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Treating cofactors can reverse the expansion
of a primary disease epidemic
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Abstract

Background: Cofactors, “nuisance” conditions or pathogens that affect the spread of a primary disease, are likely to
be the norm rather than the exception in disease dynamics. Here we present a “simplest possible” demographic
model that incorporates two distinct effects of cofactors: that on the transmission of the primary disease from an
infected host bearing the cofactor, and that on the acquisition of the primary disease by an individual that is not
infected with the primary disease but carries the cofactor.

Methods: We constructed and analyzed a four-patch compartment model that accommodates a cofactor. We
applied the model to HIV spread in the presence of the causal agent of genital schistosomiasis, Schistosoma
hematobium, a pathogen commonly co-occurring with HIV in sub-Saharan Africa.

Results: We found that cofactors can have a range of effects on primary disease dynamics, including shifting the
primary disease from non-endemic to endemic, increasing the prevalence of the primary disease, and reversing
demographic growth when the host population bears only the primary disease to demographic decline. We show
that under parameter values based on the biology of the HIV/S. haematobium system, reduction of the
schistosome-bearing subpopulations (e.g. through periodic use of antihelminths) can slow and even reverse the
spread of HIV through the host population.

Conclusions: Typical single-disease models provide estimates of future conditions and guidance for direct
intervention efforts relating only to the modeled primary disease. Our results suggest that, in circumstances under
which a cofactor affects the disease dynamics, the most effective intervention effort might not be one focused on
direct treatment of the primary disease alone. The cofactor model presented here can be used to estimate the
impact of the cofactor in a particular disease/cofactor system without requiring the development of a more
complicated model which incorporates many other specific aspects of the chosen disease/cofactor pair. Simulation
results for the HIV/S. haematobium system have profound implications for disease management in developing
areas, in that they provide evidence that in some cases treating cofactors may be the most successful and cost-
effective way to slow the spread of primary diseases.

Background
A central goal of modeling disease epidemiology is to
predict the long-term fate of pathogens in their host
populations. One persistent challenge in this process is
to explain marked differences in the progression of the
same pathogen through different host populations. For
example, models of the beginning of an HIV epidemic
must apply to populations where expansion of the
pathogen differs dramatically (e.g. in North America

where incidence eventually peaked at under 1% per year
vs. in sub-Saharan Africa, with a peak incidence 8 times
as high [1]). Cofactors, defined as conditions or patho-
gens that affect the epidemiology of a disease caused by
an organism of primary interest, can help to explain
such variability in disease progression. Host populations
that differ with respect to the rate of spread of a pri-
mary disease often differ with respect to ecological fac-
tors that indirectly affect disease spread as well.
Cofactors can affect the rate of spread of the primary

infection in two ways. First, susceptible hosts affected by
a cofactor can experience enhanced susceptibility to
infection by the primary disease-causing organism,
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because many cofactors lower the capacity of the host
immune system to exclude the pathogen. Second, hosts
that bear both the primary infection and the cofactor
can have enhanced infectivity towards their susceptible
neighbors. This occurs when the presence of the cofac-
tor increases the load of circulating primary-pathogen
or changes behavior of infected hosts. The effects of
enhanced susceptibility and infectivity are incorporated
separately in our model.
Cofactors can be behavioral, environmental, genetic or

infectious. For example, for HIV, all four types of cofac-
tors have been described. Behavioral cofactors of HIV
include risky sexual behavior and IV drug use and can
affect both susceptibility and infectivity, e.g. through
their direct effects on exposure probabilities. Nutritional
status (e.g. degree of caloric, vitamin A, iron, zinc mal-
nutrition) comprises an environmental HIV cofactor,
which can increase infectivity among infected hosts
when the deficiency increases viral load, and can
increase susceptibility by compromising immune func-
tion [2,3]. Although the causal mechanisms are not
always clear, some kinds of malnutrition are correlated
with changes in transmission as well [4,5]. In popula-
tions with genetic variability at the CCR5 locus, the
wildtype allele (as opposed to the D32 allele) is a genetic
cofactor for HIV. It affects acquisition by allowing more
entry of HIV into CD4+ T cells, relative to D32 [6].
Finally, a number of pathogens have been identified as
cofactors for HIV spread, including herpes simplex virus
(HSV)-2 [7,8], hepatitis C virus, human papilloma virus,
Mycobacterium tuberculosis, malaria causing Plasmo-
dium, and Schistosoma haematobium, the causal agent
of genital schistosomiasis [[9], and refs within].
Cofactors play important roles in a wide variety of

other interactive systems as well, including a variety of
human and other mammalian hosts (e.g. [10-12];
reviewed in [13]); in insects [14], and in plants [15].

These examples highlight the pervasive nature of cofac-
tor conditions within epidemiological systems. In parti-
cular, in natural plant and animal populations, where
coinfections may be common [13,15] and in human
populations in which access to health care is limited,
influences of nutritional and infectious cofactors on dis-
ease dynamics may more often be the norm than the
exception.
Stratified models involving large numbers of subpopu-

lations (including stratification by sex, age, risk, and dis-
ease progression) tailored to particular host populations
and their cofactors indicate that the latter can have sub-
stantive epidemiological impacts. [7,8,16,17]. Here we
analyze a “simplest possible” model built on a classical
Susceptible-Infected (SI) framework [18-20] to explore
how cofactors can influence the fate of a primary disease
and its impact on the host population in the absence of
any additional compartmental model structure. This
model can be applied to a wide range of systems invol-
ving a cofactor and a primary disease. We apply this
model to an HIV epidemic in the presence of the cofac-
tor Schistosoma haematobium in sub-Saharan Africa,
compare our results to a related model without cofactor
dynamics, and assess the degree to which treatment of
the cofactor can slow the spread of the primary
infection.

