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Abstract

Background: Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs
are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates
in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as
production of metallo-beta-lactamase (MBLs) and extended-spectrum beta-lactamases (ESBLs) have the highest
clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs
among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital.

Methods: Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL
genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic
similarity evaluation.

Results: Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1) were detected in only 26.7% of
isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene
(19.6%), followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by
double-disc synergy test (DDST), the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected
in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The
co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with
blaIMP-1.

Conclusions: In this study MBLs production was not the major mechanism of resistance to carbapenems,
suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other
beta-lactamases. The detection of blaCTX-M-2, blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among
antimicrobial resistant P. aeruginosa and the extraordinary ability presented by this pathogen to acquire multiple
resistance mechanisms. These findings raise the concern about the future of antimicrobial therapy and the
capability of clinical laboratories to detect resistant strains, since simultaneous production of MBLs and ESBLs is
known to promote further complexity in phenotypic detection. Occurrence of intra-hospital clonal dissemination
enhances the necessity of better observance of infection control practices.
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Background
Pseudomonas aeruginosa is an opportunistic pathogen re-
sponsible for a large spectrum of invasive diseases in
healthcare settings, including pneumonia, urinary tract
infections and bacteremia [1]. For such infections, anti-
microbial therapy may become a difficult task, because
Pseudomonas aeruginosa is naturally resistant to many
drugs, and presents a remarkable ability to acquire further
resistance mechanisms to multiple classes of antimicrobial
agents, even during the course of a treatment [2]. In this
context, infections by P. aeruginosa presenting acquired
resistance to beta-lactam drugs are considered one of the
most challenging targets for antimicrobial therapy [3],
being responsible for high rates of therapeutic failure, in-
crease in mortality, morbidity, and in overall cost of treat-
ment [4-6].
The Ambler’s class B beta-lactamases (metallo-

beta-lactamases – MBLs) and class A extended-
spectrum beta-lactamases (ESBLs) are acquired resistance
determinants that present high clinical impact [7,8].
These enzymes, usually codified by genes associated with
mobile genetic elements, are matter of major concern
with regard to the future of antimicrobial chemotherapy
because of its remarkable dissemination capability [9].
MBLs such as IMP, VIM, SPM, GIM and AIM repre-

sent the leading acquired mechanism of resistance to
beta-lactams in P. aeruginosa. These enzymes hydrolyze
the majority of beta-lactam drugs [10] and compromise
clinical utility of carbapenems, the most potent agents
for treating severe infections caused by multidrug re-
sistant strains [11]. More recently, appearance of ESBLs
such as TEM, SHV, CTX-M, BEL, PER, VEB, GES,
PME and OXA-type beta-lactamases has become an
emergent public health problem, since these enzymes
confer resistance to at least all expanded spectrum
cephalosporins and compromise efficiency of ceftazi-
dime, an important antibiotic regimen for P. aeruginosa
[12-14].
For the establishment of the appropriate antimicrobial

therapy and for assessment and control of the spread of
drug resistant P. aeruginosa, the molecular detection and
surveillance of resistance genes is becoming increasingly
important [15,16]. Despite of this, epidemiological data
reporting the prevalence of MBL and ESBL producing P.
aeruginosa is sparse, due to the inexistence of standar-
dized methods for phenotypic detection of ESBL and
MBL production [7,17] and the complexity for the imple-
mentation of PCR based methods in the routine of clinical
laboratories [17]. In order to overcome this difficulty, a
number of commercial rapid molecular tests are being
developed that identify pathogens and the presence of
genetic determinants of antimicrobial resistance [18,19].
The association of such new technologies with current
classical methods may improve the ability of clinical

laboratories to provide accurate and fast results that will
impact on patient care.
Hence, this study was performed to investigate the car-

riage of genes codifying MBLs and ESBLs by P. aeruginosa
isolated from patients admitted to a Brazilian 720-bed
teaching tertiary care hospital. Despite the high rates of
carbapenem resistance, genes for MBLs production were
not observed in the majority of the isolates. Notably
ESBLs codifying genes blaCTX-M-2, blaGES-1 and blaGES-5

were detected in several strains, and the coexistence of
blaCTX-M-2 with blaIMP-1, and blaGES-1 with blaIMP-1 in
P. aeruginosa was observed, and is presently reported
for the first time. These findings underline the emer-
gence of class A extended-spectrum beta-lactamases
among P. aeruginosa.

