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scale and contact structure
Thomas House1*, Ian Hall2, Leon Danon1, Matt J Keeling1

Abstract

Background: In the event of a release of a pathogen such as smallpox, which is human-to-human transmissible
and has high associated mortality, a key question is how best to deploy containment and control strategies. Given
the general uncertainty surrounding this issue, mathematical modelling has played an important role in informing
the likely optimal response, in particular defining the conditions under which mass-vaccination would be
appropriate. In this paper, we consider two key questions currently unanswered in the literature: firstly, what is the
optimal spatial scale for intervention; and secondly, how sensitive are results to the modelling assumptions made
about the pattern of human contacts?

Methods: Here we develop a novel mathematical model for smallpox that incorporates both information on
individual contact structure (which is important if the effects of contact tracing are to be captured accurately) and
large-scale patterns of movement across a range of spatial scales in Great Britain.

Results: Analysis of this model confirms previous work suggesting that a locally targeted ‘ring’ vaccination strategy
is optimal, and that this conclusion is actually quite robust for different socio-demographic and epidemiological
assumptions.

Conclusions: Our method allows for intuitive understanding of the reasons why national mass vaccination is
typically predicted to be suboptimal. As such, we present a general framework for fast calculation of expected
outcomes during the attempted control of diverse emerging infections; this is particularly important given that
parameters would need to be interactively estimated and modelled in any release scenario.

Background
Stopping transmission of the smallpox (variola) virus
amongst the human population was one of the greatest
public health triumphs of the twentieth century; and yet
since the events of 11 September 2001 the possibility of
its reemergence has been under increased study [1].
Effective contingency planning for such a scenario
requires knowledge of the optimal deployment and use
of case isolation, contact tracing and vaccination. Since
a series of controlled experiments to inform such deci-
sions is not possible, we are forced to rely on mathema-
tical modelling to improve the evidence base for
emergency preparedness and response. Recent

simulation models [2-5] typically conclude that, pro-
vided a given smallpox outbreak can be well controlled,
the emphasis should be on case isolation, contact tra-
cing and targeted vaccination rather than immediate
country-level mass vaccination, due to the frequency of
adverse effects from vaccine and the likely high efficacy
of other measures. Targeting of vaccination can either
be exclusively towards suspected cases found by contact
tracing, or can also involve a policy of local ‘ring vacci-
nation’ of the population in the vicinity known cases.
Evidence exists that such ring vaccination may provide
additional benefit over individually targeted measures
[5]. However, two questions remain and form the main
considerations of this paper: the exact conditions for
which ring vaccination is optimal, and the scale at
which such vaccination should take place–in particular* Correspondence: T.A.House@warwick.ac.uk
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we focus on the interaction between ring vaccination
and contact tracing in a clustered network of contacts.
When considering optimal ring vaccination in any epi-

demiological context, the key issue is the spatial scale
for intervention. This presents a technical challenge,
since spatial models of disease transmission are typically
much more complex than non-spatial models. Local
vaccination is also not applied in isolation, but is
deployed together with other control measures that
must be captured by the model. One of the most widely
used additional measures is contact tracing, which seeks
to identify infected individuals before they become fully
symptomatic by tracing the contacts (and therefore
potential secondary cases) from each identified case.
Theoretical work shows that failure to account for the
underlying structure of the contact network when con-
sidering contact tracing can cause severe, qualitative
errors in model results [6]. We therefore find that our
model choice is constrained by the epidemiology,
dynamics, and types of control measure that we wish to
capture.
Three main model types have been used to investigate

the spread and control of smallpox [7]. Mean-field mod-
els [[8], §8.3] have the advantage of being a relatively
tractable set of differential equations, but suffer from
the underlying assumption that transmission occurs at
random within the entire population. Metapopulation
models [5] are based on the observation that most infec-
tious individuals create the majority of their secondary
cases within their local environment; in these metapopu-
lation models the population is therefore aggregated in
local administration units with most transmission occur-
ring within each unit and at random. Individual-based
simulation models [2-4] are generally considered the
most realistic and aim to capture the full contact struc-
ture between all individuals in the population, often
assigning individuals to households, schools and work-
places where there is known to be a higher risk of trans-
mission. Here we define a model that includes mixtures
from all three of the above methods: it is based on dif-
ferential equation and therefore is rapid to simulate
allowing rigorous sensitivity analysis; it retains the meta-
population concept of local and longer-range transmis-
sion so can be used to consider regional (ring)
vaccination; and it incorporates elements of local con-
tact structure and can therefore reliably capture the
effects of contact tracing.
Individual-based simulation can in principle incorpo-