Methods
Transitions among model subpopulations
Our four-patch cofactor model builds upon and inherits
all of the parameter names (Table 1) from a two-patch
SI model describing changes in susceptible (X(t)) and
infected (I(t)) subpopulations of a population experien-
cing an early HIV epidemic ([18], Figure 1a). We there-
fore begin by describing the parameters which appear in
that model. The parameter a measures the AIDS related
death rate, while deaths from other causes occur at

Table 1 Parameters appearing in the two-patch SI model and the four-patch cofactor model

two-patch and four-patch cofactor:

μ disease-free death rate

a disease-related death rate

ν per capita birth rate

b disease acquisition contact rate

� disease-free fraction of offspring from infected mothers

four-patch cofactor only:

ζ cofactor acquisition contact rate

g cofactor recovery rate

δ1 cofactor induced increase in susceptibility

δ2 cofactor induced increase in transmission (eg. via increased pathogen concentration)

l1 rate adjustment for cofactor acquisition only from SZ contact

l2 1 - l1
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rate μ. The per capita birth rate of the population is the
constant ν, and the net birth rate at time t is adjusted to
take into account that a fraction (1 - �) of offspring of
the infected individuals acquire the infection by vertical
transmission and die before contributing to the
dynamics of the model - effectively at birth. The per
capita rate of infection is assumed to be b times the
infected fraction of the population.
The presence of a cofactor and its biotic interactions

with the primary disease organism and with the host
results in the need to incorporate new parameters and
transitions (Figure 1b). The cofactor spreads according
to a contact process with rate ζ, and recovery from the
cofactor occurs at a constant rate g, e.g. by some form
of treatment. We make two simplifying assumptions:
that neither acquisition of or recovery from the cofactor
condition is affected by infection status with regard to
the primary infection. These assumptions yield the sim-
plest possible system that can be used to measure the
impact of the cofactor’s presence on the primary disease

prevalence. Furthermore, because in our model the rate
of spread of the cofactor is not exacerbated by the pre-
sence of the primary disease, the model reflects a con-
servative estimate of the impact that the cofactor might
make on the progression of the primary disease.
Transitions into and out of subpopulations involving

cofactor infections (described below, Results and Discus-
sion) are shown in Figure 1b by the five dotted arrows
labeled by either g or ζ, which appear on the left diago-
nal (when individuals from S and C interact), on the
arrows between Y and Z (when individuals from Y and
Z interact), and on the arrow from Y which passes near
C and terminates at Z (when individuals from Y and C
interact and the cofactor is transmitted to the individual
from Y ). The interaction between individuals from S
and Z which can result in cofactor transmission to the
individual from S either with or without the primary
infection is explained below.
There are several events by which an individual may

contract the primary infection, all of which require con-
tact between an infected individual and an infection-free
individual. First, a susceptible individual (from S) may
interact with a person bearing the primary infection
only (from Y ). The rate at which such individuals con-
tract the primary infection based on this type of contact
is described by parameter b. This is the only transition
inherited from the two-patch model (Figures 1a and 1b
top of the triangle (S ® Y )). Individuals acquiring the
primary infection in this manner move from the S to
the Y patch.
Second, a susceptible individual who has the cofactor

(from C) may interact with a individual with the primary
infection only (from Y ). Because cofactors can increase
susceptibility to infection, we incorporate the increase in
the rate of transmission due to greater propensity to
acquire the primary infection caused by carriage of the
cofactor through the parameter δ1. The overall rate at
which a contact between a C and a Y results in primary
disease acquisition by the C becomes b(1 + δ1). Cofac-
tor-possessing individuals who contract the primary
infection (in this case from contact with an individual
from Y ) must move from subpopulation C into the sub-
population Z of individuals who have the cofactor and
the primary infection. This interaction is represented by
the curved arrow which originates at C and terminates
at Z after passing near Y (Figure 1b).
Third, an individual who has the cofactor (from C)

can interact with an individual with both the cofactor
and the primary infection (from Z). In this case, the rate
at which the primary infection is transmitted can be
increased both by cofactor-enhanced susceptibility (fac-
tor δ1) and by the cofactor-enhanced infectivity (factor
δ2) resulting in an infection rate of b(1 + δ1 + δ 2). This
also results in a transition from the C to the Z patch.

Figure 1 (a) two-patch SI model and (b) four-patch cofactor
model diagrams. (a) The two-patch SI model appearing in
Anderson et. al. (1988) [18], upon which the four-patch cofactor
model in (b) is built, and (b) The four-patch cofactor model. Dotted
lines represent transitions related to the cofactor condition; solid
lines represent transitions related to the primary disease infected
population. Curved lines begin and end at the subpopulations from
and to which a transition is occurring, and pass near the interacting
population which causes the transition.
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Finally, a susceptible individual (from S) may interact
with a person with both the primary infection and the
cofactor (from Z). This can result in one of three possible
outcomes, depending on whether the cofactor alone (S to
C), the primary infection alone (S to Y ) or both (S to Z)
are transmitted. These three possible transitions are repre-
sented by the three central arrows leaving S (Figure 1b).
Each of these outcomes is described by a different rate in
the model. The transmission of the primary disease can be
increased (which we describe by a multiplicative factor (1
+ δ2)) by greater propagule production caused by the
cofactor, such that the total rate at which individuals from
S acquire the primary infection and therefore move to
either Y or Z due to interactions with Z individuals must
be b(1 + δ2). However, susceptible individuals from S also
contract the cofactor at rate ζ from interacting with indivi-
duals from Z. Thus the total rate at which individuals
from S move to either C or Z due to interactions with
individuals from Z must be ζ. We therefore take the rate
at which individuals move from S to C, Z, and Y due to
interaction with individuals from Z to be, respectively, l1ζ,
l2ζ, and b(1 + δ2) - l2ζ, where l1 + l2 = 1, and 0 ≤ l2 ≤
max {1, b(1 + δ2)/ζ}. This choice allows the model to
describe either disease/cofactor pairs for which the cofac-
tor and disease may be transmitted together (when l2 > 0,
for example when both the cofactor and the primary infec-
tion are sexually transmitted), or those pairs for which
only a single transmission of either the cofactor or the dis-
ease may take place during a single encounter (setting l2
= 0, e.g. sexually transmitted primary disease, non-sexually
transmitted cofactors).

Cofactor model system equations
The preceding discussion provides the complete ratio-
nale for Figure 1b, and therefore also for the following
non-linear system of ordinary differential equations.
Because the variable S = N - Y - Z - C, no equation is
necessary for modeling the behavior of S.
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As is expected, when the parameters which do not
appear in the two-patch model (Figure 1a) are taken to
be zero, the four-patch cofactor system reduces to the
two-patch model, taking I(t) = Y (t) + Z(t), the total
number of individuals infected by the primary disease.
This phenomenon persists throughout the analysis, and
is reflective of the strong analogy between these two
models.