Methods
Bacterial isolates
In this study were included a total of 56 P. aeruginosa
isolates resistant to ceftazidime, imipenem and/or mero-
penem, nonrepetitively obtained from patients admitted
to a teaching hospital in São Paulo State, Brazil, over a
period between June to December 2009. Isolates were
obtained from specimens originated from urinary tract,
respiratory tract, bloodstream and soft tissue. Clinical
specimens were collected in intensive care units, clinical
and surgical wards as well as from outpatients as a
standard care procedure and were stored for this work.
This study was approved by the Ethical Review Board
from our institution (Comitê de Ética em Pesquisa –
FAMERP) under protocol # 3131/2009.

Susceptibility testing and phenotypic detection of MBL
production
Antimicrobial susceptibility to aztreonam, ceftazidime,
cefepime, imipenem, meropenem, piperacillin/tazobac-
tam, amikacin, gentamicin, ciprofloxacin, levofloxacin
and polymyxin B were determined by the disk diffusion
method, following Clinical and Laboratory Standards In-
stitute recommendations [20]. Phenotypic detection of
MBLs was performed by double-disc synergy test
(DDST) using the 2-mercaptopropionic acid as a MBL
inhibitor [17].

Genotypic detection of MBL and ESBL genes
Specific primers and protocols were used to detect and
sequence blaTEM, blaSHV, blaCTX-M, blaGES, blaKPC,
blaIMP and blaVIM [17,21-24]. The detection and sequen-
cing of blaSPM-1 was performed using primers previously
described [25] and also others specifically designed for
this study using DS Gene 2.0 Software (Accelrys, USA).
PCR products were purified in ethanol according to pre-
viously described methodology [26] and subjected to dir-
ect sequencing with the ABI PRISM 3130 automated
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sequencer (Applied Biosystems, Foster City, CA). The
products were aligned with Accelrys Gene 2.0 (Accelrys
Software Inc. 2006). Database similarity searches were
run with BLAST at the National Center for Biotechnol-
ogy Information website (http://www.ncbi.nlm.nih.gov).

Molecular typing
Genetic relatedness was evaluated by pulsed-field gel
electrophoresis (PFGE) using SpeI (Fermentas Life
Sciences, MD, EUA) with a CHEF-DR II apparatus (Bio-
Rad, Richmond, CA, EUA) as described elsewhere [27].
BioNumerics software (Applied Maths) was used for
dendrogram construction and clustering, based on the
band-based Dice’s similarity coefficient and using the
unweighted pair group method (UPGMA) using arith-
metic averages. Isolates were considered to belong to the
same cluster when similarity coefficient was 90% [28].
The visual Tenover criteria were also applied [29].

Results
A total of 80.3% (45/56) of isolates were resistant to the
combination piperacillin/tazobactam, 62.5% (35/56) to
aztreonam, 78.6% (44/56) to ceftazidime, 96.4% (54/56)
to cefepime, 96.4% (54/56) to imipenem, 75.0% (42/56)
to meropenem, 51.8% (29/56) to amikacin, 82.1% (46/56)
to gentamicin, 78.6% (44/56) to ciprofloxacin and 85.7%
(48/56) to levofloxacin. All isolates showed sensitivity to
polymyxin B (data not shown). Thirteen isolates (23.2%)
presented MBL phenotype by the DDST (Table 1).
The prevalence of isolates harboring MBL genes was

