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Abstract

Background: The transmission of infectious disease amongst the human population is a complex process which
requires advanced, often individual-based, models to capture the space-time details observed in reality.

Methods: An Individual Space-Time Activity-based Model (ISTAM) was applied to simulate the effectiveness of
non-pharmaceutical control measures including: (1) refraining from social activities, (2) school closure and (3)
household quarantine, for a hypothetical influenza outbreak in an urban area.

Results: Amongst the set of control measures tested, refraining from social activities with various compliance levels
was relatively ineffective. Household quarantine was very effective, especially for the peak number of cases and
total number of cases, with large differences between compliance levels. Household quarantine resulted in a
decrease in the peak number of cases from more than 300 to around 158 for a 100% compliance level, a decrease
of about 48.7%. The delay in the outbreak peak was about 3 to 17 days. The total number of cases decreased to a
range of 3635-5403, that is, 63.7%-94.7% of the baseline value.
When coupling control measures, household quarantine together with school closure was the most effective
strategy. The resulting space-time distribution of infection in different classes of activity bundles (AB) suggests that
the epidemic outbreak is strengthened amongst children and then spread to adults. By sensitivity analysis, this
study demonstrated that earlier implementation of control measures leads to greater efficacy. Also, for infectious
diseases with larger basic reproduction number, the effectiveness of non-pharmaceutical measures was shown to
be limited.

Conclusions: Simulated results showed that household quarantine was the most effective control measure, while
school closure and household quarantine implemented together achieved the greatest benefit. Agent-based
models should be applied in the future to evaluate the efficacy of control measures for a range of disease
outbreaks in a range of settings given sufficient information about the given case and knowledge about the
transmission processes at a fine scale.

Background
Since the beginning of the new millennium, epidemics
of severe acute respiratory syndrome (SARS), avian
influenza (bird flu) and H1N1 influenza (swine flu) have
emerged repeatedly amongst the human population
raising public concerns, particularly over future risk of
disease, and underlying the need for increased under-
standing of transmission processes and the efficacy of

alternative methods of control [1-9]. The transmission
of an infectious disease amongst the human population
is a complex process involving the time lines of infec-
tious diseases, infection probability, contacts between
individuals, demographic dynamics that determine the
contact pattern and the occasional imported infection.
At both the micro (for a single infection) and macro
levels (the infection network) there exist a plethora of
factors, objects and processes that combine to create
complex scenarios, and this complexity varies from set-
ting to setting.
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Although several studies [10-12] have investigated the
infection process directly by infecting healthy volunteers
with the influenza virus in an experimental setting, for
ethical reasons and because of the complexity involved,
scientific experiments generally do not provide a feasible
solution for the study of infectious disease transmission
and the testing of control measures in a real world set-
ting. This is especially true across whole communities
or cities. It is, therefore, difficult to gain enough insight
into the interplay of the various factors to predict the
development of epidemics and formulate appropriate
mitigation strategies. In these circumstances, modelling
and simulation are potentially the most powerful tools
available to increase understanding of infectious disease
transmission processes and disease outbreaks. Impor-
tantly, modelling and simulation provide an important
foundation for testing possible control measures [13].
It is difficult to build a satisfactory model of the

transmission of infectious diseases due to deficiencies
in both theory and data [14]. On the one hand, human
knowledge of the infectious disease transmission pro-
cess is limited at both the micro and macro levels. At
the micro level, the exact process of a single infection
for most types of infectious disease is unclear, even
today [15]. At the macro level, disease diffusion
amongst the human population is a complex process,
as many factors, both social and physical, can contri-
bute with different magnitudes to disease outcomes.
On the other hand, it is difficult to obtain all the data
required for model building, validation and simulation,
especially for bottom-up approaches that require
knowledge at the micro level.
In this paper, we argue that agent-based models