Estimation of simulation parameters
Parameter choices for the two-patch model
Since we use the two-patch model to test the validity of
the cofactor model in the simulations, we chose values
for the parameters in the four-patch cofactor model
which are inherited from the former to be within the
ranges calculated by Anderson et. al. (1988) [[18], and
refs within]. The resulting choices for μ, a, ν, � and bT
are shown in Table 2. Notably our choice for bT (total
transmission rate) represents the lower limit of the
range estimated in Anderson et. al. (1988) [18]. This
choice was made because even this smallest value of bT
results in a declining population under their model. As
a result, our calculation of the potential impact of the
cofactor intervention should be an underestimate of the
true impact. Because this estimated range of bT results
in declining population under the two-patch model, use
of the lower limit does not cause any loss of generality
due to qualitative differences in the pre-intervention

Table 2 Parameter values used in simulations of HIV/
schistosomiasis disease system

two-patch model parameter values:

μ 0.02

a 0.04

ν 0.06

bT 0.2

bD 0.08

� 0.5

four-patch cofactor model parameter values:

μ 0.02

a 0.04

ν 0.06

� 0.5

bD 0.08

ζ 0.2

g 0.0-0.2

δ1 3.0

δ2 2.0

l1 1.0

l2 0.0

Parameter values used in simulations of HIV/schistosomiasis disease system.

Gibson et al. BMC Infectious Diseases 2010, 10:248
http://www.biomedcentral.com/1471-2334/10/248

Page 4 of 15



global behavior of the population (as compared to larger
values of bT ).
Estimating HIV direct transmission rates (bD)
We estimated bD (direct transmission rate) using two
complementary methods. Our first method is based on
measurements of rates of HIV incidence and prevalence,
which we took from the United States population of
military personnel (0.14-0.16 per thousand, [21]) and
from childbearing women in the United States (1.5-1.7
per thousand, [22]). Because we are specifically targeting
a cofactor-free HIV transmission rate, we used data
from populations that were likely to be a affected by as
few unmeasured cofactors as possible. This method
yields estimates for the direct HIV transmission rate in
the range of 0.08 to 0.11 per year. In order to estimate
the direct HIV transmission rate in the absence of all
cofactors as conservatively as possible, we choose bD to
be 0.08 per year in the simulations, the bottom of this
estimated range.
The second method derives an estimate for the direct

HIV transmission rate from (1) data on the risk of
transmission per coital act and the frequency of coital
acts for each stage of HIV progression within an
infected individual, and (2) the new sexual partner
acquisition rate among the low-risk population as
reported in [7]. The resulting estimate from this method
for the direct HIV transmission rate is 0.11 per year.
This lends further support to the choice of a direct
transmission rate for use in the simulations which is less
than half of the total transmission rate estimates taken
from Anderson et. al. (1988) [18] of 0.2 to 0.6 per year.
Cofactor rates of transmission and recovery (ζ and g)
In the four-patch cofactor model, when the primary dis-
ease is absent and the cofactor condition exists in stable
equilibrium, the cofactor rate of spread less its recovery
rate is larger than the overall population growth rate. In
this case, the cofactor-bearing proportion of the popula-
tion stabilizes at (ζ - g - ν)/ζ. In the absence of interven-
tion, we assume that g = 0 during the time period prior
to the invasion of the primary disease, which would cor-
respond to the scenario in which individuals either do
not recover from schistosomiasis, or the recovery period
is on the order of magnitude of years. We assume that
the cofactor, Schistosoma haematobium, exists at a
stable endemic level in many sub-Saharan African popu-
lations. Therefore, existing measurements of the preva-
lence of this condition in such populations may be
taken to be equal to the computed stable proportion.
Because ν has been chosen separately (see above), this
results in an equation which may be solved for ζ in
terms of the measured prevalence data.
We estimated ζ from populations in sub-Saharan

Africa from villages in which both incidence and preva-
lence data were available for the same time period

[23,24], focusing on whole populations rather than chil-
dren only. Since the data on prevalence of schistosomia-
sis in the literature ranges conservatively from 25% to
75%, any choice of ζ which falls between 1.33 and 3
times the size of the population birth rate (v) could be
considered appropriate for use in our model simulations.
The ζ value chosen for use in these simulations (ζ =
0.12 per year) is exactly 2 times the birth rate (ν = 0.06
per year). This value of ζ corresponds to an endemic
proportion of schistosomiasis in the population of 50%,
the center of the range of estimates from the literature,
and yields simulation results reflected in Figure 2, which
demonstrate that the cofactor model compares well with
the observed early HIV prevalence.
In the simulations, the range of values used for the

rate of recovery from the cofactor (g) was chosen to
highlight the potential impact of this rate. Thus, at the
lower end of the chosen range, recovery has little effect
on the system, while at the upper end of the chosen
range, the recovery rate is already large enough that the
system is effectively reduced to a cofactor-free condi-
tion. It is interesting to note that values of g that are an
order of magnitude smaller than the rate of spread of
the cofactor are already sufficient to cause a significant
difference in the behavior of the overall system.
Estimating the extent to which schistosomiasis increases
HIV transmission
In our four-patch cofactor model the parameter l2 is
used to determine the extent to which the primary

Figure 2 Agreement of four-patch cofactor model with two-
patch model. 35 year population timeseries (total population,
black/red lines; infected subpopulation, gray/pink lines). Two-patch
model (black/gray) with b = bT ; four-patch cofactor model (red/
pink) with b = bD; other parameters shown in Table 2. Starting
conditions: 1000 individuals, 700 carrying the cofactor, 100 infected
by the primary disease.
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disease and the cofactor condition may be simulta-
neously transmitted to a susceptible individual from an
individual with both the primary disease and the cofac-
tor. Because HIV is a sexually transmitted disease and
schistosomiasis is transmitted by secondary contact with
water sources, it is not possible to transmit both HIV
and schistosomiasis in a single interaction. Therefore, l2
must be chosen to be zero for these simulations.
The non-negative parameters δ1 and δ2 represent the

increase in susceptibility and in infectivity induced by
the presence of the cofactor. Infection with S. haemato-
bium increases susceptibility by increased likelihood of
exposure through breached skin at the sites of genital
lesions caused by the schistosome. Women with S. hae-
matobium are estimated to be three to six times more
likely to contract HIV than schistosome-free women
[[9], and refs within]. The S. haematobium infection
also increases HIV titer, resulting in a greater potential
infectivity: HIV positive men with genital schistosomia-
sis have between two and seven fold higher HIV titers
in their blood and their semen than schistosome-free
men [[9], and refs within]. Susceptibility effects in men
and infectivity effects in women may be smaller than
those described above, but are likely to also be substan-
tial. In our simulations we therefore estimate δ1 to be
3.0 and δ2 to be 2.0, and note that the qualitative
aspects of the simulation results were not sensitive to
small variations (± 1.0) in these parameters. It is worth
noting that the magnitudes of δ1 and δ2 estimated here
are on the same order as the effect that HSV-2 has on
acquisition of HIV [8].