rate any population structure and interventions neces-
sary, and as such there will always be an important role
in contingency planning for computationally intensive
models that aim for maximum realism. Nevertheless,
there are limitations to these approaches that motivate
our methodology of developing a new, more

parsimonious model. Most important for our purposes
are the problems of parameterisation, numerical tract-
ability and transparency. With such individual-based
simulations there is always the temptation to include
ever more complexity, however any model is necessarily
a caricature of reality and so the quest for ever greater
realism can never be fulfilled. While computers and
algorithms continue to improve, increasing the number
of individuals that can be directly simulated and
decreasing the time to perform a simulation, considering
the whole population of England, Wales and Scotland
still involves significant computational resources. While
baseline results can be obtained at these population
sizes reasonably quickly, applications that require large
number of model realisations such as comprehensive
sensitivity analysis, real-time parameter fitting and deter-
mination of optimal strategies quickly become highly
time-consuming. The development of models and meth-
ods to implement such applications remains necessary,
however complementary approaches that are more
abstract can significantly reduce the computational
burden.
A model that incorporates synthetic data on indivi-

duals and their contacts almost by definition involves
many more parameters than can be measured directly,
and as such assumptions have to be made on the basis
of available data. For example, if an explicit network is
generated as in [9], then there is really a network para-
meter for every pair of individuals in the population
modelled. Given the gap between available data on
human contacts and the information contained in an
explicit network, a complementary approach to indivi-
dual-based simulation is to develop mathematical
approaches that give epidemiological outputs based on
statistical properties of contact networks. Such network
properties can often be measured directly, and the
uncertainty in them estimated systematically. One pub-
lished methodology for this, applied to smallpox, is to
use a branching-process model [10]. Such an approach
does not, however, allow the consideration of cluster-
ing–the possibility that an individual’s contacts also con-
tact each other. Work not directly related to smallpox,
based on pairwise models, has shown that clustering has
a major impact on transmission and tracing dynamics
[6,11,12]. This leads us to extend pairwise models to
enable smallpox to be modelled whilst considering clus-
tering. A thorough treatment of this methodology is
available in [[8], Chapter 7] and [13].

Methods
For reasons explained in the introduction above, we
chose a modelling approach that uses mathematical
techniques to reduce the computational burden. This
means that the underlying model has simple underlying
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assumptions and relatively few parameters, which we
outline below, but ultimately rests on specialist mathe-
matical results, which we have included in Additional
file 1. A full list of parameters, including references, is
provided in Table 1. Our model is structured around
the pairwise approach to capture the natural history of
infection and control, together with the metapopulation
concept of rare external transmission outside of local
spatial units.

Smallpox natural history
The basic natural history of infection within our model
is shown in Figure 1. At the centre of this are five dis-
ease states that smallpox cases pass through in the
absence of any intervention. At first, individuals are sus-
ceptible (S), then following infection they are exposed
(E) and asymptomatically incubate the infection. After
the latent period, cases become prodromal (P) and exhi-
bit non-specific influenza-like symptoms whilst being
able to transmit infection, before quickly developing the
characteristic rash of a fully infectious (I) case. Once

recovered from infection, individuals play no further
role in transmission and are removed (R) from the
infection model, which can represent a range of out-
comes. We assume that a proportion δ = 0.3 of cases
die, and that others become fully recovered and
immune.
The progression of disease following infection there-

fore involves three processes, which are assumed to hap-
pen at the following rates [14-16]:
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When we come to consider transmission, the most
important parameter is the basic reproductive ratio, R0,
which represents the expected number of secondary
cases produced by a typical primary case early in the epi-
demic. Given that both prodromal and fully infectious
individuals can transmit infection, we can split R0 = RP +

Table 1 Model parameters, together with baseline value and range if varied during analysis.

