
RESEARCH ARTICLE Open Access
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Abstract

Background: Establishing antibody correlates of protection against malaria in human field studies and clinical trials
requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical
membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in
nature.

Methods: To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children
from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single
PfAMA1 alleles were compared with those against three different allele mixtures presumed to have a wider
repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as
with previous exposure to parasites were also examined.

Results: Antibody titres against PfAMA1 alleles generally increased with age/exposure while antibody specificity for
PfAMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody
response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave
the best titre estimates as these varied least in pair-wise comparisons with titres against all PfAMA1 allele mixtures.
There was no association between antibody levels against any capture antigen and either clinical malaria incidence
or parasite density.

Conclusions: The current data shows that levels of naturally acquired antigen-specific antibodies, especially in
infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to
the interpretation of antibody titre data from measurements against single PfAMA1 alleles, especially in studies
involving infants and young children who have experienced fewer infections.

Background
Antibodies have a demonstrably crucial role in protec-
tion against clinical malaria and the measurement of
malaria-specific antibodies and their correlation with
protection against disease/infection is essential in field
as well as vaccine trial studies. Anti-malarial antibodies
participate in such effector mechanisms as complement-

mediated parasite clearance, red cell invasion inhibition,
direct neutralization of parasites/toxins and antibody-
mediated cellular inhibition/cytotoxicity [1-5].
Antibodies are naturally induced against a host of para-

site antigens, and in vivo protection may generally be
based on the cumulative/synergistic effect of relevant
responses rather than responses to any single antigen.
Additionally, at the peak of an infection, high levels of the
relevant antibodies, rather than their generation from
memory may be necessary for protection [6,7]. The precise
determination of anti-malarial antibody levels in field and
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vaccine studies in disease-endemic areas is therefore very
crucial to data interpretation as well as for identifying anti-
gen correlates of protection. Association of antibody levels
with clinical protection from malaria may be complicated
by the effects of previous antigen exposure and by the fact
that some induced antibodies are mere surrogates of an
induced response with no protective value [8,9].
For polymorphic parasite antigens, antibodies against

one allelic form have been shown to react less with other
alleles as a significant proportion of antibodies are direc-
ted against strain-specific epitopes, and this represents
yet another limitation in antibody titre estimation. Plas-
modium falciparum apical membrane antigen 1
(PfAMA1), a type 1 integral membrane protein expressed
in the merozoite and sporozoite stages of the parasite
and a leading candidate for the development of a blood
stage vaccine is one such antigen [10-17]. Polymorphism
in PfAMA1 is due to a number of non-random point
mutations that occur in the antigen’s ectodomain, an
effect that has been associated with host immune pres-
sure on the parasite [18,19]. Thus for a highly poly-
morphic antigen like apical membrane antigen 1
(AMA1), many variants of which are likely to be present
in a single population, estimation of the true antibody
levels can be challenging as antibody levels measured
against any single PfAMA1 allele may underestimate the
true levels of persisting antibodies. This hypothesis was
tested by comparing the anti-PfAMA1 antibody levels in
plasma samples collected prior to the low transmission
season in a naturally exposed population against four sin-
gle PfAMA1 alleles and three different PfAMA1 allele
mixtures. The antigen mixtures are expected to have a
variety of unique epitopes that would enhance binding of
the broad spectrum of polyclonal anti-AMA1 antibodies
in naturally exposed individuals. The study further
assesses the association of antibody levels with the inci-
dence of clinical malaria during the low transmission sea-
son as well as with previous exposure to parasites.

Methods
Ethics statement
The current study used archived human samples from a
longitudinal cohort study conducted during the malaria
seasons of 1994 and 1995. The original study was
approved by the Ministry of Health in Ghana and ethi-
cal clearance was sought from the ethics committee of
the Ministry of Health. Written informed consent was
obtained from parents of participating children for the
original study, but sample analyses in the current study
were done anonymously.