Results and Discussion
The four-patch cofactor model presented here builds
upon and inherits all of the parameter names (μ, a, b, v,
� Table 1) from the two-patch SI model of Anderson et.
al. (1988) [18] describing the impact of HIV on overall
host population growth in developing countries. That
model tracks the susceptible (X(t)) and infected (I(t))
subpopulations of the host population (N(t)) through
time (Figure 1a), and is completely tractable from an
analytic viewpoint. Incorporation of the cofactor into
this basic model framework requires two new popula-
tion patches (Figure 1b). The susceptible subpopulation
is now divided into S(t) - susceptible to the primary dis-
ease and to the cofactor, and C(t) - susceptible to the
primary disease with the cofactor already present. The
infected subpopulation is now divided into Y(t) -
infected by the primary disease but not by the cofactor,
and Z(t) - infected by the primary disease and posses-
sing the cofactor. The expanded model includes para-
meters controlling differences in the infectivity of and
susceptibility to the primary infection caused by the
cofactor (non-negative parameters δ2 and δ1,

respectively, Table 1), as well as parameters for the rates
of transmission and loss of the cofactor (ζ and g, respec-
tively, Table 1).
Whereas the two-patch model has a single transition

(Figure 1a), the four-patch cofactor model includes eight
new transitions among subpopulations (Figure 1b).
These new transitions arise because the cofactor can be
cured, introducing bidirectionality; because the two dis-
eases can be transmitted either singly or together; and
because of the greater number of players in the system.
Therefore, while the two-patch cofactor-free model
admits an exact solution, the additional non-linearity in
the four-patch cofactor model makes mathematical ana-
lysis of the latter much more difficult. Complete results
pertaining to the circumstances under which the pri-
mary disease can successfully invade a population in the
four-patch cofactor model have been obtained, and are
described in the next subsection. We then proceed to
apply the four-patch cofactor model through simulations
of a specific disease/cofactor system.

Primary disease invasion in the analytical model
Invading the disease-free/cofactor-free state
Suppose that the primary disease agent attempts to
invade a population which is entirely free of both the
primary disease and the cofactor. In the two-patch
model, this invasion occurs through the introduction of
one individual who is infected by the primary disease
(from population I, Figure 1a). In that model, the pri-
mary disease successfully invades when the number of
new Is (susceptible individuals infected) produced by an
invading I individual (i.e. the basic reproductive number)
is greater than one. In the four-patch cofactor model,
the primary disease may invade through the introduc-
tion of an individual who is infected either by the pri-
mary disease alone (from subpopulation Y , Figure 1b)
or by both the primary disease and the cofactor (subpo-
pulation Z, Figure 1b). Analysis of the Jacobian matrix
of the linearization of the subsystem for Y and Z [25]
shows that because an invading Y cannot produce Zs in
the absence of Cs, the primary disease successfully
invades when either the number of new Ys produced
from an invading Y or the number of new Zs produced
from an invading Z is greater than one (Appendix, first
subsection). This leads to an R0(0) (the basic reproduc-
tive number of the population which starts with no indi-
viduals possessing the cofactor) value of max{b, l2ζ - g}/
(μ+a).
Since patches Z and C in the four-patch cofactor

model are initially empty, for an invasion into a disease-
free and cofactor-free population the basic reproductive
number of the two-patch model is the same as the num-
ber of new Ys produced from an invading Y in the four-
patch cofactor model. Therefore, it is never harder for
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the primary disease to invade the disease-free/cofactor-
free population in the four-patch cofactor model when
compared with the two-patch model. In other words,
our R0(0) is at least as large as the basic reproductive
number of the two-patch Anderson et. al. (1988) model.
The ability of the primary disease to invade the disease-
free/cofactor-free population is facilitated by the cofac-
tor when the basic reproductive number of the
two-patch model is less than one, and the number of Zs
produced from an invading Z is greater than one. This
occurs when (l2ζ - g)/(μ + a) > 1. Keeping in mind that
l2ζ is the rate at which Ss convert to Zs, we see that
except in the event that the disease and the cofactor are
transmitted together substantially more often than singly
during a single interaction (or l2ζ > b), the cofactor will
have no effect on the ability of the infection to invade
the disease-free/cofactor-free population.
It is also possible for the primary disease to invade an

exponentially growing (ν >μ) disease-free (Y + Z = 0)
population even though the proportion of infected indi-
viduals approaches zero. By analyzing the Jacobian
matrix of the proportions Y/N and Z/N of individuals
with primary infection only and of individuals with pri-
mary infection and the cofactor near the disease and
cofactor free state, we find that the proportion of indivi-
duals with the primary disease always approaches zero
unless R0(0) > (ν+a)/(μ+a) >1. This means that the per-
centage of the population with the primary infection
will only become bounded away from zero in the long
run when the disease grows fast enough to outpace not
only the general death rate, μ, but also the population
growth rate, ν. [18,26]
Invading a cofactor endemic population
The primary disease could be introduced to a popula-
tion in which a cofactor is already established. This
would occur if an emerging disease arises in a popula-
tion in which an established behavior, condition or
pathogen exists. For HIV, this scenario best represents
the conditions under which the primary disease was
introduced into most human populations. In this case it
is still true that if either the number of new Ys pro-
duced from an invading Y or the number of new Zs
produced from an invading Z is greater than one, then
the primary disease will successfully invade the popula-
tion (Appendix, second subsection). Since, in the pre-
sence of Cs, the Zs can produce Ys and the Ys can
produce Zs, the off-diagonal terms in the Jacobian
matrix of the linearization of the Y-Z subsystem are
now both non-zero. This produces a scenario in which
invasion may occur even when both of these numbers
(Ys from a Y and Zs from a Z) are smaller than one.
The condition governing this type of invasion is com-
plex and not easily interpreted in biological terms
(Appendix, second subsection).