Parameter Description Value (Range) Refs

gE Rate of transition from latent to prodromal 1/12 days-1 [14]

gP Rate of transition from prodromal to infectious 1/2.5 days-1 [15]

gI Rate of transition from infectious to removed 1/8.6 days-1 [16]

δ Case fatality risk 30% [23,33]

θ Probability of case isolation success 90% [21]

gQ Rate of transition from isolated to removed 1/20 days-1 [5]

� Probability of contact tracing success 80% [5]

�1 Vaccine efficacy when susceptible 97.5% [14]

�2 Vaccine efficacy when latent 30% [23]

gO Rate of transition from observed to removed or vaccinated 1/15 days-1 [5]

g Proportion of population contraindicated for mass vaccination 30% [25]

E0 Number of index cases 10 see text

E0
2( ) Number of index cases for secondary outbreak 1 see text

Itrig Number of clinical cases prior to detection 4 see text

I trig
( )2 Number of clinical cases prior to detection for secondary outbreak 1 see text

δV Vaccine fatality risk 10-5(0 – 10-5) [24]

R0 Basic reproductive ratio 5 (3 – 7) [14]

RP Prodromal type reproductive ratio 0.5 (0.1 – 1.5) [15,17]

� Movement reductions when infectious 0.9 (0 – 1) [5]

v Rate of mass vaccination N/7 (see Figure 3(c)) see text

N Population size of region 105(see Figure 3(a)) [28,29]

ξ Region outwardness 0.4 (see Figure 3(d)) [27,30]

M Number of regions of same type as outbreak region n/a (see Figure 3(a)) [28,29]

M0 Number of regions at relevant scale initially infected 1 (1 – 10) see text

n Neighbourhood size (contacts per individual) 17 (5 – 50) [18,19]

j Clustering coefficient 0 (0 – 0.5) see text

Either references are given, or the parameter value is discussed in the main text. Values referenced to [5] are typically also based on expert opinion from
discussions with the Department of Health. [34] provides an example of the considerations involved in estimating these values
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RI where RP is the expected number of secondary cases
caused during the prodromal stage and RI the number
during the fully infectious stage. Our default assumptions
are that R0 = 5, RP = 0.1 × R0, RI = 0.9 × R0 [14,15,17].

Contact network structure
The full network of human contacts capable of spread-
ing infectious disease is undoubtedly complex, highly
structured and dynamic. At the same time, there are
many network statistics that are known to be epidemio-
logically important, however these are all based on the
facts that transmission-relevant contacts are finite and
non-random (captured by the mean number of contacts
per individual, n) and that contacts are often shared by
individuals (captured by the clustering coefficient j).
These two parameters are, therefore, an appropriate
choice for our purposes and we vary them significantly
during our analysis. We note that in many cases the
heterogeneity in the number of contacts per individual
can play an important role; but for the early stages of
an outbreak considered here the effects of this heteroge-
neity can largely be subsumed into the parameterisation
of R0.

The mean number of contacts, n, has been estimated
and we take it to be 17 people as a default [18,19]. The
clustering coefficient j, which is equal to the mean pro-
portion of shared contacts between two linked indivi-
duals, has yet to be measured in an accurate way, and
so our baseline value is j = 0 for comparison with exist-
ing unclustered models. Since we know that there are
many internally well-connected groups and cliques
within human populations, such as households, schools
and workplaces, it is most likely that j is far from 0 and
so large values are considered when we generalise.
Introducing a notation in which [S] represents the

number of susceptible individuals in the population, and
[SI] the number of contacts between a susceptible and
an infectious individual (and similarly for other disease
states) we can now introduce rates for the transmission
of infection across the contact network, τP and τI, which
are defined by
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So prodromal individuals infect susceptible individuals
that they are connected to at a rate τP and infectious
individuals infect susceptible individuals that they are
connected to at a rate τI .
If we were not considering a model with an explicit

contact network, then the relationship between underly-
ing transmission rates and observables can be dealt with
in a rigorous way, such as in [20]. On a network, how-
ever, the relationship between transmission rates and
the reproduction numbers R0, RP, RI discussed above is
subtle, and the technical details of our approach are
given in Additional file 1. The important conclusion
from this technical development is that there are really
two types of reproduction number that one should con-
sider. The first, which we write r0 (composed of rI and
rP), relates to population-level measurements of inci-
dence and prevalence and their early growth rate, while
the second, which we write ℛ0 (and is composed of ℛI

and ℛP) relates to individual-level measurements made
during contact tracing and is more true to the verbal
definition. We consider both types of reproduction
number in our analysis.