Study population and sampling
A random sample of 95 archived plasma samples drawn
from the previous longitudinal cohort study (conducted

at Dodowa, an area in Southern Ghana with seasonal
transmission of mainly P. falciparum) was used in this
study. A detailed description of the study site and sam-
pling procedures has previously been published [20,21].
Malaria transmission in the study area was perennial,
but was highest during the rainy season (May - Novem-
ber) and lowest during the dry season (December -
April). The original study involved a total of 300 chil-
dren between the ages of 3 and 15 years. Participants
were actively followed up every week for the entire
duration of the study (16 months) and clinical and para-
sitological data were collected at each visit. Blood sam-
ples were drawn from study participants at the
beginning of the high transmission season (April 1994)
as well as at the end of the season, prior to the begin-
ning of the low transmission season (November 1994).
Plasma samples used here were prepared from blood
samples taken before the low transmission season in
November 1994. Clinical malaria was defined as having
a fever and/or an axillary temperature above 37.5°C, as
well as parasitaemia above 5000 parasites/μl of blood.

Antibody determination
Anti-PfAMA1 antibodies titres in plasma samples were
measured using an antigen capture ELISA. Plates were
coated separately with 1 μg/ml of AMA1 alleles from
the FVO (GenBank accession number AJ277646), HB3
(GenBank accession number U33277), 3D7 (GenBank
accession number U65407) and CAMP (GenBank acces-
sion number M58545) parasite strains, as well as with 1
μg/ml of three different antigen mixtures; i) a mixture
of three Diversity covering (DiCo) antigens whose
design is based on the amino acid sequences of 355
naturally occurring PfAMA1 alleles [22], ii) a mixture of
the FVO, HB3, 3D7 and CAMP alleles, designated as
Four, and iii) a mixture of all seven allelic antigens,
designated as Seven. All antigen mixtures had equal
microgram (μg) quantities of the component PfAMA1
alleles. All antigens were expressed in Pichia pastoris
and potential N-Glycosylation sites were removed by
methodologies that have been previously described
[14,22-24]. Plates were blocked with 200 μl/well of 3%
BSA in PBS-Tween 20 (0.05%) for 1 h, after which 100
μl/well of plasma (diluted 1: 200 and titrated 3-fold over
8 duplicate wells) was added and incubated for 1 h.
Bound antibodies were detected by incubation with 100
μl/well of 0.8 μg/ml alkaline phosphatase-conjugated
goat anti-human IgG for 1 h. Colour development was
with 1 mg/ml p-Nitrophenyl phosphate in DEA buffer
(0.15% MgCl2.6H2O, 0.01% diethanolamine, pH = 9.8)
for 30 min and optical density (OD) was measured at
405 nm. ODs were subsequently expressed in arbitrary
units (AU) by the calibrator (hyperimmune human
serum pool) included on each ELISA plate using the
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4PL-based ADAMSEL programme (Remarque®), a data
management system that is accessible from the EMVDA
website http://www.malariaresearch.eu. One arbitrary
unit (1 AU) is equivalent to the reciprocal plasma dilu-
tion that gives an OD of 1.0 over background.

Statistical analyses
Antibody titres were log-transformed to achieve normal-
ity and stratified by age (3 to 5 years, 6 to 10 years and
11 to 15 years) in order to assess the effect of age/anti-
gen exposure on the specificity of elicited antibodies.
Antibody titres were compared for the same age group
across capture antigens by one-way analysis of variance
followed by Tukey Honest Significance Difference post
hoc tests where necessary. The student t test was used
to make pair-wise comparisons between titres of differ-
ent age groups measured against the same capture anti-
gen. Titres are also presented as boxplots per age group
on each capture antigen. For each capture antigen, anti-
body titre variability amongst the different age groups
was assessed by Levene’s test for homogeneity of var-
iances. The log-transformed titres against different cap-
ture antigen pairs were subsequently compared using
Tukey mean-difference (TMD) or Bland-Altman plots
[25], which assess the degree of agreement between
same sample measurements by different methods (here
different capture antigens). Since titres were log-trans-
formed, the x-axis gives the geometric mean of the two
antibody measurements for the sample against the cap-
ture antigen pair and the y-axis gives the ratio of titre
measurements. Plots show a bold horizontal line (line of
equality) indicating the geometric mean of titre differ-
ences (ideally at titre ratio = 1 or titre difference = 0)
between the antigen pair and dotted lines indicate the
95% limits of agreement for the paired data distribution.
The vertical axis has been modified to show fold differ-
ence instead of the absolute titre difference. Similar
recognition of antibodies from the same individual by
two different PfAMA1 alleles would suggest a difference
of zero (0) or a log (difference) of one (1). Thus the
more distant data points are from the line of equality,
the greater the binding preference of the same antibo-
dies for one allele over the other.
Association between antibody levels against each of