30.3% (17/56). Ten (17.8%) presented the blaSPM-1 gene,
and the blaIMP-1 was detected in seven isolates (12.5%).
In all thirteen isolates presenting MBL phenotype by
DDST, blaSPM-1 or blaIMP-1 was detected. In addition,
the blaIMP-1 gene was also detected in three isolates
which did not display any MBL phenotype. These iso-
lates also presented the blaCTX-M-2 gene (Table 1). No
blaVIM type was detected.
Genes encoding ESBLs were detected in 23.2% (13/56)

of the isolates. The blaCTX-M-2 was detected in eleven
isolates (19.6%), blaGES-1 was detected in one and
blaGES-5 was detected in one isolate. Co-existence of
blaCTX-M-2 with blaIMP-1 was detected in three isolates
and blaGES-1 with blaIMP-1 in one isolate (Table 1). No
blaTEM and blaSHV types were detected GenBank Acces-
sion Numbers are provided in Supplemental Material
(Additional File 1).
The degree of relatedness among the Pseudomonas

aeruginosa harboring MBL and ESBL genes was assessed
by PFGE analysis (Figure 1). Eight isolates harboring
blaSPM-1 were typed, and by visual inspection all were
considered closely related, presenting up to three bands
of difference. According to PFGE profiles these isolates
were grouped within three clusters (A, B and C).

Similarity between cluster A and B was of 89.1%. Clusters
A and B presented 87.6% of similarity with cluster C.
The P. aeruginosa harboring blaIMP-1 were distributed

among five different clusters (E to I), and isolates har-
boring blaCTX-M-2 in three clusters (D, E, H). Cluster E
included seven isolates presenting similarity of at least
92.3%. Within this cluster, four isolates exhibited
blaCTX-M-2, one exhibited blaIMP-1 and two isolates
exhibited blaIMP-1 and blaCTX-M-2 simultaneously. One
isolate harboring blaCTX-M-2 was placed in cluster D,
four isolates harboring blaIMP-1 were placed in clusters
F, G, H and I, and one isolate exhibiting blaIMP-1 and
blaCTX-M-2 simultaneously was placed in cluster H. Iso-
lates harboring blaGES-1 and blaGES-5 could not be
typed.

Discussion
The pattern of multidrug resistance presented by the P.
aeruginosa included in this study was expected, since
carbapenem resistant strains exhibit a broad-spectrum
resistance to beta-lactams and often present resistant
phenotype to additional classes of drugs. Also, acquired
ESBL and MBL genes typically group with other drug
resistance determinants in the variable region of multi-
resistance integrons [30-32]. Furthermore, P. aeruginosa
isolated in Latin America, including Brazil, are reported
as presenting the higher rates of antibiotic resistance
[33]. P. aeruginosa strains resistant to polymyxins were
not detected in this study. However, this result should
be confirmed by a dilution method, considering that the
disc diffusion technique, commonly used in clinical
microbiology laboratories is reported to be an unreliable
method for evaluating the susceptibility to polymyxins
because these drugs diffuse poorly into agar [34].
In this study MBL genes were detected in 26.7% of iso-

lates, indicating that despite the increasing significance
of MBL production among P. aeruginosa, this was not
the main mechanism of resistance to imipenem and/or
meropenem. This reality was previously reported in an-
other Brazilian hospital [35]. In fact, resistance to carba-
penems in P. aeruginosa is due not only to the
production of carbapenemases, but also to different
mechanisms such as upregulation of multidrug efflux
pumps, cell wall mutations leading to reduction in porin
channels and production of different beta-lactamases
[1,11]. Expression of these mechanisms, isolated or in
combination, may cause variation in rates of resistance
to imipenem and meropenem, observed in this study [5].
The twelve isolates presenting MBL phenotype by the
DDST harbored MBL genes (blaSPM-1 or blaIMP-1), con-
firming the efficacy of this method for the phenotypic
detection of MBL producing strains [17,36].
Diversity of MBL among P. aeruginosa varies by re-

gional areas [37]. In this study the 17.5% of the
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Table 1 Antimicrobial susceptibility of carbapenem resistant P. aeruginosa *

Isolate Antimicrobials DDST bla genotype
(zone diameter – mm)