Control strategies
We now consider methods and parameters for the var-
ious interventions that are typically considered in small-
pox contingency planning.
Case isolation
The first step in outbreak containment is to isolate symp-
tomatic cases as soon as possible, to stop transmission of
disease. We model this by taking a proportion θ = 0.9 of
the prodromal cases into a new quarantined class, Q,

Figure 1 Disease states of the model, and processes
connecting them. These are: S susceptible; SV susceptible and not
contraindicated for vaccination; E latent; P prodromal; I infectious; R
removed; Q isolated; O susceptible under observation; ET latent
under observation; V vaccinated. The latent class is populated by
transmission from infectious or prodromal cases to susceptibles.
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rather than the infectious I class at the end of the prodro-
mal period [21]. Isolated cases are released into the
recovered R class with rate constant gQ= (1/20) days-1

when they are assumed to pose no further risk of trans-
mission [5]. This measure on its own therefore reduces
the number of secondary cases produced to RP + 0.1 ×
RI = 1 under our baseline assumptions, which is consis-
tent with existing work and expert opinion [22].
Contact tracing
Contact tracing of known (and hence isolated) cases
takes place through attempts to find the individuals
potentially infected through epidemiologically relevant
contacts. Some individuals found in this way will still be
susceptible, some will be latent cases, and others will
have developed symptoms. We assume that traced indi-
viduals displaying both rash and less specific prodromal
fever are isolated an enter the quarantined Q class.
Traced contacts not displaying any symptoms will be
subject to the same observation protocols until they
either develop symptoms or conclusively pass the upper
limits of the incubation period. We distinguish in the
model between susceptible individuals under observa-
tion, O, and traced cases still in the latent stage, ET .
Tracing takes place across network links in a manner

analogous to infection, and this is the reason why mod-
els that include tracing must explicitly include network
structure. We therefore formulate the model rates in the
same manner as for transmission of infection above:
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For a given isolated individual who is subject to con-
tact tracing, we assume that each contact in the trans-
mission network is discovered independently with a
probability of Î = r/(r + gQ) = 0.8 [5]. The mathemati-
cal reasoning for this is given in Additional file 1.
Vaccination
Smallpox is a vaccine-preventable illness, meaning that
susceptible individuals who are successfully vaccinated
acquire long-lasting immunity, and in the model are
placed in the class of individuals removed due to vacci-
nation, V. Our probability of successful vaccination
given dose delivery is �1 = 0.975 [14]. Vaccine can also
be given to asymptomatic individuals incubating infec-
tion, and in this case there is a significantly reduced
probability of success, �2 = 0.3 [23]. Vaccination is not
without its dangers, and we take a baseline probability
of mortality following vaccination of δV = 10-5 [24],
which we vary during analysis. When only identified
contacts of isolated cases are vaccinated, this creates the
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The rate gO = (1/15) days-1 is given by the length of
the observation period for observed suspected cases [5].
When we also consider mass vaccination, then we

need to introduce the class SV, which represents those
susceptibles not contraindicated for vaccination (which
we take to be around 70% of the population [25]).
When mass vaccination starts, these are then depleted

S V SV V  at the  provided v, 0, (5)

where v is the absolute rate (people per day) at which
a population can be vaccinated. The estimation of this
quantity is really a question for operational research,
and therefore falls outside the scope of this paper. From
discussions with the Department of Health, we were
able to obtain their estimate that the country could be
vaccinated within a week. Since our results are not par-
ticularly sensitive to this parameter, the implications of
varying it are reasonably clear (slower vaccination is less
effective and vice versa), and we do not have access to
sufficient information to make an estimate of our own,
we make use of the value of one week. v is therefore
equal to the population of Great Britain not contraindi-
cated for vaccination (70% of 57 million) multiplied by
the inverse time required to vaccinate, 1/7 days-1 .