the capture antigens and cumulative incidence of clinical
malaria (with the corresponding 95% confidence inter-
vals) was estimated by the Kaplan-Meier method. Clini-
cal malaria incidence rate estimation included all
malaria episodes that met the case definition. Data from
all 95 children sampled for this study were included in
the analyses. Three parasite density categories (desig-
nated “1 < 760”, “760 < 3000” and “3000+”) were created
based on cut-offs that ensured an equal distribution of
samples, and these were compared with the non-

parasitaemic group (designated “None”). The association
between antibody levels (and age group) with previous
exposure to infection (defined as categorical variables)
were assessed separately for titres against each capture
antigen using a linear regression model. For each anti-
gen, Cox regression with a robust standard error was
used to estimate the rate ratio and its 95% confidence
interval. The exposure of interest, antibody levels, was
modeled as a continuous variable transformed to log
base 2 so that rate ratios indicate the decrease in inci-
dence rate of malaria corresponding to a two-fold
increase in antibody levels.
Analyses and plots were made using the R statistical

package (version 2.13.0, 2011, R development core team)
and STATA package (Statacorp, College Station, TX).

Results
The hypothesis that measurement of antibody levels in a
malaria-endemic population against a polymorphic anti-
gen would be influenced by the specific allele used was
investigated in this study. Anti-PfAMA1 antibody levels
in the plasma of naturally exposed children was mea-
sured against four single PfAMA1 alleles and compared
with titres against three different PfAMA1 allele mix-
tures (Figure 1). Antibody levels against all capture anti-
gens/mixtures increased with age and mean levels
against all antigens were significantly higher in the 11-
15 year olds compared to the 3 - 5 year olds (p < 0.05,
student t test). No significant differences were observed
in antibody titres between the 6 - 10 year olds and the
other two groups in separate comparisons (p > 0.05 in
all cases, student t test). Antibody levels against different
capture antigens/mixtures did not significantly differ for
the same age groups (P > 0.05, one-way ANOVA).
Results of the pair-wise comparison of antibody titres

against the different capture antigens by TMD plots are
presented in Figure 2. The more distant data points are
from the line of equality, the greater the binding prefer-
ence of the same antibodies for one allele over the
other. On this premise, plot panels comparing antibody
levels against single alleles indicate that younger chil-
dren (3-5 years) showed a trend of greater strain-specifi-
city, characterized by the slightly greater spread of data
points (in red) compared to that of older children in
most panels (Figure 2). This greater variability of anti-
body titres in younger children is also obvious from Fig-
ure 1 (Levene’s test, p < 0.05 for all capture antigens
except for the antigen mixtures Four and Seven).
Titre measurements of the polyclonal pool of antibodies

in naturally exposed individuals would require an antigen
(s) that present a broad range of antibody epitopes, a con-
dition that may be fulfilled with multi-allele formulations.
Three different allele mixtures (a mixture of the three
DiCo antigens, designated DM, a mixture of the four
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Figure 1 Plasma antibody titres against PfAMA1 alleles and allele mixtures. Anti-PfAMA1 antibody titres in plasma of malaria-exposed
children were measured by an indirect ELISA using four PfAMA1 alleles (from the FVO, HB3, 3D7 and CAMP parasite strains) and three different
allele mixtures (DiCo mix or DM, a mixture of the four natural alleles, designated as Four, and a mixture of all seven alleles, designated as Seven)
separately as capture antigens. Titres are presented for children aged 3 - 5 years (lower panel), 6 - 10 years (middle panel) and 11 - 15 years
(upper panel). Each symbol represents plasma antibody titres of a study participant. Boxplots show the upper and lower quartiles as well as the
median of each distribution. The vertical axis (antibody titre) is expressed in kilo arbitrary units (kAU), with one arbitrary unit being equivalent to
the reciprocal plasma dilution that gives an OD of 1.0 over background.
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single alleles, designated as Four, and a mixture of all
seven PfAMA1 alleles, designated as Seven) were used for
titre measurements in this study. The best single alleles for
antibody measurement in this population were determined
by pair-wise comparison with titres against these allele
mixtures. Antibody titres measured against the FVO and
3D7 alleles were least variable as judged by the narrow
width of 95% limits of agreement (Figure 2) in separate
pair-wise comparisons with all allele mixtures. Limits of
agreement for the pair-wise comparison of titres against
FVO and 3D7 alleles was also very narrow (Figure 2). The
number of PfAMA1 alleles (domains I, II and III) identi-
fied in four countries in the Africa region and whose
amino acid sequences are similar to those of the four
alleles used in this study are presented in Table 1. The
sequences are part of published PfAMA1 sequences that
were retrieved from GenBank as of January 2011 (Remar-
que, personal communication). It is clear that all four
alleles used in this study occur at very low frequencies in
these populations (Table 1), though the 3D7 allele seems
more prevalent compared to the FVO allele.
The current study also investigated the association of