(ABM) provide a powerful means to increase our under-
standing of infectious disease transmission. ABMs are
computational models for simulating the actions and
interactions of autonomous individuals within a hetero-
geneous population. ABMs are bottom-up models. That
is, the macro-level behaviour of the whole system is
generated by the simulation of the behaviour of agents
at the micro-level. ABMs, formulated in different disci-
plines such as computer science [16], geography [17-20],
epidemiology [21-25], and other interdisciplinary fields
[26-28], can be applied to simulate the outbreak of
infectious diseases and bio-terror attacks, and to explore
the efficacy of control measures. The most important
advantages of ABMs are that they can consider the het-
erogeneity of both individuals and environment, and
also the stochastic essence of infectious disease trans-
mission. ABMs can express explicitly the differences
between individuals in terms of the attributes that influ-
ence the process of disease transmission such as physi-
cal, social, economic and environmental characteristics.
For example, age, gender, occupation and lifestyle

variables all contribute to the subsequent disease experi-
ence of an individual and the probability of infecting
other individuals [29]. The interaction between indivi-
duals, which is one of the key components determining
infectious disease transmission, can be expressed expli-
citly in the model. Using ABMs, the heterogeneity of
the time lines of infectious diseases, infection probabil-
ity, demographic dynamics that determine the contact
pattern, and the occasional imported infection, can all
be considered.
Influenza, an illness caused by ribonucleic acid (RNA)

viruses that infect the respiratory tract, is transmitted
mainly through the air by coughs or sneezes. Due to the
high mutation rate of the virus, protection from any
vaccine normally lasts only one year. In February 2007,
the Centers for Disease Control and Prevention (CDC)
in the United States issued the Community Strategy for
Pandemic Influenza Mitigation [30] which is based upon
an early, targeted, layered application of multiple par-
tially effective non-pharmaceutical measures. Coupled
with specific uses of antiviral influenza medications,
these strategies aim to reduce transmission of pandemic
influenza and mitigate the disease. Briefly, the main four
interventions are: (1) isolation of influenza cases; (2)
voluntary home quarantine of members of households
with influenza; (3) school closure, which includes the
dismissal of students from school (also including col-
leges, universities and childcare facilities) and school-
based activities; (4) social distancing measures to reduce
contact in the community and workplace. It also recom-
mended that the intervention duration should be up to
12 weeks.
Amongst the four control interventions, the first two

are straightforward and widely accepted by both the
public and decision-making agents. The last two are
controversial due to the high social and economic
costs from closing schools and public places for certain
periods, as well as the social and economic impacts of
people refraining from their normal activities.
Although non-pharmaceutical control measures are
believed to be vital in curtailing the spread of disease,
the quality of the evidence on which to base non-phar-
maceutical pandemic planning decisions is poor [31].
Further, some research conclusions are contradictory.
Take school closure as an example: although the
importance of school pupils in the transmission of
infectious diseases is acknowledged by most research
[25,32-37], the effectiveness of school closure is not.
As reviewed by the World Health Organization Writ-
ing Group [38] and Aledort et al. [31], although the
majority of studies suggest the effectiveness of school
closure, some previous studies showed that more cases
developed after a school holiday, while schools that
were kept open had a protective effect.
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According to the Community Strategy for Pandemic
Influenza Mitigation [30], the three major goals of miti-
gating a community-wide epidemic are: (1) delay the
exponential growth in incident cases; (2) reduce the epi-
demic peak, and (3) reduce the total number of incident
cases.
In this study, three properties of an epidemic outbreak

were used to evaluate the effectiveness of a set of con-
trol measures. These were: (1) the total number of
cases, (2) the number of cases at the peak and (3) the
day number when the outbreak peaks.
This paper presents an analysis in which control mea-

sures are tested for a hypothetical influenza outbreak in
Eemnes, a small city in the Netherlands, generated from
the simulation of individuals’ movements around the
city and consequent interactions using a published
ABM: Individual Space-Time Activity-based Model
(ISTAM) [39,40]. ISTAM was applied to simulate an
influenza outbreak for the same city in an earlier study,
and the analysis included the spatial distribution of
infection within the city, infection distribution at differ-
ent types of locations and network analysis. This paper
focuses on testing the CDC’s suggested control measure
strategies. This research provides new information
which may be beneficial to the design of a control strat-
egy for epidemic outbreaks, especially for some contro-
versial intervention options such as school closure.
Since the novel ABM framework, upon which the paper
builds, was published previously by the authors, the
basic structure and parameters of the model can be
obtained from [32] and only a brief summary is given
here. For the sake of brevity and clarity, the focus is on
the efficacy of three of the CDC control measures.
The paper is organised as follows. The next section

outlines the research methods. Then the simulation
results and analysis are presented, followed by a section
that discusses the merits and limitations of our
approach. The last section draws conclusions regarding
the application of ISTAM and remaining research issues.