Spatial scale
One of the main aims of our work is to consider the
optimal spatial scale for intervention, and so here we
present the data and modelling framework within which
such assessments can be made.
The NUTS classification
We make use of a hierarchy of statistical units in our
analysis. These start at Great Britain (GB), and work
down through five Nomenclature of Units for Territorial
Statistics (NUTS) levels to the whole of Great Britain.
The definition of NUTS regions as currently used by the
Office for National Statistics is, at the time of writing,
available online at [26], although the NUTS4 and
NUTS5 regions relating to 2001 census data have now
been replaced by LAU1 and LAU2 regions respectively.
Finally we also consider Output Areas, which are very
small, local patches with a population of a few hundred
people defined for the 2001 census. Figure 2 shows this
hierarchy for the regions around the University of War-
wick–of particular interest is the common occurrence
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that NUTS3 and NUTS4 regions are identical around a
location. The advantage of this NUTS-based framework
is that the highly complex arrangements of different sta-
tistical, administrative and historic geographical aggrega-
tions in Great Britain can be studied in a systematic
manner. It is also likely that decisions to vaccinate (or
implement other control measures) will be acted upon
at one of these administrative scales. As a point of clari-
fication, although Northern Ireland forms part of the
United Kingdom, we deal only with Great Britain since
this forms a natural geographically connected epidemio-
logical unit, while Northern Ireland is more strongly
connected to the Republic of Ireland [27].
We then make use of data on population sizes and

commuter movements from the 2001 census [27-30] to
make a statistical comparison of these regions as shown
in Figure 3. The spread of population sizes, together
with median values, at each geographical aggregation is
shown in Figure 3(a). We also use census data on home
and workplace locations to plot both spreads and med-
ians of both the proportions of workers and the propor-
tions of the total region population that work outside
the region at each scale in Figure 3(b). From these two
plots, we see that the seven classifications we have cho-
sen cover the full range of population sizes and geogra-
phical scales that one would want to consider.
Ring vaccination
As in the section above on vaccination, the Department
of Health provided us with an estimate of the time to
vaccinate a district as three days. We then extrapolate
to Figure 3(c) in order to consider multiple spatial
scales, although again our results are not highly sensitive
to these parameters.
Interaction between regions
Our approach to spatial interaction between regions
considers disease escape from the region around the
initial cases through a tractable model known as a Pois-
son process. Such an approach has also been suggested
as a method for model simplification for pandemic
influenza [31]. The mathematical description of this pro-
cess is presented in Additional file 1.
In order to make use of this method, we need to have

a measure of the propensity of a region’s resident popu-
lation to leave the area (and hence transfer infection) on
a day to day basis. To our knowledge, there is no tech-
nical term for this value; we use the term outwardness
and denote it ξ. We then estimate the outwardness of a
geographical scale to be the median proportion of work-
ers living in a region at that scale and working outside it
(i.e. we assume that non-workers are, in this respect, like
workers). We then extrapolate the raw data in Figure 3
(b) through linear interpolation on a logarithmic popula-
tion scale to get the general relationship between popu-
lation and outwardness shown in Figure 3(d).

The rate at which infection escapes from the region
around the initial cases is therefore proportional to the
outwardness, and depends on the number if prodromal
cases [P] and fully symptomatic cases [I] as below

Rate of escape µ    ( [ ] ( ) [ ]).P IP I 1 (6)

Here, we parameterise the significantly reduced move-
ment of symptomatic infectious individuals through
multiplying their probability of travel by a factor (1 - �),
with the default value of � = 0.9 [5].

Optimisation of response
Our results consider a six-month outbreak, centred on
either a single region or number of regions. For each
region, we are able to calculate an expected mortality
from the final numbers vaccinated and removed, and
the respective mortality risks δV and δ. We are also
able to calculate a probability of escape from the
region. Logistical and ethical factors become important
in the consideration of which outcomes are most desir-
able, however, and so our approach is to consider a
simply described optimal outcome within two release
scenarios.
Initial cases and detection threshold
Our first assumption concerning initial cases is that they
are concentrated, and the epidemic starts with E0 = 10
latent cases in one area. While in principle this could be
significantly higher, the more severe epidemic arising from
such a situation may favour mass vaccination as an inter-
vention. We therefore choose to consider an initial out-
break size where there is the strong possibility of
containment through case isolation and contact tracing
alone.
We assume that until a certain number of fully symp-

tomatic cases has been seen and diagnosed, no public
response is instigated. The triggering of interventions is
modelled by introducing control measures to the system
once [I] + [R] ≥ Itrig. We take Itrig= 4, for the same rea-
son as our relatively conservative choice of E0 above.
In the event that secondary areas are infected, we

assume that in a situation of heightened awareness and
public health response, the secondary epidemic is initia-
lised by E0