antibody levels with the cumulative incidence of clinical
malaria as well as with previous exposure to

Plasmodium parasites. Of the 95 children whose sam-
ples and clinical data were available for analysis, 23 had
at least one clinical episode during the low transmission
season and the incidence rate of malaria decreased with
the age of participants (Table 2). There was however no
association between antibody levels against any of the
capture antigens and the incidence of clinical malaria
before and after correction for age (Table 3).
Association of anti-AMA1 titres against the different

capture antigens with previous exposure to parasites
within the preceding 6 months of the study was investi-
gated using linear regression models. Participants were
grouped by their geometric mean parasite density into
four categories and the relationship with antibody levels
against each capture antigen assessed. Participants who
had no detectable parasites (None, n = 10) had the low-
est anti-AMA1 antibody levels (Figure 3). Participants in
this group had had no infection during the preceding 6
months before the plasma samples analyzed here were
taken, but might have experienced infections prior to
the start of the study. Participants who had experienced
moderate parasite densities (two groups, 1 < 760 and
760 < 3000 parasites/μl of blood, n = 29 and n = 28,
respectively) had the highest levels of antibodies when
compared with those of participants with no exposure
within the preceding 6 months. Participants who had
previously experienced parasite densities greater than
3000/μl of blood (3000+, n = 28, Figure 3) however had
antibody levels intermediate between those of the unex-
posed (None) and the other two exposed groups (1 <
760 and 760 < 3000). Despite these trends, there were
no significant differences in antibody levels between any
two parasite density groups. However, of the 23 children
who had at least one clinical episode, 18 were in the
“3000+” parasite density category and the remaining 5
were in the “1 < 760” category.

Discussion
An accurate estimation of antibody levels against
malaria parasite antigens is necessary for establishing
antibody correlates of protection against malaria in
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Figure 2 Pair-wise comparison of anti-PfAMA1 antibody titres
against different capture antigens/mixtures. Tukey Mean-
Difference (TMD) plots were used to assess the level of agreement
between antibody titres measured against pairs of capture antigens/
mixtures. Each point represents a plot of the difference between
two log-transformed titre measurements for a sample against the
geometric mean of the same two measurements. For each panel,
the bold horizontal line represents the average of all the differences
between titres of the same samples against the indicated capture
antigen/antigen mixture pair while the dotted horizontal lines
represent the 95% limits of agreement for the distribution. Plot
symbols represent individual data points; red filled circles are study
participants aged 3 - 5 years, black filled squares are participants
between 6 - 10 years and blue open triangles are participants
between 11 - 15 years.

Table 1 Number of PfAMA1 alleles with similar amino
acid sequences to alleles used in this study.

PfAMA1 allele Country

Gambia Mali Nigeria Kenya

FVO 1 0 0 0

HB3 0 1 0 0

3D7 2 23 2 1

CAMP 3 6 1 1

*Number of sequences 127 923 52 143

*This is the total number of PfAMA1 amino acid sequences from those
countries based on published data as of January 2011.
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human field studies and clinical trials. A number of
parasite antigens that are currently being assessed as
vaccine candidates show polymorphism, and the estima-
tion of antibody titres using a single allelic form may be
confounded by the occurrence of a large number of alle-
lic variants in nature.
In this study, the effect of antigenic polymorphism on

the measured levels of anti-PfAMA1 antibodies was
assessed by comparing titres against single PfAMA1
alleles and allele mixtures in plasma samples taken
before the low malaria transmission season in a previous
study. The PfAMA1 allele mixtures are expected to pre-
sent a broad spectrum of antigenic epitopes that will be
recognised by antibodies in the polyclonal pool. We also
investigated the association of anti-PfAMA1 antibody
levels with the cumulative incidence of clinical malaria
as well as with previous exposure to parasites.
For participants in any one age group, antibody levels