No Date Unit Infection
site

CAZ FEP TZP IPM MEM ATM GEN AK CIP LEV

R ≤ 14 R ≤ 14 R ≤ 17 R ≤ 13 R ≤ 13 R ≤ 15 R ≤ 12 R ≤ 14 R ≤ 15 R ≤ 13

S ≥ 18 S ≥ 18 S ≥ 18 S ≥ 16 S ≥ 16 S ≥ 22 S ≥ 15 S ≥ 17 S ≥ 21 S ≥ 17

Pa01 06/2009 CI Urinary tract 6 6 6 10 8 10 6 6 6 6 N blaCTX-M 2

Pa02 06/2009 G-ICU Lung 18 6 6 6 6 17 6 6 6 6 N blaIMP-1, blaCTX-M 2

Pa03 06/2009 S-ICU Urinary tract 20 6 18 6 13 12 6 15 6 6 P blaIMP-1

Pa04 06/2009 G-ICU Lung 6 6 6 12 14 16 6 19 6 6 N -

Pa05 07/2009 E-ICU Blood 6 6 19 6 6 22 6 18 6 6 N blaSPM-1

Pa06 07/2009 E-ICU Lung 6 6 10 11 14 14 12 16 6 6 N -

Pa07 07/2009 N-Dep Lung 6 6 6 6 6 16 6 6 6 6 N -

Pa08 07/2009 C-Dep Urinary tract 6 6 6 6 16 8 6 6 6 6 N -

Pa10 07/2009 Outpatient Urinary tract 6 6 13 6 6 23 6 15 6 6 N blaCTX-M 2

Pa11 07/2009 G-ICU Lung 6 6 14 6 6 22 6 18 6 6 P blaSPM-1

Pa12 08/2009 E-ICU Lung 6 6 16 6 6 19 6 21 6 6 P blaSPM-1

Pa14 08/2009 C-Dep Urinary tract 6 6 6 10 15 10 6 18 6 6 N -

Pa17 08/2009 P-ICU Lung 17 6 16 13 17 16 6 6 6 6 N blaCTX-M 2

Pa18 08/2009 E-ICU Lung 6 6 6 6 6 12 6 17 6 6 P blaSPM-1

Pa19 08/2009 P-ICU Lung 6 6 6 6 6 14 19 23 23 10 N -

Pa22 08/2009 SW Skin 19 6 16 6 18 8 6 6 6 6 N blaCTX-M 2

Pa24 08/2009 C-Dep Urinary tract 6 6 6 6 6 6 6 18 6 6 N -

Pa27 08/2009 G-ICU Catheter tip 6 6 10 10 15 8 6 19 6 6 N -

Pa28 08/2009 G-ICU Urinary tract 6 6 6 6 6 14 6 13 6 6 P blaSPM-1

Pa29 09/2009 C-Dep Lung 23 6 17 6 22 12 6 6 6 6 N -

Pa30 09/2009 P-ICU Eyes 6 6 18 6 6 9 17 23 22 13 N -

Pa31 09/2009 P-ICU Abdominal 6 6 6 6 6 19 19 20 15 6 N -

Pa32 09/2009 C-Dep Lung 6 6 12 6 19 13 6 6 6 6 N -

Pa33 09/2009 P-ICU Lung 6 6 6 6 6 13 19 22 20 6 N -

Pa34 09/2009 C-ICU Bone 6 6 6 6 6 12 6 6 6 6 N -

Pa35 09/2009 C-ICU Lung 18 6 21 6 6 6 6 12 26 30 N -

Pa36 09/2009 N-Dep Lung 6 6 18 6 13 6 6 6 17 25 N -

Pa37 09/2009 S-ICU Urinary tract 6 6 14 6 6 20 6 20 6 6 P blaSPM-1

Pa39 09/2009 G-ICU Catheter tip 25 6 14 6 24 21 6 6 6 6 N -
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Table 1 Antimicrobial susceptibility of carbapenem resistant P. aeruginosa * (Continued)