Despite this complication, we analytically verified
(Appendix, third subsection) that whenever R0(0) > 1,
then the basic reproductive number of the population
which starts out with the stable proportion c* of indivi-
duals possessing the cofactor, R0(c*), is also greater than
one, meaning that the disease-free/cofactor-endemic
population can also be invaded by the primary disease.
We show that because R0(c*) ≥ R0(0), it is never the
case that the disease-free/cofactor-free population can
be invaded, while the disease-free/cofactor-endemic
population cannot. This supports the idea that the
cofactor cannot exhibit a preventative effect on disease
invasion in this model. The demonstration of this
inequality is somewhat subtle, since the starting equili-
brium state affects the number of new Ys that can be
produced by an invading Y. During an invasion of the
disease-free/cofactor-endemic population, this number is
smaller than in an invasion of the disease-free/cofactor-
free population due to the smaller available proportion
of cofactor-free susceptibles (Ss) in the population.
When the impact of the cofactor (as measured by δ1

and δ2) is small, whenever the disease-free/cofactor-free
population resists invasion the disease-free/cofactor-
endemic population will also resist invasion by the pri-
mary infection. This means that when the basic repro-
ductive number of the two-patch model is smaller than
one, there will be a domain of values of δ1 and δ2 for
which R0(c*) < 1 as well. However, if the impact of the
cofactor is sufficiently large, R0(c*) will be larger than
one and the primary disease will successfully invade the
disease-free/cofactor-endemic population even when it
would fail to invade the disease-free/cofactor-free popu-
lation. Specifically, infection of cofactor-possessing indi-
viduals (C to Z transitions) can be quite common in the
disease-free/cofactor-endemic case. This group has the
potential to have the largest transmission rate in the sys-
tem, because both the risk of infection in the C indivi-
dual and the infectivity of the Z individual have been
increased by the cofactor condition. As a result each
invading Z may produce more new Zs than an invading
Y can produce Ys, and will in fact produce more than
one new Z when the values of δ1 and/or δ2 are suffi-
ciently large. The precise criteria for this scenario
appears in the second subsection of the Appendix.
In typical ecological models, having once come to

understand the boundary equilibria (in which one sub-
population is absent), the analysis would proceed via
persistence theory [27,28] to consider the existence of a
coexistence equilibrium state at which all subpopula-
tions are present. However, the four-patch cofactor
model is somewhat unusual among ecological models
because it includes so many intrinsic interactions among
subpopulations. As a result persistence theory cannot be
applied, and it is impossible to explicitly solve the
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general system or to precisely determine the long term
behavior of the solutions. It is even difficult to locate (in
terms of the parameters) an equilibrium concentration
state in which the cofactor-only (Cs), the primary dis-
ease-only (Ys), and the cofactor with primary disease
subpopulations (Zs), are all present. This situation likely
results from the interactive nature of the Y and Z popu-
lations - that is, Zs create Ys from interacting with Ss
and Ys create Zs from interacting with Cs. It is the non-
linear terms in the model which result from these inter-
actions that prevent the model from being solved in
closed form for the positive equilibrium state. (Note
that the model does admit a positive equilibrium, but
that it cannot be found analytically.)
Timeseries simulations of the model over a variety of

parameter ranges have provided no hint that the model
can exhibit either oscillatory or chaotic behavior in its
component subpopulations. It seems that whenever the
primary disease can successfully invade the population
in the four-patch cofactor model, then the proportions
of each of the subpopulations will tend toward a positive
equilibrium value. This means that even though it is not
possible to precisely predict the long term behavior of
the system in general terms, the model will still have
great predictive value through simulations with a given
set of parameter values.
The comparison of the four-patch cofactor model with

the two-patch model highlights the important analytical
changes that occur in this system as a result of the addi-
tion of a single player: a linear and explicitly solvable
system becomes non-linear and unsolvable. This qualita-
tive change in the system as a result of the presence of
a cofactor indicates that in populations where a poten-
tial cofactor co-occurs with a primary disease of interest,
management approaches based on parallel and indepen-
dent models can be expected to considerably misrepre-
sent potential effects of interventions to the spread of
primary infection. In particular, in populations that are
completely naive to both the primary disease and the
cofactor and in populations in which a cofactor is estab-
lished at the time of invasion by a primary disease, a
simple, cofactor-free model like that of Anderson et. al.
[18] can substantially overestimate the invasion force of
the primary infection by attributing the entire rate of
spread of the infection to the infection itself, rather than
to the combined force of the primary infection and its
assisting cofactor.

Simulation of HIV with Schistosoma haematobium cofactor
We further investigate the effect of cofactors on the
spread and persistence of a primary disease and the
potential impact of intervention policies targeting
cofactors rather than the primary disease through
simulations. In these simulations, estimates of

transmission contact rates for the primary disease (b)
and the cofactor (ζ) are based on those of HIV and
Schistosoma haematobium, the causal agent of genital
schistosomiasis. We chose the cofactor S. haemato-
bium for this study because it is endemic in many
areas with high HIV prevalence [9,29], has been identi-
fied as a cofactor for HIV [30-32], and is easily and
inexpensively treatable [9,33].
In Anderson et. al. (1988) [[18], and refs within], many

demographic parameters are chosen directly from
measurement data of birth and death rates in the
sub-Saharan region which comprises the focus of that
study. They also estimated what we call the total trans-
mission rate at the start of the HIV epidemic (bT = b,
Figure 1a) in such a way that the output from their
model would match HIV prevalence data from those
same locales. By contrast, the four-patch cofactor model
makes use of a direct transmission rate (bD = b, Figure
1b) from which any effect of the cofactor has been
removed. For the following simulations we estimated
bD, bT , and other HIV-specific parameters using epide-
miological data and estimates from HIV-specific models
[[7,18,21,22] details in Methods]. Since the schistoso-
miasis incidence and prevalence data [23,24] provide a
broad range of estimates for schistosome transmission
rates (ζ), we choose ζ in the center of the estimated
range with the result that the timeseries of the total
number of individuals infected by the primary disease
under the four-patch cofactor model (with bD) agrees
well with the total number of individuals infected by the
primary disease under the two-patch model (with bT ).
All of these parameters are fixed for the following simu-
lations (Table 2, values chosen; methods section, moti-
vation for choices).
The quantitative results of the following simulations