against the different capture antigens/mixtures did not
differ significantly. This observation is not surprising as
antibodies in the plasma samples from most study parti-
cipants were most likely induced after repeated infection
with diverse parasite strains over time. Several studies
have indeed reported a large diversity of parasite strains
within single communities in disease-endemic areas
[19,26-28]. Genotyping of parasite strains in study parti-
cipants here would have added to data interpretation,
but this could not be done due to the unavailability of
matching DNA samples.
The greater variability of antibody titres (against all

but the antigen mixtures Four and Seven) observed in

younger children (Figures 1 and 2) suggests that indivi-
duals with fewer parasite exposures might have a greater
proportion of strain-specific antibodies compared to
individuals who have had many parasite infections. It is
therefore possible that the use of a single allele for anti-
body measurement, especially in infants/young children
or individuals with limited parasite exposure, may
under-estimate antibody levels and such data need to be
interpreted cautiously.
The data here also suggest that though humans discri-

minate between PfAMA1 alleles and possibly other poly-
morphic parasite antigens, these effects may become less
apparent with age and exposure to variant parasite
strains. This observation is in agreement with previous
observations in humans [29]. In a study involving parti-
cipants from Papua New Guinea for example, Cortes et
al. [30] showed that the majority of anti-PfAMA1 anti-
bodies directed against polymorphic epitopes were
detected in younger age groups compared to older indi-
viduals. The development of a more cross-reactive pro-
file with age/exposure may most likely be as a result of
clonal imprinting, with antigens derived from every
infection primarily boosting memory to previously
encountered antigenic epitopes. This phenomenon has
been demonstrated in a controlled setting in rabbits
after immunisation with different PfAMA1 alleles in
sequence [31].
Antibody measurement against a PfAMA1 allele mix-

ture is expected to give the best titre estimate of poly-
clonal anti-PfAMA1 antibodies in the field since the
mixture would have a large diversity of antigenic

Table 2 Characteristics of study population

Characteristics Number of
children (%)

Cumulative
incidence (95%CI)

Child-months
at risk

Malaria cases Rate per 100
child-months (95% CI)

Age group

3 - 5 years 39 (41) 20.1% (10, 38.1) 318.82 11 3.5 (1.9, 6.2)

6 - 10 years 27 (28) 22.4% (10.7, 43.2) 226.63 7 3.1 (1.5, 6.5)

11 - 15 years 29 (31) 17.6% (7.7, 37.3) 243.58 5 2.1 (0.9, 4.9)

TOTAL 95 19.8% (13, 29.7) 789.03 23 2.9 (1.9, 4.4)

Clinical malaria is defined as a history of fever or temperature > = 37.5°C and parasite density > = 5000/μl

Table 3 Age-adjusted incidence rate ratio (IRR) for the association of anti-parasite antibody levels with malaria
incidence

Antibody Antigen Crude HR (95%CI) HR adjusted for age (95%CI) P-value for adjusted HR

IgG AMA1-FVO 1.06 (0.92, 1.22) 1.09 (0.93,1.27) 0.3

AMA1-3D7 1.05 (0.92, 1.19) 1.08 (0.94, 1.24) 0.3

AMA1-DM 1.05 (0.92, 1.21) 1.08 (0.93, 1.26) 0.32

AMA1-FOUR 1.07 (0.93, 1.23) 1.09 (0.94, 1.27) 0.25

AMA1-SEVEN 1.06 (0.92, 1.21) 1.08 (0.93, 1.26) 0.3

AMA1-CAMP 1.08 (0.94, 1.24) 1.11 (0.95, 1.30) 0.19

AMA1-HB3 1.04 (0.91, 1.18) 1.07 (0.92,1.24) 0.39
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epitopes. Such an approach based on a practical number
of alleles may be useful, especially since there is a high
likelihood of many parasite strains occurring in a given
community, and even when there are a limited number
of strains, their specific AMA1 alleles may not be readily
available for use as coating antigens.
Three different allele mixtures were used for titre

measurements in this study. DiCo mix (DM), one of the
mixtures, consists of three DiCo antigens that were
designed based on the sequences of 355 naturally occur-
ring PfAMA1 alleles to inherently cover naturally occur-
ring polymorphism in PfAMA1 [22]. The mixture has

been shown in our laboratory to yield higher antibody
titres in samples from naturally exposed individuals
compared to titres against single natural alleles (unpub-
lished data). Titres against the FVO and 3D7 AMA1
alleles were most comparable to titres against DM and
the other two allele mixtures, suggesting that the FVO
and 3D7 alleles preferentially recognize a greater num-
ber of antibody specificities compared to the CAMP and
HB3 alleles. This is against the observation that all four
single alleles used in this study have only been found at
very low frequencies in the Africa region (Table 1),
though the 3D7 allele seems more prevalent compared