Methods
ISTAM is a bottom-up ABM in which the transmission
network is built on the simulated physical contacts
between individuals at a fine space-time scale [39,40].
At this scale, human social behaviour, the environment’s
physical conditions and the transmission mode of the
specific infectious disease are considered. Activity bun-
dle (AB) is a key concept in ISTAM. An AB is a seman-
tic space where contact probability varies as a function
of the dynamics of humans inside the bundle. The simu-
lation is at two levels: people’s movements between ABs
and contact between individuals within ABs.
It is accepted that the possibility of infection for sus-

ceptible individuals increases with proximity to

infectious individuals [41-43]. In addition, there exist
social rules for how close humans can approach each
other. Hall [44] identified four distances: intimate dis-
tance, personal distance, social distance and public dis-
tance. The values of the above distances vary between
populations from different cultures, ages, genders etc.
This knowledge provides a basis for within-AB simula-
tion. For example, the model should focus on the chan-
ging distances between individuals and, specifically,
when the distances are small enough for infection. The
contacts between individuals are driven by social pur-
poses or constrained by physical conditions or both,
while infection per se is a physical process. Some con-
tacts are indispensable for undertaking some activities.
For example, an individual who goes shopping will gen-
erally make contact with the salesperson when checking
out. Some contacts, although not purposeful, occur due
to the restriction of the environment. For example, on a
crowded bus, passengers must sit or stand in proximity.
The first type of contact is voluntary and is determined
by the individuals. The second type of contact is invo-
luntary and is not wholly determined by the individuals.
The spatial distribution pattern of individuals can be

observed in most types of AB. One example is provided
by a restaurant: people sit in clusters which reflect the
existence of different groups. Another example is pro-
vided by individuals visiting a library: people may try to
find an empty table and sit as far as possible from each
other [45]. In some ABs, such as in a lecture room, indi-
viduals are assumed to remain static during the simula-
tion time unit. In other ABs, movements must be
considered. At fine spatial scales, individuals’ movement
patterns may be strongly confined by the physical condi-
tion of the current AB and the status of other indivi-
duals. Three properties of humans’ space-time dynamics
within ABs that have been observed in reality are con-
sidered when modelling individuals within ISTAM: (1)
individuals’ static spatial distribution patterns, (2) indivi-
duals’ movement patterns and (3) minimum distances
between individuals. For more details about within-AB
simulation using ISTAM, see [39].
ISTAM was previously applied to simulate hypotheti-

cal influenza outbreaks within the campus of the Uni-
versity of Southampton [40] and the city of Eemnes in
the Netherlands [39]. The latter case provided an exam-
ple of the simulation of the individual-based transmis-
sion of infectious disease at the whole city level. For the
latter case, the first requirement was to build the popu-
lation and the spatial structure of the city of Eemnes.
The social and spatial structures of the city were built
based on surveyed data of individuals’ daily activities,
synthesized data of households and land use data from
previous research [46]. Properties such as family struc-
ture, number of cars and income level were assigned to
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every household and properties such as age and gender,
and activity patterns, were assigned to every individual.
Among the whole population of 8382 people, 3.2% were
4 years old or younger, 3.5% were between 5 and 9,
6.4% were between 10 and 17, 71.3% were between 17
and 64, and 15.6% were 65 years or older.
During the simulation, individuals’ daily activities

were generated from a distribution of observed activity
patterns and then individuals’ movements between ABs
and the interaction of individuals within ABs were
simulated. During these interactions, infection was
possible conditional upon contact between individuals.
For the latter case, parameters such as the contact fre-
quency and contact intimacy which determine how
often individuals come into contact and the probability
for a contact to bring about infection in the model
were calibrated by studies which indicated the average
number of daily contacts for a person and the basic
reproductive number for influenza R0 (the average
number of secondary cases caused by each case of an
infectious disease), respectively. In ISTAM, the latent
period for influenza was assumed to be 1 to 3 days,
the incubation period was one day longer than the
latent period and the infectious period was 3 to 6 days
[47-49]. The proximity and duration required for infec-
tion were assumed to be 1.5 m and 10 minutes,
respectively.
A baseline simulation of a hypothetical disease out-

break in the city of Eemnes based on ISTAM was pre-
sented previously [39]. This paper extends the baseline
model by testing three CDC control measures for a
hypothetical influenza outbreak in Eemnes using
ISTAM. These were:

(1) refrain from social activities (A): the probability
of an individual to visit certain places such as social,
leisure and sports facilities was decreased to a cer-
tain level;
(2) school closure (S): the probability of a pupil to
visit school was decreased to 0;
(3) household quarantine (H): a certain proportion
of individuals was required to stay at home at all
times.