Pa40 09/2009 P-ICU Urinary tract 6 6 19 6 6 9 14 20 31 27 N -

Pa41 09/2009 E-ICU Lung 20 15 6 6 18 23 6 6 6 6 N -

Pa42 09/2009 N-ICU Eye 6 6 25 14 16 23 6 20 30 28 N -

Pa43 10/2009 S-ICU Lung 6 6 6 6 14 12 6 18 6 6 N -

Pa44 10/2009 G-ICU Lung 17 6 20 10 11 15 16 18 23 18 N -

Pa45 10/2009 E-ICU Skin 21 6 15 10 11 10 6 6 6 6 N -

Pa47 11/2009 SW Urinary tract 6 15 10 6 6 23 6 23 6 6 P blaSPM-1

Pa49 10/2009 N-ICU Urinary tract 6 6 27 6 6 23 6 6 33 30 P blaIMP-1

Pa50 10/2009 SC Bone 6 6 6 6 12 10 6 15 6 6 N -

Pa51 10/2009 S-ICU Urinary tract 6 6 6 6 19 18 6 6 6 6 N -

Pa53 10/2009 C-UTI Lung 20 6 18 6 6 14 6 6 6 6 N blaIMP-1, blaCTX-M 2

Pa54 10/2009 E-ICU Urinary tract 6 6 6 6 6 17 6 16 6 6 P blaSPM-1

Pa55 11/2009 ER Urinary tract 6 6 6 6 6 17 6 6 6 6 N blaCTX-M 2

Pa57 11/2009 S-ICU Urinary tract 26 6 6 6 6 25 6 6 6 6 N blaCTX-M 2

Pa58 11/2009 E-ICU Urinary tract 6 6 6 6 6 21 6 18 6 6 P blaSPM-1

Pa59 11/2009 E-ICU Lung 6 6 22 6 6 21 14 17 20 20 P blaIMP-1, blaGES-1

Pa60 11/2009 ER Lung 6 6 10 12 6 8 6 6 6 6 N blaIMP-1, blaCTX-M 2

Pa61 11/2009 N-Dep Blood 6 6 6 6 6 10 6 6 6 6 N blaCTX-M 2

Pa62 11/2009 E-ICU Lung 6 6 6 13 6 11 6 6 6 6 P blaIMP-1

Pa63 11/2009 E-ICU Lung 6 6 15 6 6 6 6 19 6 6 N -

Pa64 11/2009 N-Dep Tendon 6 6 6 6 6 12 6 6 6 6 N blaGES-5

Pa65 11/2009 S-ICU Lung 6 6 6 6 6 11 6 6 6 6 N -

Pa66 11/2009 C-ICU Lung 6 6 15 6 6 14 13 20 30 25 N -

Pa67 11/2009 ER Urinary tract 6 6 6 6 6 15 13 6 6 6 N -

Pa69 11/2009 E-ICU Lung 6 6 6 19 6 6 21 6 20 6 P blaSPM-1

Pa70 11/2009 E-ICU Lung 6 6 6 6 11 11 12 6 6 6 N -

Pa71 11/2009 E-ICU Lung 6 6 6 6 6 6 6 6 6 6 N blaCTX-M 2

CAZ, ceftazidime; FEP, cefepime; TZP,piperacillin-tazobactam; IMP, imipenem; MEM, meropenem; ATM, aztreonam, GEN, gentamicin, AK, amikacin; CIP,ciprofloxacin; LEV, levofloxacin; †DDDS, double disc synergy test to
detect MBL production , N, negative, P, positive, ER, emergence room; E-ICU, emergence intensive care unit; G-ICU, geral intensive care unit; S-ICU, semi-intensive care unit; C-ICU, cardiology intensive care unit; P-ICU,
pediatrics intensive care unit, N-ICU, neonatal intensive care unit N-Dep, neurology department; C-Dep, cardiology department; SC, surgical ward, CI, cancer institute; R, resistant; S, susceptible.
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carbapenem resistant isolates presented the blaSPM-1

gene, and blaIMP-1 was detected in 10.5% of the isolates.
SPM-1 is in fact the most prevalent MBL in Brazil [38].
In a different way, IMP-1 producing strains have been
reported in various Brazilian hospitals in diverse rates
[35,39,40].
Molecular typing by PFGE showed a wide diversity of

patterns. All isolates exhibiting blaSPM-1, a chromoso-
mally located gene [41,42] presented high coefficient of
similarity and closely related PFGE patterns, suggesting
a close genetic relationship. This is in agreement with
previously described data, showing that the Brazilian
SPM-1-producing P. aeruginosa are probably derived
from a single clone [43]. According to the same study,
even a recent genomic variety recently observed among
various SPM-1-producing P.aeruginosa isolates is result
of the accumulation of mutations along the time.
Occurrence of blaIMP-1 in P. aeruginosa described in