2( ) = 1 initial cases and detected once I trig
( )2 =

1 symptomatic cases are present.
An alternative scenario is to consider M0 = 10 maxi-

mally dispersed initial cases, each in a distinct region of
the size under consideration. In this case, we let the
initial regions take ‘secondary’ parameters; since the out-
breaks are simultaneous, this means that the expected
national prevalence of clinical infection upon triggering
of intervention will be M0. This is reasonable since dis-
persed cases are collectively less likely to trigger
intervention.
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In terms of interpretation, our baseline assumption for
regions of relative small sizes would correspond to an
accidental/intentional release from a terror cell operat-
ing from a domestic address, and at larger sizes a release
involving the resident population of a city or region.
The dispersed assumption would, on the other hand,
involve the other extreme of a release involving a largely
transient population of commuters or shoppers. We
note that at country level (Great Britain) the dispersed
scenario should be interpreted as identical to the
NUTS1 level dispersed scenario.
Minimisation of expected mortality
The decision about what constitutes an optimal out-
come is essentially political, and so our focus is on how
epidemiological outputs vary with spatial scale and con-
tact network structure. Nevertheless, we also wish to
demonstrate how optimisation can be considered and so
also calculate the total expected mortality in primary
and secondary affected regions as a simply described
and calculated quantity for optimisation. The full details
of calculation of this quantity are in Additional file 1.

Results and Discussion
Temporal dynamics
The model’s dynamical behaviour, for all default choices
in Table 1, is shown in Figure 4(a,b). The ‘baseline’
values of population size and outwardness are chosen
for simple comparison with other published city-level
and district-based models, which operate at a similar

population size, but these parameters are varied every-
where else in our analysis. Figure 4(a) shows a rise in
symptomatic, prodromal and latent infection until case
isolation and other interventions are implemented (at
approximated 7 days), when the epidemic becomes con-
trolled. However, even after these measures are imple-
mented, the number of latent and isolated individuals
continues to rise for several days or weeks. Figure 4(b)
shows the total escape probability rising monotonically
over time, with a larger gradient at higher prevalence of
infection, as would be expected.

Spatial scale
Using the geographical framework discussed above,
varying the vaccine mortality risk and mobility of fully
symptomatic cases, but otherwise using the baseline
parameters of Table 1, gives the results shown in Figure
4(c,d).
We find, as shown in Figure 4(c), that below a parti-

cular population size close to two million (if vaccine-
induced mortality δV is 10 deaths per million vacci-
nated) local mass vaccination is optimal, with the pre-
ferred spatial scale being defined such that there is
reasonable confidence that all existing cases are con-
tained at that scale. Above this critical population size,
the number of vaccine-induced deaths becomes unac-
ceptably large. Our conclusion is that, even if vaccine-
induced mortality is significantly lower, for the small
release considered here vaccination of the whole country
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Figure 2 Range of geographical units around Output Area 00CQFP0009, which contains the main campus of the University of
Warwick. Numbers shown are distances in kilometres
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is likely to be unnecessary given that vaccination at
smaller spatial scales and more individually targeted
approaches will have brought the epidemic under
control.
In terms of escape of infection, Figure 4(d) shows that

both the reduced mobility of symptomatic cases and
local mass vaccination have a significant impact on final
probability. While this is not plotted for clarity, increas-
ing � still further does not have a large effect. The
dominant trend is, in any case, that the outwardness of
a region is the main determining factor of magnitude of
escape probability.