Because in reality, compliance to a control measure
may be less than 100%, especially for the cessation of
social activities and household quarantine, a series of
compliance levels (25%, 50%, 75% and 100%) were tested
for both A and H. Two or three control measures can
work together denoted by the abbreviations AS, AH, SH
and SHA, with a default 50% compliance level for both
A and H and 100% compliance level for S. The scenario
with no control measures (denoted by N) was also
tested for comparison purposes.

An alert value (a threshold number of infection cases)
was used to denote how quickly the control measure
was implemented. At the beginning of each day, if the
number of infection cases is greater than the alert value,
the control measure will be implemented. This meant
that there was a small delay of less than one whole day
duration between exceeding the alert threshold and
intervention. All control measures were assigned an
alert value of 20 cases except N. Additionally, for con-
trol measure SH, a series of alert values (20, 50, 100,
200, 500 and 1000) and a series of rates of transmission
(with R0 of 1.24, 1.79, 2.42, and 2.60) were explored. For
each of the above scenarios, 300 simulations were run.

Results
Firstly, baseline simulations (N) were analyzed. Five indi-
viduals were selected randomly to be the index cases
(the initial patients with influenza) and R0 was calibrated
to be 1.79 [48]. Figure 1 shows the number of new cases
from different ABs over time (in weeks). The three basic
properties can be found in Table 1: on average, it took
31 days for the number of new infection cases to reach
the peak, that is, 308 cases per day. The total number of
cases during the outbreak was 5703.
Table 2 shows the distribution of infection across dif-

ferent classes of AB. The four main infection sources
were household (36%), social place (22.2%), workplace
(10.9%) and school (11.9%). The peak day (i.e., day of
the outbreak peak) of new infections was the fourth
week for most types of AB (Figure 1), although, notably,
was the third week for schools. Most infections at
schools occurred from pupil to pupil. This implied that
the epidemic outbreak was strengthened amongst chil-
dren and then spread to adults. The control measure
specific to schools may, therefore, be important, espe-
cially during the early stages of an outbreak.
For different control measures, the three properties of

the outbreak under each scenario are given in Table 1.
The proportion of infected individuals was plotted
against time in Figure 2 for scenarios N, S, H and SH
(for each scenario, the result of a “typical” simulation
run is shown in which the three properties of the out-
break were similar to the average values for the 300
simulation runs). The implications from Table 1 and
Figure 2 are:

(1) Amongst each single control measure, A was
relatively ineffective. The values of all three proper-
ties for A were similar to those under the baseline
scenario N, with almost no variation with compli-
ance level.
(2) H was a very effective control measure, especially
in limiting the peak number of cases and total num-
ber of cases, with large differences between
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compliance levels. The decrease in the peak number
of cases for H was from more than 300 to around
158 for a 100% compliance level, a decrease of about
48.7%. The delay in the peak day was about 3 to 17
days. Moreover, the total number of cases decreased
to a range of 3635 - 5403, that is, 63.7% - 94.7% of
the baseline value.

(3) The effectiveness of S was less than that of H:
the peak number of cases decreased to about 71.1%
and the peak day was delayed by about 8 days. The
effectiveness of S in reducing the total number of
cases was small, a reduction of about 4.2%.
(4) For multiple control measures, since A had
almost no effect, it is not surprising to see that AH
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Figure 1 Number of new cases from different ABs plotted against time (aggregated to units of a week) for the scenario N, estimated
over 300 simulations.

