Stra-
chan et al. [19] find similar results and attribute the dif-
ferences to the consumption of contaminated chicken in
urban areas and playing outdoors in rural areas. These
findings are similar to those from New Zealand [11],
although our larger sample size has enabled us to show
that younger age groups in rural areas are at greater risk
of infection with a ruminant types in addition to the
effect of season. Thus, the heterogeneities in exposure
to infection of C. jejuni are consistent across different
countries, with similar mechanisms of infection occur-
ring in all, despite the fact that the most common ST in
New Zealand that is associated with poultry (ST474) dif-
fers from that in Scotland (ST257).
Previous studies [1,10] have identified an association

with increased incidence in younger individuals that live
in more rural settings. This paper suggests that this is
likely to be the result of infection with ruminant types,
thus underlining the importance of identifying different

sources of infections. Here, the density of the human
population rather than the density of cattle and sheep
has been identified as the measure of risk for infection
with ruminant strains. This suggests that either popula-
tion density is a better measure of exposure to ruminant
sources or that it is some property of rural areas that
determines the risk. One such property has been
demonstrated to be consumption of water from
untreated sources [20]. It is likely that consumption of
water from private water sources will be greater in rural
areas with lower population densities. ST45 was identi-
fied as a type that was associated with surface water
sources during a period in the summer [20], however, in
this study ST45 was attributed to sources in poultry.
This study did not demonstrate any difference in the

risk associated with deprivation for different sources of
infection. The relationship between campylobacteriosis
and deprivation has been noted in Scotland [10], Den-
mark [1] and New Zealand [21], but the non-signifi-
cance of deprivation in this study suggests that
deprivation does not influence exposure to environmen-
tal sources.
The unassigned types had similar epidemiologies to

the poultry types with the consequence that the only
significant risk factors for being infected with a poultry
rather than an unassigned type was overseas travel. This
suggests that the majority of these unassigned types had
a similar epidemiology to the poultry types, but insuffi-
cient isolates were found in the source assignment to
demonstrate their origin and the association with over-
seas travel suggests that these may be exotic types. Bes-
sell et al. [10] describe a higher likelihood of reporting
infection in areas of lower deprivation and lower popu-
lation density. These analyses show that the effect of
rurality may be the signature of the ruminant origin
cases.
By using a case-case approach this study did not seek

to estimate population level risk of exposure. Rather this
study analysed the subgroup of the population that has
already been infected, with the principal risk factor
being social deprivation [10]. Case-case analysis is a
means of comparing risk factors within this sub-group
of the population that has acquired infection [22] and
has been employed elsewhere for comparing risk factors
for infection between sources of C. jejuni [23]. As such,
social deprivation remains the principal population level
determinant of infection with C. jejuni but these ana-
lyses demonstrate that this does not vary between
sources of infection.

Conclusions
Our results have demonstrated that over and above the
previously demonstrated risk factors for infection at the
population level [10], there are different risk factors for
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infection depending upon the sources of exposure to
infection. Therefore, it is important to account for the
source of infection in public health planning. The indivi-
duals that report infection depend upon the source of C.
jejuni, with ruminant exposures more common among
the young males in rural areas. For common genetic
types, this analysis could be expanded to examine trans-
mission routes that are specific to individual strains. By
enhancing our ability to identify at-risk groups and the
likely times at which these groups are at risk, public
health messages can be targeted more effectively. The
rapidly increasing capacity to conduct genetic typing of
pathogens makes such traced epidemiological analysis
more accessible and has the potential to substantially
enhance epidemiological risk factor studies.
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