Parameter sensitivity
To assess the impact of various parameters on the
model conclusions, we consider the population size (N
≈ 2.4 × 106) at which the expected number of deaths
(given δV = 10-5) is the same both with and without
local mass vaccination. Using the interpolations shown
in Figure 3(c,d), we can then see how modification of a
baseline parameter moves us away from the point at
which both strategies are equivalent. The results from
this analysis are shown for within-region deaths in Fig-
ure 5 and for escape probabilities in Additional file 1.
When examining sensitivity to parameter choices, it is

important to consider which basic observables of the

epidemic should be maintained while the parameters are
varied. Here, we have decided to fix the basic reproduc-
tive ratio as this is undoubtedly the key observation
from any epidemic. For example, as we vary the number
of contacts, the transmission rate per contact is varied
to compensate for this change. This is analogous to
ensuring that all models are fit to the same early epi-
demic behaviour. One difficulty with fitting to the basic
reproductive ratio is that it can be measured in two
main ways: either directly by examining the contacts of
each infected case, or indirectly by calculating the early
growth rate of the epidemic. Unfortunately, for epi-
demics with complex natural histories and network-
based transmission these two methods of calculating the
basic reproductive ratio are not in direct agreement, and
we therefore show two sets of results in which either
measurement is held constant. To make this distinction
clear, we denote an individually measured reproduction
number ℛ0 and one inferred from early growth r0.
We have found relatively small effects from varying

the neighbourhood size n at constant R0 (Figure 5(a)),
although varying the reproductive ratio itself has the
strong but predictable effect of favouring mass vaccina-
tion for larger values of R0 (Figure 5(b)). What we find
significantly more important is the amount of transmis-
sion during the prodromal phase of disease,

Figure 3 Characteristics of seven spatial scales in England, Wales and Scotland (Great Britain) and inferred outwardness and time to
vaccinate as a function of region population. (a) shows the median and variability in population size at each scale, together with the
number of regions. (b) shows the commuting data at each scale, (c) shows the inferred time to vaccinate against population size, and (d) the
inferred outwardness against population size.

House et al. BMC Infectious Diseases 2010, 10:25
http://www.biomedcentral.com/1471-2334/10/25

Page 8 of 12



parameterised by RP (Figure 5(c)). While this is highly
unlikely to be over 1, a similar effect would be seen
from a delay in isolation of infectious individuals, which
can be shown in a general manner using threshold argu-
ments [22]. Investigating the effects of clustering (Figure
5(d)) gives strong results, which are both subtle and
counter-intuitive, although some theoretical progress
has been made in understanding the impact of cluster-
ing on contact tracing [6]. In particular, we see in Figure
5(d) that whether R0 has been estimated from early
growth in prevalence or from contact-tracing data has a
profound effect on the impact of clustering.

Optimisation and global sensitivity
The optimisation problem of minimising expected total
mortality is addressed in Figure 6. This figure shows the
existence of a spatial cutoff above which mass vaccina-
tion causes excess total mortality for our baseline para-
meters in Figure 6(a). Figure 6(b), however, shows that
for significantly ‘worse’ parameters–R0 = 7, RP = 1.5, j
= 0.5–this conclusion can be reversed and no such cut-
off is seen and mass vaccination is always optimal.
Although we do not think such a scenario particularly
likely, this points to the importance of real-time estima-
tion in the event of an outbreak. On the other hand, the
spatial cutoff scale is reduced for ‘better’ parameters–R0

= 3, RP = 0.1, j = 0–as shown in Figure 6(c). When we
consider the ‘dispersed’ assumption in Figure 6(d),
delayed intervention causes a generally more severe out-
break but does not in itself remove the existence of a
population size above which mass vaccination is subop-
timal. Since the dispersed scenario has no interpretation
when applied to the whole of Great Britain, we simply
duplicate the NUTS1 result at this point.