Table 1 Total number of cases, peak number of cases and peak day under different control measures

Scenario
ID

Compliance
level

Probability of
outbreak (%)

Total
cases

Compared
with N (%)

95% CI Peak
cases

Compared
with N (%)

95% CI Peak
day

Compared
with N (%)

95% CI

N > 99 5703 5539-5872 308 274-345 31 22-44

25% 99 5709 100.1 5522-5913 309 100.3 280-354 30 96.8 23-39

A 50% 100 5706 100.1 5537-5879 307 99.7 272-344 31 100.0 23-44

75% 100 5701 100.0 5481-5921 307 99.7 264-346 31 100.0 23-44

100% 98% 5695 99.9 5533-5890 308 100.0 271-349 32 103.2 23-51

S 100% 100 5461 95.8 5233-5666 219 71.1 187-256 39 125.8 30-51

25% 100 5403 94.7 5138-5583 277 89.9 244-307 34 109.7 23-51

H 50% 93 4992 87.5 4758-5215 244 79.2 215-278 35 112.9 23-51

75% 94 4428 77.6 4199-4704 204 66.2 178-243 41 132.3 23-65

100% 68 3635 63.7 3376-3843 158 51.3 131-192 46 148.4 29-84

AS 50%, 100% > 99 5449 95.5 5240-5648 222 72.1 192-253 39 125.8 30-51

AH 50%, 50% 97 5000 87.7 4754-5244 243 78.9 209-276 35 112.9 23-51

HS 50%, 100% 97 4494 78.8 4219-4781 134 43.5 107-160 48 154.8 36-71

AHS 50%, 50%, 100% 97 4453 78.1 4008-4753 135 43.8 104-162 51 164.5 36-79

Alert value is 20 for all scenarios except N.
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Table 2 The proportion of infections between different types of AB using different control measures

N 95% CI % S 95% CI % H 95% CI % HS 95% CI %

Home 2049 1931-2137 36.0 2284 2197-2367 42.1 2129 2012-2246 42.7 2197 2043-2347 49.3

Work 618 570-660 10.9 630 580-678 11.6 478 430-524 9.6 469 422-529 10.5

Shops, post offices and banks 429 387-472 7.5 454 413-487 8.4 312 268-347 6.3 315 269-362 7.1

Healthcare facilities 493 458-538 8.7 536 481-580 9.9 359 325-404 7.2 385 345-432 8.6

Sports and cultural facilities 171 141-206 3.0 194 157-232 3.6 130 106-157 2.6 154 113-194 3.4

Social facilities 1253 1181-1339 22.0 1312 1224-1416 24.2 936 855-1016 18.8 926 856-1002 20.8

School 677 653-706 11.9 20 9-43 0.4 637 606-663 12.8 16 7-34 0.3

Alert value is 20 for all scenarios except N; compliance level is 50% for H.
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Figure 2 Proportion of infected individuals amongst the whole population plotted against time (aggregated to units of a day) for the
scenarios N, S, H and SH, estimated by a selected typical simulation.
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was similar to H, AS was similar to S and AHS was
similar to HS. HS (and AHS) were the most effective
control strategies: the peak number of cases
decreased by 56% to 57%, the total number of cases
decreased by 21% to 22% and the peak day was
delayed by 17 to 20 days.

Table 2 lists the distribution of infections between dif-
ferent types of AB amongst S, H and HS (A is excluded
due to its ineffectiveness). Compared with N, S reduced
the infection in schools to a very low level, but infection
within other ABs also increased in absolute number,
compensating for the gain. Compared with N, H
reduced the total infection, and the effectiveness varied
amongst different types of AB. Thus, the transmission
environments (ABs) most resistant to control were
home and school, with decreases of 33% and 41%,
respectively, while for all other ABs the total number of
cases decreased by 63 - 69%. HS was the most effective
control measure for all types of AB, with the lowest
infection rates for any AB type.
Table 3 shows the three properties of the outbreak

controlled by HS (with a 50% compliance level for
household quarantine), with alert values increasing from
20 to 1000. Clearly, the higher the alert value, the larger
the total number of cases and peak number of cases,
and the earlier the peak day. With a lower alert value,
that is, intervening earlier, control measures were more
effective.
Table 4 shows the three properties of the outbreak

controlled by HS (with a 50% compliance level for
household quarantine) for four values of R0 (1.24, 1.79,
2.42, and 2.60). By comparing the set of outcomes
under control measure HS with the corresponding N
scenario (for the same R0) (Table 4), it can be seen
that the control measure HS was more effective for
smaller R0 values. Because the smaller the R0, the
lower the probability of an outbreak, the greater the
relative decrease in total number of cases and peak
number of cases, and the greater the relative delay in
the peak day.