are based on very basic models of both HIV and schis-
tosomiasis which suppress many significant details of
both conditions. Consequently, the focus here is on
the qualitative results of the simulations under the
parameter choices that have been made, illustrating
the possible importance of the disease/cofactor synergy
on the primary disease progression within a popula-
tion. In particular, the primary importance of the two-
patch model of Anderson et. al. (1988) is its ability to
give an early indication, based on sparse observational
data during the early stages of an epidemic, of the
potential demographic impact of the epidemic. With
the goal of qualitative evaluation of cofactor impact
during the same early stages of such an epidemic in
mind, it is therefore reasonable to base both the con-
struction of the four-patch cofactor model and the
selection of parameter values for use in simulation on
the structure and parameter choices made in that two-
patch model.
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Agreement of the four-patch cofactor model with two-patch
model results
If the four-patch cofactor model is to be used to mea-
sure the decrease in HIV prevalence resulting from a
treatment program for a cofactor condition, it should
first be verified that it models the total population and
the actual number of infected individuals under the con-
ditions where the cofactor is present in the population
and no recovery from the cofactor takes place (g = 0) in
a way which is comparable to the two-patch model. For
this comparison, in the four-patch cofactor model simu-
lation we allow individuals to occupy all four patches (S,
C, Y and Z), set bD = 0.08 per year, and the other para-
meters as listed in Table 2. In contrast, in the two-patch
solution, bT is set to 0.2 per year, with the other two-
patch parameters the same as the analogous four-patch
parameter values. The parameter bT is always at least as
large as bD because it implicitly incorporates transitions
involving Zs as well as those involving Ys. Figure 2
shows the timeseries of the total population and the
number of infected individuals for both the four-patch
model (in red), and the two-patch model (in black). The
similarity of these timeseries indicates that the four-
patch model does indeed correctly model the total
population and the actual number of infected individuals
under our selection of parameters as compared to the
two-patch model.
The HIV prevalence in a cofactor-free population
In order to determine whether or not the four-patch
cofactor model correctly measures the decrease in HIV
prevalence resulting from a treatment program for a
cofactor condition, it is necessary to estimate the
expected HIV prevalence in a cofactor-free population
under the two-patch model. In a truly cofactor-free
population the total transmission rate bT would simply
be equal to the direct transmission rate bD. Therefore,
to measure the difference in prevalence of HIV between
the observed cofactor-endemic and a truly cofactor-free
context, we compare the solutions of the two-patch
model using the total transmission rate (with b = bT =
0.2 as the HIV transmission rate) just as above, and
then using our estimated direct transmission rate (b =
bD = 0.08).
Figure 3 shows timeseries for the total population and

the number of infected individuals for two two-patch
model solutions. The total transmission curve uses the
estimate of the total transmission rate, bT (used in the
above model), as the estimate of the parameter b. The
direct transmission curve uses the estimated direct
transmission rate, bD, as the estimate of b. Under our
choices of these parameters, the relative proportion of
infected individuals is approximately stable (or near the
positive equilibrium) after simulating a time period of
70 years. The contrast between the curves in Figure 3

indicates that cofactor conditions can greatly exacerbate
the negative impact of the HIV epidemic on a popula-
tion. The simulated proportion of the population with
HIV is near 75% by 70 years under the total transmis-
sion rate while under the direct transmission rate the
number infected increases at a much slower rate, and
the concentration of the infection decreases to near zero
by 70 years (Figure 4, black). In addition, while the total
transmission rate results in population decline after only
25 years the direct transmission rate allows the popula-
tion to continue to grow. A program for treating cofac-
tor conditions within a population where the true direct
transmission rate is lower than the total transmission
rate, as modeled here, might therefore offer the signifi-
cant benefit of reducing HIV prevalence.
The effect of cofactor intervention on HIV prevalence
We now investigate the predicted decrease in HIV preva-
lence resulting from a treatment program for a cofactor
condition in the four-patch cofactor model. We expect to
see four-patch timeseries results which fall between the
two different two-patch curves in Figure 4 (thick and thin
black), with the exact location depending on the magnitude
of the treatement effort (as measured by the induced cofac-
tor recovery rate g). To test this, we simulate the four-
patch cofactor model using exactly the same collection of
parameters as above (Table 2, Figure 2) but now include a
positive rate of recovery from the cofactor (g > 0). The
total population timeseries from two such simulations (g =
0.025 and g = 0.075) appear in Figure 4 (red), along with

Figure 3 HIV prevalence in a cofactor free population. 35 year
population time series for two-patch model with total transmission
rate (bT , thick lines) and two-patch model with direct transmission
rate (bD, thin lines). Total populations indicated in black, infected
subpopulations in gray. Starting conditions: 1000 individuals, 100
infected by the primary disease, 0 carrying the cofactor.
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the two-patch direct and total transmission rate curves.
The simulation with a greater intervention parameter (g =
0.075) shows spread of primary disease more like the two-
patch direct transmission rate curve while the simulation
with the smaller intervention parameter (g = 0.025) is clo-
ser to the two-patch total transmission rate curve. There-
fore, the four-patch model does serve to interpolate
between the different two-patch curves in a way which
depends on the force of the intervention.
We also simulate the four-patch cofactor model many

times over a range of positive rates of recovery from the
cofactor (g from 0 to 0.2) to explore the effects of inter-
vention over a range of intensities (Figure 5), focusing
on the final concentration of infected individuals after
25 years from each of the simulations and comparing it
to the results from the two-patch model with both total
and direct transmission rates. Under the total rate in the
two-patch model and under low rates of intervention in
the four-patch model the total populations are in
decline (dotted portions of the curves, Figure 5). Higher
rates of intervention, like the direct transmission rate
from the two-patch model, result in continued popula-
tion growth (solid portions of the curves, Figure 5).
Notably, when the recovery rate from the cofactor is
near zero, the infection concentration from the four-
patch cofactor model is quite similar to the infection

concentration from the two-patch model with total
transmission rates, and as the recovery rate increases,
the infection concentration moves closer to that
observed under the direct transmission rates, just as
suggested by the simulation from Figure 4. Figure 5 can
be used to directly estimate the difference in the
expected HIV prevalence between a two-patch model
system and a four-patch system including treatment of
the cofactor at a given constant rate during a 25 year
time period.

Conclusions
Most disease models are developed for the purposes of
predicting the impact that the disease will have on the
population and providing information relevant to efforts
to prevent or reduce that impact. This has lead to a pro-
gression in which the disease dynamics are first modelled
in a way that treats each individual in the population as
identically susceptible to infection by the disease and
identically capable of transmitting that infection to other
susceptible individuals. As more information becomes
available or as the need for intervention grows, more
complex stratified models are constructed which take
into account differences in risk of infection and transmis-
sion by individuals in the population. However, these
models do not typically consider those individuals with
greater risk of infection or transmission as possessing
some further characteristic which itself might be spread-
ing throughout the population, e.g. a cofactor.

Figure 5 The impact of the cofactor recovery rate on HIV
prevalence. A 25 year snapshot of the concentration of infected
individuals in the population under the two-patch model with both
total and direct transmission rates (black horizontal lines above and
below) and under the four-patch cofactor model (in red) with direct
transmission and cofactor recovery at rate g. Dotted lines indicate
total population is in decline, solid lines indicate population is
growing. Plot constructed from 60 simulations initiated with 1000
individuals, of whom 100 are infected by the primary disease
(subpopulation Y, Figure 1b) at time zero and 700 carry the cofactor
condition (subpopulation C, Figure 1b) at time zero, over which g,
cofactor recovery rate, was varied.