Parameters not varied
There are a large number of tasks for realistic, informa-
tive smallpox modelling, and our particular focus has
been on outbreak severity, the impact of contact-net-
work structure, spatial scale and level of undetected
transmission. It is worth considering briefly the likely
impact of two other extensions to simple models known
to be important for general policy conclusions.
Firstly, we have assumed simple rates of transmission

between infectious states rather than a more sophisti-
cated class-age structure. Our methodology allows for
the inclusion of extra realism of this form through the
method of stages, where clinically distinct disease states
are broken down into additional sub-compartments.
This brings significant extra computational overheads,
however when considering a binary choice about vacci-
nation the current understanding of such realism is that

Figure 4 Baseline dynamics for network smallpox model. The dynamical variables associated with a free-fall epidemic are shown growing in
Pane (a), until the trigger is reached and intervention parameters come to dominate and the outbreak is eventually contained. (b) the
cumulative probability of escape grows with untreated cases then levels off. Overall outcomes for the seven spatial scales in England, Wales and
Scotland are shown in Panes (c) and (d).
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it should not qualitatively modify our results, and would
be most important if our approach were extended to an
accurate system of real-time estimation.
Secondly, we have assumed homogeneity at the indivi-

dual level, while risks of death, mixing patterns and spa-
tial location are likely to be highly heterogeneous.
Again, given that we were only considering mean beha-
viour of the system this does not invalidate our
approach, but would be important if policy decisions
needed to be calibrated to ‘reasonable worst case’ rather
than expected outcomes.

Conclusions
In dealing with the optimisation of public-health
response to deliberate release of smallpox, we are con-
sidering a highly complicated system that is not directly
amenable to experimental testing. This means that there
will always be a degree of uncertainty associated with
conclusions presented, however strongly these manifest
themselves in a model.
Despite this general caveat, investigation of the pro-

blem for Great Britain suggests that, for a wide variety
of parameter choices, and with differing modelling
approaches, a vaccination strategy that involves a wider
section of the population than the traced contacts of
isolated cases but one that stops short of vaccinating the

whole country is likely to be optimal. Such a conclusion
is, we believe, likely to be robust in the event of a rela-
tively small initial outbreak and given our best estimates
of the contagiousness and natural history of variola. It
could be overturned for a particularly virulent or large
outbreak, however similar measures were taken during
the eradication programme and were effective in con-
trolling historical outbreaks [32]. Additionally, a larger
outbreak may be observed sooner, leading to earlier
detection and isolation of cases. Another key message is
that delays in case isolation, or equivalently more trans-
mission in the prodromal phase than was previously
observed, are extremely significant, and that slow
response has the potential to present the most signifi-
cant barrier to the efficacy of non-pharmaceutical inter-
ventions. Conversely, there are significant advantages to
faster case isolation and treatment.
We have generalised on previous work in two main

ways. Firstly, we have extended the treatment of contact
networks to include the realistic assumption of cluster-
ing, which has an extremely important impact on the
efficacy of contact tracing. However, the measurement
of even basic quantities like the clustering coefficient j
for epidemiologically relevant contacts has yet to be
attempted at a large geographical scale, particularly in
non-household contexts, and we suggest that this could

Figure 5 Effects of varying network and disease parameters on expected deaths. The effects are shown of modifying (a) neighbourhood
size n, (b) overall transmission R0, (c) prodromal transmission RP, and (d) clustering j.
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be an important measurement to make given its sub-
stantial effect on predicted outcomes.
Secondly, we have considered human movement pat-

terns across a full range of geographical scales, enabling
the calculation of an optimal scale for intervention.
Furthermore, the techniques in this paper can be used
to analyse situations where the numbers people leaving
an area are inferable but the full region to region ‘com-
muting’ behaviour is unknown. As such this could be
applied to other countries that don’t collect detailed
workplace location information in their census
programmes.
There are many further generalisations of our work

that could be considered, which would be of use regard-
ing a response to a wide variety of emerging infectious
agents. In particular, the inclusion of higher-order clus-
ters in human contact networks, such as households,
workplaces and social groups, is likely to be of signifi-
cant importance. Also likely to be significant is the
modification of ‘baseline’ patterns of movement and
social interaction in response to perceived risk of infec-
tion. Consideration should also be made of the logistical

constraints on local- and national-scale policies. We
hope that the current work presents a useful foundation
for the consideration of these and other questions.

Additional file 1: Supplementary Material. We have included a
supplementary PDF containing mathematical and simulation results
necessary to reproduce our work but not necessary for the main thrust
of argument in the paper. This can be viewed in a free viewer such as
Adobe Acrobat Reader.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2334-10-
25-S1.PDF ]
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