Discussion
From the ISTAM model, school closure resulted in
about a 4.2% reduction in the total number of cases and
a 28.9% reduction in the peak number of cases. These
reductions were rather low compared with some empiri-
cal studies [36,37] which suggest approximately a 15%
reduction in the total number of cases and a 40% reduc-
tion in the peak number of cases. As Table 2 shows,
with school closure, infection in schools was reduced to
a very low level, but infection within other ABs
increased in absolute number. The explanation is that
school closure alone can move pupils’ daily activities
from school to home, and infection risk at home and
other ABs may actually increase. This is consistent with
other studies [31,32,50-53]. Milne et al. [51] argued in a
comparison study that differences in effectiveness can
arise from differences in assumptions about the timing
and duration of school closure. It would be interesting
to implement such finer level differences within the
ISTAM model in future. Another explanation is that the
current model does not consider the age dependence of
susceptibility and infectiousness. For example, children
may be more susceptible and infectious than adults
[54,55]. This should be explored in the future.
This research highlighted the importance of combin-

ing control measures. As shown in Table 1, school clo-
sure alone was not particularly effective, but when
combined with home quarantine, it reduced the total
number of cases more than the sum of these two con-
trol measures alone. It should be noted that although
the three control measures are applicable to different
levels of aggregation (refraining from social activity is
applicable to individuals, household quarantine is applic-
able to all members within households and school clo-
sure is applicable to all students), they are not
independent of each other. For example, individuals
under household quarantine automatically refrain from
social activities, and students under household quaran-
tine do not go to school. The overlap between control
measures may explain the enhancing effect of combining
measures. The combination of non-pharmaceutical

Table 3 Total number of cases, peak number of cases and peak day under HS control with various alert values

Alert value
(infection cases)

Probability of
outbreak (%)

Total
cases

Compared
with 20 (%)

95% CI Peak
cases

Compared
with 20 (%)

95% CI Peak day Compared
with 20 (%)

95% CI

20 97 4494 4219-4781 134 107-160 48 36-71

50 98 4503 100.2 4209-4832 142 106.0 119-174 38 79.2 23-51

100 98 4520 100.6 4152-4869 152 113.4 110-191 37 77.1 24-51

200 99 4586 102.0 4239-4839 173 129.1 139-208 31 64.6 23-44

500 97 4743 105.5 4454-5083 210 156.7 168-261 29 60.4 20-37

1000 97 4954 110.2 4752-5163 272 203.0 237-316 29 60.4 22-43

Compliance level is 50% for H, 100% for S.
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measures with pharmaceutical measures needs to be
investigated in the future, particularly as for infectious
diseases with large R0, the effectiveness of non-pharma-
ceutical measures was shown to be limited.
ISTAM is a novel model for simulating the transmis-

sion of infectious disease. The two-level structure
(separating between-AB and within-AB activities) makes
ISTAM flexible such that it can be applied to novel cir-
cumstances. The concept of AB plays a key role: both
the building of individual activity patterns and simula-
tion within ABs depends on how well the ABs are
defined and classified. The merits of simulation by
ISTAM are: (1) ISTAM is straightforward and provides
a process-based representation of the real world, (2)
using ISTAM, it is easy to account for important factors,
neglect less important factors and include random fac-
tors in the model and (3) ISTAM facilitates the model-
ling of human actions (both active and reactive) and the
interaction between humans at fine scales. ISTAM, if
fed with activity pattern data, can simulate effectively
individuals’ movements at between-AB and within-AB
levels. Providing data sources are sufficient, the model
can be extended readily to larger study areas although
the effort involved in data collection and model imple-
mentation is likely to be substantial and time-
consuming.
Despite the above advantages of ISTAM, the utility of