this study is likely a result of gene horizontal transfer-
ring, since isolates harboring blaIMP-1 belong to five dif-
ferent clusters. Dissemination of blaIMP among Gram-
negative pathogens is mediated by mobile elements of
DNA, explaining why the same gene might be detected
in different strains. The genes for IMP enzymes are
often carried as cassettes within integrons, which facili-
tate recombination and facilitate rapid horizontal trans-
ferring [44-46].
The coexistence of blaIMP-1 with blaCTX-M-2 in P. aeru-

ginosa was, at the best of our knowledge, detected for
the first time. Interestingly, the three isolates presenting
this combination of genes did not provide a positive

result in the DDST test, and were the only blaIMP-1 car-
riers in which MBL phenotypic detection was unsuccess-
ful. Since ceftazidime is poorly hydrolyzed by CTX-M-2
[31], we could not assume that inactivation of this anti-
microbial, used as substrate, may have been responsible
for this result. However, simultaneous production of
MBLs and ESBLs by the same strain is known to pro-
mote further complexity in phenotypic detection
[7,47,48]. This result emphasizes the importance of mo-
lecular methods for the identification of antimicrobial
resistance in multidrug resistant pathogenic bacteria. In
this matter, detection of resistance genes by PCR may
provide clinically relevant information with positive im-
pact in patient prognosis [18].
The detection of blaCTX-M-2, blaGES-1 and blaGES-5 in

this study reflects the recent emergence of ESBLs in P.
aeruginosa as result of the great dissemination capability
exhibited by these genes that occur mostly as part of
integron structures on mobile transmissible genetic ele-
ments [49-52]. Location of blaCTX-M-2 in P. aeruginosa
is believed to be a result of their transfer from Entero-
bacteriaceae [51]. Recently, a high prevalence of K.
pneumoniae harboring blaCTX-M-2 in the same hospital
was reported [21], and this may have been the reservoir
for horizontal transmission.
Regarding GES-type ESBLs, although these enzymes

are not considered as primary β-lactamases in P. aerugi-
nosa, acquisition in conditions of antimicrobial pressure
may be beneficial [52]. The blaGES-1 was detected in co-
existence with blaIMP-1, and blaGES-5 was detected in a
strain resistant to imipenem and meropenem, but

Figure 1 Dendrogram of PFGE patterns presented by carbapenem resistant P. aeruginosa included in this study. ER, emergence room; E-
ICU, emergence intensive care unit; G-ICU, geral intensive care unit; S-ICU, semi-intensive care unit; C-ICU, cardiology intensive care unit; P-ICU,
pediatrics intensive care unit, N-ICU, neonatal intensive care unit N-Dep, neurology department; C-Dep, cardiology department; SC, surgical ward,
CI, cancer institute.

Polotto et al. BMC Infectious Diseases 2012, 12:176 Page 6 of 8
http://www.biomedcentral.com/1471-2334/12/176



presenting no MBL phenotype. Considering that GES-5
presents enhanced hydrolyse activity against carbape-
nems [10], it is likely that GES-5 production contributed
for the carbapenem resistance in this isolate.

Conclusion
Production of MBLs was not the main mechanism of re-
sistance to carbapenems among the studied strains.
However, IMP-1 is disseminated among different strains
of carbapenem resistant P. aeruginosa, and intra-hospital
spread of SPM-1 producing strains was observed. The
detection of blaCTX-M-2, blaGES-1 and blaGES-5 and the
unique coexistence of blaCTX-M-2 with blaIMP-1 and
blaGES-1 with blaIMP-1 exemplify the extraordinary ability
presented by P. aeruginosa to acquire multiple resistance
mechanisms.
Clonal dissemination of multidrug resistant P. aerugi-

nosa within the hospital was inferred by the observation
of strains presenting the identical PFGE profiles infect-
ing different patients, and the occurrence of clonal dis-
semination in different ICUs and wards. This finding
enhances the necessity of better observance of infection
control practices, to prevent further dissemination of
this challenging pathogen.
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