Figure 3 Geometric mean of antibody titres for study participants with different parasite densities. Error bars show the 95% CI of
antibody titres per parasite density category. Sample size; n = 10 for the group “None”, n = 29 for “1 < 760”, n = 28 for “760 < 3000” and n =
28 for the group “3000+” in all panels.
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to the FVO allele. Thus the measured levels of circulat-
ing antibodies in a population with multiple strain infec-
tions are dependent on the choice of PfAMA1 alleles
used for titre measurement.
The low prevalence of all four alleles shows the com-

plexity involved in the measurement and evaluation of
responses to PfAMA1 in a naturally exposed population
as even in the current study there may still be strain-
specific anti-PfAMA1 antibodies that may not be
detected by the best single alleles. It is however worth
mentioning that the levels of naturally induced cross-
reactive antibodies seem to be the repertoire required
for cross protection [31-33], and current vaccine strate-
gies aim at inducing such cross-strain antibodies. Anti-
body measurement against a single allele could therefore
give an indication of the levels of cross-strain (protec-
tive) antibodies.
There was no association between antibody levels

against any of the capture antigens and either the inci-
dence of clinical malaria or previous exposure to para-
sites before and after correction for age. Antibody levels
against PfAMA1 have been associated with a reduced
risk of malaria incidence in other studies with compar-
able population characteristics [34-37]. While the asso-
ciation of antibody levels with clinical protection in
these studies was assessed during the high transmission
season, association in the current study was assessed
during the low transmission season. An earlier study in
the same population measured anti-MSP119 antibodies
and reported similar levels of antibodies at the begin-
ning and end of the high transmission season [20]. This
study also showed no correlation between anti-MSP119
antibodies and protection from disease. These aside, the
limited sample size in the current study is also likely to
reduce the statistical power required to detect significant
associations.
Finally, the in vitro functionality of antibodies could

not be assessed as the amount of plasma available was
very limited and assays would need to be performed
with multiple strains in order to assess the specificity of
functional antibodies.
There was a trend of decreasing antibody levels with

increasing parasite density from previous exposure, but
this inverse association was not statistically significant.
This notwithstanding, the observation that 18 of the 23
children who experienced clinical malaria during the
study period were in the high parasitaemia group (3000+)
suggests that children with moderate to low parasitaemia
(below 3000 parasites/μl of blood) were less susceptible
to disease. This is in agreement with the observation that
maintenance of immune effectors involved in conferring
protection against disease requires the persistence of low
levels of circulating parasites [29,38].

Conclusions
The data presented generally suggests a cautious selec-
tion of antigens for the measurement of naturally
induced antibody levels against polymorphic targets,
especially in samples from individuals with limited expo-
sure to parasites. Though the study utilized archived
samples taken during the 1994/1995 malaria season, the
findings have direct relevance for the assessment of
naturally acquired antibodies of broad specificity since
titres are measured against randomly selected (allelic)
antigens and the exact circulating strains/antigenic
alleles within study populations are usually not taken
into account. Alternatively, DiCo mix may represent an
ideal candidate for the measurement of antibody titres
in naturally exposed populations, especially in infants
and young children as the three DiCo antigens, apart
from the effect of mixing, have been designed to cover
polymorphism that is seen in naturally occurring
PfAMA1 alleles. The data also points to a trend of
increasing proportion of antibodies against cross-strain
epitopes with age, and suggest the involvement of clonal
imprinting in the development of this antibody reper-
toire. Finally, though there was no association of anti-
body levels with either a reduced incidence of clinical
malaria or previous exposure to parasites, individuals
with moderate parasitaemia (< 3000/μl) had higher
absolute antibody levels than those with parasitaemia
greater than 3000/μl of blood. These findings are collec-
tively relevant to the interpretation of data on antibodies
against polymorphic antigens, especially in field studies
involving groups with limited parasite exposure.
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