the results presented here in terms of control measures
depends on the ability of the ISTAM model to represent
real-world processes such as human behaviour and
movement patterns, both between and within ABs (gen-
erally buildings), the spatial structure of the set of ABs
themselves, particularly at within-AB level, transmission
probability as a function of the space-time separation
between individuals, and the natural history of the tar-
geted disease such as the time lines describing the evo-
lution of infection and disease within the host (e.g.,
latent, infectious, incubation and symptomatic periods).
For example, it is assumed that one requirement for
transmission is a susceptible person within a certain

distance of an infectious person. In fact, for most air-
borne infectious diseases, airborne disease agents may
stay suspended in the air or survive on some surfaces
such as door handles for an extended period of time.
This suggests co-location may not be a strict require-
ment for infection. Applying an extended definition of
effective contact will be a challenge for future research.
Another problem arises due to limited validation. It was
not possible to validate the model directly due to the
lack of historical data on the impact of non-pharmaceu-
tical control measures on disease outbreaks in Eemnes.
Nevertheless, several strategies were implemented to
validate the model indirectly [39], with satisfactory
results.
The emergent space-time pattern of disease in a given

region depends on the parameters of both the disease
transmission model and the spatial and social network
structures in place in the environment in which trans-
mission takes place. In particular, it is expected that
changes in the parameters of the (simulation) model will
lead to observable changes in the space-time pattern of
disease. Simulation models provide an important means
for evaluating the sensitivity of emergent patterns and
their space-time character to changes in model para-
meters. Thus, while the results of ABMs such as ISTAM
depend on model parameterization, sensitivity analysis
can be used to investigate the range of parameter values
that leads to similar evidence for decision-making, pro-
viding reassurance to decision-makers.
If the association between elements of environmental

and social structures and disease outcomes can be quan-
tified then it should be possible to map the vulnerability
of entire settlements to specific diseases. It is well-
known that the behaviour characteristics of individuals
can be modified to reduce the likelihood of disease
transmission. However, the effects of spatial structural
elements such as boarding school versus day school
education for children and settlement structure (e.g.,
out-of-town supermarkets versus local shops) are less
well studied. Again, such knowledge would be useful in

Table 4 Total number of cases, peak number of cases and peak day with or without HS control for four values of R0
R0
value

With
HS?

Probability of
outbreak (%)

Total
cases

Compared
with N (%)

95% CI Peak
cases

Compared
with N (%)

95% CI Peak
day

Compared
with N (%)

95% CI

1.236 No 80 3958 3575-4298 149 122-174 40 23-67

Yes 41 2449 61.9% 895-2989 44 29.5% 17-51 94 235.0% 48-197

1.79 No > 99 5703 5539-5872 308 274-345 31 22-44

Yes 97 4494 78.8% 4219-4781 134 43.5% 107-160 48 154.8% 36-71

2.419 No 100 6955 6860-7066 503 460-561 25 22-30

Yes 100 6299 90.6% 6142-6434 335 66.6% 293-380 34 128.0% 29-43

2.596 No 100 7522 7435-7585 658 607-720 22 19-26

Yes 99 7154 95.1% 7063-7259 495 75.2% 461-539 28 127.3% 23-32
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terms of planning containment strategies and such
knowledge can only be provided by simulation models
such as ISTAM.

Conclusions
ISTAM was used to quantify the efficacy of three of the
social control measures recommended by the CDC.
Such quantification, while carrying uncertainty due to
model structure and parameterization, is not possible by
other means such as in vivo, real life, epidemiological or
biological experiments. Sensitivity analysis was used to
explore the outcome of the simulation for a range of
parameter values (compliance level, alert value, R0). For
the simulated influenza outbreak in the city of Eemnes,
the Netherlands, household quarantine was the most
effective control measure in terms of the three indices
including total number of cases, peak number of cases
and peak day used to assess efficacy. Refraining from
social activities was the least effective control measure.
School closure alone was of limited efficacy, unless com-
bined with other control measures such as household
quarantine. When school closure was used singly, a pro-
portion of infections were displaced to other settings.
This conclusion has important implications and is con-
sistent with other research [31,32,52,53].
ABMs should be applied in future to evaluate the effi-

cacy of control measures for a range of disease out-
breaks in a range of settings, conditional upon the
availability of sufficient information about the scenario
(e.g., demographics, the built environment and humans’
daily activities) and knowledge about the transmission
processes at a fine scale (specifically, the relationship
between transmission and the space-time dynamics of
individuals).
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