Figure 4 The effect of cofactor intervention on HIV prevalence.
The timeseries for the concentration of infected individuals within
the population under the two-patch model with both total (thick
black line) and direct transmission rates (thin black line) and under
the cofactor model with direct transmission rate (bD) and cofactor
recovery rates g = 0.025 and g = 0.075 (both in red). This timeseries
covers a 70 year period, starting with 1000 individuals, of whom 100
are infected by the primary disease (subpopulation Y, Figure 1b) at
time zero and 700 carry the cofactor condition (subpopulation C,
Figure 1b) at time zero.
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It is precisely this consideration, the presence of an
increased risk of infection and transmission which itself
spreads through the population, which sets the model
presented here apart. Other efforts that have been made
to understand cofactor-disease scenarios have been
aimed at making specific predictions, requiring them to
be intensely complex analytically (e.g. [7,8]). These mod-
els have had some success in demonstrating that cofac-
tors are important to their particular scenarios, but,
without the mathematical analyses that their complexity
prohibits, they can lend only vague support to the the-
ory that cofactors may play an important role in many
disease systems. In contrast, our simple, general model
allows direct evaluation of the the dynamics which
result from considering the cofactor to be a spreading
condition. Our approach is similar to the generational
model analyzed by Diekmann et. al. (1990) [34] which
provided a more general method for modelling hetero-
geneity among susceptibles for the context of diseases
with discrete generations.
There are several ways in which the model presented

here might be extended to treat more types of disease/
cofactor pairs. Modeling the cofactor as a condition
which spreads as a direct rate, instead of a density-
dependant contact rate, would allow the model to take
into account cofactors such as malnutrition or genetic
variability, for example. There are also two other exten-
sions which would shift the focus of the model away
from our focus on the dynamics of the primary disease
only and toward understanding how the primary disease
affects the dynamics of the cofactor. First, the model
could be extended to consider how the rate of spread of
the cofactor depends on the primary disease. Second,
the model could allow the introduction of an additional
cofactor related death rate. These extensions would
more accurately model cofactor dynamics of parasitic
conditions like schistosomiasis when interacting with
the primary disease HIV, as has been done for the para-
sites alone in Lloyd-Smith et. al. (2008) [35], and for
malaria and tuberculosis using stratified models [16,17].
Because the positive equilibrium proportions of the

subpopulations in this model cannot be given explicitly
in terms of the parameters, simulations are required to
measure the effects of changes to the parameter values
on the behavior of the system. To guide the choices of
parameter values for use in the simulations, we have
chosen an example disease/cofactor pair. The results of
these simulations on the HIV/S. haematobium pair sug-
gests a novel course of action for HIV prevention in the
context of host populations like those where genital
schistosomiasis is common, i.e. where the cofactor is
widespread and bT is substantially greater than bD. This
result demonstrates that consideration of cofactors

through a simple general model like this one could be
an important first step in determining the modeling
direction (primary-only vs. complex cofactor) for models
to be used in the development of management
strategies.

Appendix - Analysis of Analytical Model
Below we describe the mathematical analysis supporting
the theoretical results reported above (Results and Dis-
cussion). We begin with the stability analysis of the dis-
ease-free/cofactor-free population and continue with the
analogous analysis of the disease-free/cofactor-endemic
population. The demonstration that instability in the
disease-free/cofactor-free population always implies
instability in the disease-free/cofactor-endemic popula-
tion requires the most careful analysis, and it forms the
last portion of the section.

Invasion of a disease-free/cofactor-free population
The C-Y-Z subsystem of the full system (1) has a trivial
equilibrium at state E0 = (0, 0, 0) in which the population
is entirely susceptible to the primary infection and no indi-
viduals possess the cofactor. Using linear stability analysis,
we obtained conditions for successful invasion of the pri-
mary disease to E0. We found that when the individuals
infected with the primary disease (Y) or with both the pri-
mary and cofactor (Z) invade E0, the criterion for the
initial establishment of the primary disease is given by

max{ , } .     2 − > +

Since there are no individuals possessing the cofactor
in the system initially, if the system is invaded by an
individual with the primary infection only (from Y), no
new individuals with both the primary infection and the
cofactor may be produced (into Z), resulting in a trian-
gular Jacobian matrix of the linearization of the Y-Z
subsystem near the equilibrium,

       
    

− − +( ) − −
− − −

⎛

⎝
⎜

⎞

⎠
⎟

1

0
2 2

2

( )
,

whose largest eigenvalue is simply the maximum of
the diagonal elements.
This condition also arises naturally from considering

that the expression b/(μ + a) represents the number of
individuals with the primary infection only (Y) that are
created from one individual in Y within a totally suscep-
tible population, and (l2ζ - g)/(μ + a) is the number of
individuals with both the cofactor and the primary
infection (in Z) that are created by one Z individual
within a totally susceptible population. Thus, if either of
these is greater than one, the total number of
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individuals with either the primary infection only, or the
primary infection and the cofactor, must persist within
the population. This means that R0(0), the basic repro-
ductive number for the cofactor system at E0 is

R0 0 2( )
max{ , }

.= −
+

   
 

(2)

It is therefore easier for the primary disease to invade
a population under the four-patch cofactor model than
under the two patch model when l2ζ - g >b. It is never
harder for the primary disease to invade in the four-
patch model than in the two-patch model.
It is also possible to consider the system of concentra-

tion equations for c = C/N, y = Y/N, and z = Z/N, with
s = S/N,
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By similar linear analysis of the y-z subsystem near c =
0, y = 0, z = 0, we obtain a criterion for the initial estab-
lishment of a persisting and endemic subpopulation
bearing the primary disease within the population
(Y and/or Z) which is given by

max{ , } ,     2 − > +

or by

R0 0 1( ) .> +
+

> 
 

Notably, when the population experiences exponential
growth((ν >μ), then the system admits parameter sets
for which a decreasing fraction of the population may
be infected even though the total number of infected
individuals is increasing, as we see occurring in Figure 3
(red curves). Busenberg and van den Driessche (1990)
[26] address a similar problem concerning a (cofactor-
free) SIR model through the use of concentrations with
good effect, since the concentration problem there is
reduced to a system of two differential equations.
Although reducing our system to concentrations has
reduced the number of differential equations in the sys-
tem from four to three, the system is still analytically
intractable, affording no global analytical result.

We can give a criterion for extinction of the popula-
tion in terms of the endemic proportion of individuals
infected by the primary disease, y* + z*. However,
although we can solve numerically for this proportion
for a given set of parameters, it is not possible to give
a general formula for this proportion in terms of the
parameters. By solving the differential equation for N
to see what condition on y + z causes the derivative of
N to be negative, indicating population decay, we find
that when

y z* *
( )

,+ > −
− +
 

 1 

then the population will tend to extinction.

Invasion of a disease-free/cofactor-endemic population
In many cases, the primary infection and the cofactor do
not invade the population simultaneously - a more typi-
cal scenario would find the primary infection invading a
population in which the cofactor is already pervasive.
When the rate at which the cofactor spreads is greater
than the rate at which individuals recover from the
cofactor plus the population birth rate (ζ > g + ν), in the
absence of the primary disease, the concentration of
individuals within the population possessing the cofactor
will stabilize at 1 - (g + ν)/ζ a proportion which we will
refer to as c* in the following. The equilibrium of the Y-
Z subsystem corresponding to this scenario exists at
state Ec = (0, 0), in which both Y and Z are zero.
In order to describe the conditions under which this

equilibrium state may be successfully invaded by the pri-
mary disease, it is useful to describe two new quantities
Ry

0 and Rz
0 . As is suggested by the symbol, Ry

0 repre-
sents the average number of new Y individuals which
are created from one Y individual, and Rz

0 represents
the average number of new Z individuals which are cre-
ated from one Z individual. These quantities may be
computed via linear stability analysis, resulting in formu-
las which have straightforward logical meaning. For
example, Ry

0 is the ratio of the rate at which susceptible
individuals are infected by interacting with an individual
with the primary infection only (Y ) to the rate at which
the Y individual is removed from the population, either
by natural death, disease related death, or by contracting
the cofactor and becoming an individual in the Z popu-
lation. There is no contribution to Ry

0 from individuals
who possess the cofactor only, since when an individual
who already possesses the cofactor becomes infected
with the primary disease, that individual moves to the Z
population of individuals who are infected by the pri-
mary disease and possess the cofactor. The formula for
Rz

0 may be similarly interpreted. The formulas for Ry
0

and Rz
0 are
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The quantities Ry
0 and Rz

0 are understandably impor-
tant to the stability analysis of the equilibrium Ec, and
closely related expressions appear along the main diago-
nal of the Jacobian matrix of the linearization of the sys-
tem near the state Ec. This matrix is
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In particular, a11 > 0 exactly when Ry
0 > 1, and a22 >

0 exactly when Rz
0 > 1. The equilibrium Ec is known to

be unstable either when the trace (a11 + a22) of this
matrix is positive or when the determinant (a11a22 -
a12a21) is negative. Since the conditions of the model
indicate that the off-diagonal elements of this matrix are
both positive, as soon as either or both of the diagonal
quantites is greater than zero (which is equivalent to
either or both of Ry

0 or Rz
0 being greater than one),

then either the trace is positive or the determinant is
negative and Ec is unstable - the primary disease would
successfully invade the population. If both Ry

0 and Rz
0

are smaller than one, then this equilibrium is stable
(precluding invasion) for sufficiently small values of δ1
and δ2, but becomes unstable (allowing invasion) for
sufficiently large values of δ1 and δ2. However, before
the values of δ1 and δ2 grow large enough to make the
equilibrium unstable by forcing a22 > 0 (or Rz

0 > 1),
they will first force the value of a22 to become close
enough to zero so that a11a22 <a12a21 holds, demon-
strating that there is a parameter regime in which the
off-diagonal terms of the Jacobian matrix (resulting
from Zs producing Ys and vice versa) cause invasion
even though the on-diagonal terms cannot do so. The
precise conditions which describe the transition between
stability and instability of Ec in terms of the sizes of δ1
and δ2 in this case are those which cause the determi-
nant of the Jacobian to be negative by making the pro-
duct of a11a22 <a12a21. Note that this condition results
in a two-dimensional region of δ1 and δ2 values, and the
reader may obtain this condition by computing a11a22

and a12a21 using the definitions of these terms as they
appear above.

Instability of the disease-free/cofactor-free population
implies instability of the disease-free/cofactor-endemic
population
Since the cofactor may only contribute in a positive way
to the rate of spread of the primary disease in this
model when δ1 and δ2 are non-negative, it seems intui-
tively clear that whenever the disease-free/cofactor-free
equilibrium is invadable by the primary disease, then the
disease-free/cofactor-endemic equilibrium should also
be invadable. It also seems reasonable to expect that a
sufficiently assistive cofactor will cause a primary disease
which would not successfully invade a population in the
absence of the cofactor to become endemic.
To demonstrate these intuitive claims, suppose first

that E0 is stable, so that the primary disease is not cap-
able of invading the cofactor free population. In this
case it may be observed that for small enough δ1 and δ2,
the determinant of the Ec coefficient matrix may be
taken to be arbitrarily close to the quantity

( )(     − − − − −λ γ2 ). (4)

The conditions for the stability of E0 require that both
terms of this product are negative (eqn. (2)), so that the
determinant of the Ec matrix is positive for small enough
δ1 and δ2. In fact, this determinant decreases at least line-
arly in δ1 and δ2 when E0 is stable, so that for large
enough δ1 and δ2, the determinant becomes negative and
Ec becomes unstable. This tells us that any primary dis-
ease which is not capable of invading a cofactor-free
population may be catalyzed into an endemic disease by
a sufficiently assistive cofactor under this model.
Next, suppose that E0 is unstable. This can happen

either when b - a - μ > 0(equivalently b/(μ+a) > 1, the
rate at which Y s replace themselves is greater than one)
or when l2ζ - g a - μ > 0 (equivalently (l2ζ - g)/a + μ >
1, the rate at which Zs replace themselves is greater
than one). If the second condition fails to hold, it fol-
lows that Rz

0 must be greater than one in order for c*
to be greater than zero. This means that when the sec-
ond condition fails, either Ec is unstable, or Ec does not
exist at all.
If, on the other hand, E0 is unstable because the first

condition fails while the second condition holds, a bit
more analysis is required to verify that Ec is also
unstable. Ec is, of course, unstable when either of Ry

0 or
Rz

0 is greater than one, so we must only consider the
case in which both of these is smaller than one. It fol-
lows that, when Ry

0 and Rz
0 are both less than one,

both diagonal entries in the Ec coefficient matrix are

Gibson et al. BMC Infectious Diseases 2010, 10:248
http://www.biomedcentral.com/1471-2334/10/248

Page 13 of 15



negative, and the determinant of this matrix could theo-
retically be positive. However, we compute that the
maximum value with respect to c* of the terms of this
determinant which are constant with respect to δ1 and
δ2 is achieved when c* = 0, and also has the form of (4).
But since the first condition fails and the second condi-
tion holds, the value of this expression is negative. It
may be further checked that whenever Ry

0 is less than
one, then all of the terms of the determinant of Ecwhich
involve either δ1 or δ2 are negative. Thus the entire
determinant is negative for all possible c*, and Ecmust
be unstable whenever E0 is unstable, just as in each of
the other cases.
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