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Prior immunity helps to explain wave-like
behaviour of pandemic influenza in 1918-9
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Abstract

Background: The ecology of influenza may be more complex than is usually assumed. For example, despite
multiple waves in the influenza pandemic of 1918-19, many people in urban locations were apparently unaffected.
Were they unexposed, or protected by pre-existing cross-immunity in the first wave, by acquired immunity in later
waves, or were their infections asymptomatic?

Methods: We modelled all these possibilities to estimate parameters to best explain patterns of repeat attacks in
24,706 individuals potentially exposed to summer, autumn and winter waves in 12 English populations during the
1918-9 pandemic.

Results: Before the summer wave, we estimated that only 52% of persons (95% credibility estimates 41-66%) were
susceptible, with the remainder protected by prior immunity. Most people were exposed, as virus transmissibility
was high with R0 credibility estimates of 3.10-6.74. Because of prior immunity, estimates of effective R at the start
of the summer wave were lower at 1.57-3.96. Only 25-66% of exposed and susceptible persons reported
symptoms. After each wave, 33-65% of protected persons became susceptible again before the next wave through
waning immunity or antigenic drift. Estimated rates of prior immunity were less in younger populations (19-59%)
than in adult populations (38-66%), and tended to lapse more frequently in the young (49-92%) than in adults
(34-76%).

Conclusions: Our model for pandemic influenza in 1918-9 suggests that pre-existing immune protection,
presumably induced by prior exposure to seasonal influenza, may have limited the pandemic attack-rate in urban
populations, while the waning of that protection likely contributed to recurrence of pandemic waves in exposed
cities. In contrast, in isolated populations, pandemic attack rates in 1918-9 were much higher than in cities,
presumably because prior immunity was less in populations with infrequent prior exposure to seasonal influenza.
Although these conclusions cannot be verified by direct measurements of historical immune mechanisms, our
modelling inferences from 1918-9 suggest that the spread of the influenza A (H1N1) 2009 pandemic has also been
limited by immunity from prior exposure to seasonal influenza. Components of that immunity, which are
measurable, may be short-lived, and not necessarily correlated with levels of HI antibody.

Background
Lessons from past influenza pandemics, including the
great pandemic of 1918-19 [1,2] can enhance under-
standing of later pandemics [3-5], such as the recent
pandemic of H1N1 2009 [4,6-11]. Indeed, part of the
genetic sequence of the H1N1 virus [12] from the 1918-
19 influenza pandemic lives on in H1N1 2009 [9].
Further insights from immunology [8,13,14], from ani-
mal studies using reconstituted viruses [15], and from

epidemiological analyses and modelling of past and cur-
rent outbreaks and future scenarios [3,16-27] will add to
understanding.
The 1918-9 pandemic was characterised by high mor-

tality, particularly in isolated or disadvantaged popula-
tions [1,13,28]. In urban populations, mortality rates
were relatively greater amongst young adults [1,2,16,17],
probably because older adults were protected by persis-
tent immunity from a related virus that had disappeared
by 1890 [4,5,17,18], while children were protected by
innate immune mechanisms such as those mediated by
interferon [17]. The out-of-season onset in 1918 [1-3,19]
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likely reflected greater population susceptibility to that
novel H1N1 virus, while the multiple waves of infection
could have been due to waning of short-term immunity
[3,5,21], antigenic drift of the virus [3,5,19,21], social
distancing [22], &/or seasonal effects [5,19,29].
The pandemic of 1918-19 killed at least 0.2% of persons

in most affected populations, and as many as 20% in some
areas [1,2,16]. Some of this variation between populations
in 1918-19 mortality has been explained by poverty [16],
possibly mediated via overcrowding and malnutrition
[5,16]. The very high attack-rates and mortality rates in
places such as Alaska and Western Samoa [1,2,17] and
amongst Aborigines in remote Australia [30] in 1918-19,
and on the isolated island of Tristan da Cunha in 1971
[3,31], have led to suggestions that such isolated popula-
tions were vulnerable because they had escaped regular
infection with seasonal influenza viruses and were thus left
with little or no immune protection against the pandemic
virus [3,5,13,17,31]. In more urbanised communities, pan-
demic behaviour was unusual in other ways. For example,
separate waves of influenza were clearly demarcated in
summer, autumn and winter in 1918-19 in England and
Wales [1,2,13]. Despite those three waves of potential
exposure, many persons did not report symptoms of influ-
enza in any wave [1,2,13] (see Table 1). It has not been
clear whether such persons were unexposed, whether
infections were asymptomatic or unreported, or whether
persons were protected by innate immunity, or by residual
cross-immunity from other influenza viruses circulating
before 1918 [2,3,5,17,18].
Until recent work [3,32], based on data from 1918-19,

there was even uncertainty about whether an attack of
influenza in an early wave of the pandemic protected an

individual in a later wave, as would be expected if the
viruses in each wave were similar. Indeed, the English
data in Table 1[2] were puzzling even to FM Burnet, the
leading Australian virologist, when he and Clark
reviewed the 1918-19 pandemic evidence in 1942 [13].
It occurred to us that if there were immunity in some

persons before the summer wave [3,5,13,17,24], &/or if
some infections were asymptomatic [3,20], this could
explain the inconsistent evidence for the attack-rate in a
later wave being reduced in individuals reporting symp-
toms in an earlier wave (Table 2). Accordingly, we now
report our innovative modelling to test that hypothesis.

Methods
Data
Fourteen different sub-populations in England and
Wales were surveyed in 1919. In 12 of the 14 popula-
tions each respondent was asked about symptoms of
influenza during the summer, autumn, and winter waves
of the pandemic [2]. Thus for each population, each
person surveyed was classified into one of 8 classes
according to whether they were (or were not) affected
in each of the three waves. We did not use the data
from Eton or Harrow schools because they did not
report data for the winter wave, although the results for
the first two waves were entirely consistent with the
results for similar school populations over three waves.
Survey results for the remaining 12 sub-populations are
re-tabulated in Table 1, along with the names of the
cities, institutions and schools surveyed. Younger per-
sons predominated in a subset of four “school” popula-
tions: Haileybury and Clifton College (private boarding
schools), Cambridge University, and Finchley School (a

Table 1 Populations and observed proportions affected in summer, autumn & winter waves in 1918-19 pandemic

Population N - - - S- - -A- - -W SA- S-W -AW SAW

South Shields 462 844.2 26.0 51.9 67.1 2.2 2.2 6.5 0

Leicester 4619 719.9 62.1 131.8 69.9 3.0 4.8 8.0 0.4

Wigan 1075 774.0 40.9 73.5 108.8 0 0 1.9 0.9

Newcastle 4461 814.4 52.5 46.6 73.1 0.4 8.7 3.8 0.4

Manchester 4686 747.1 130.8 83.7 15.6 14.3 5.5 2.3 0.6

Blackburn 1284 785.0 75.5 56.1 64.6 5.5 4.7 7.8 0.8

Widnes 3417 696.5 113.5 77.8 99.5 4.1 6.1 2.3 0

London police 746 749.3 61.7 144.8 32.2 5.4 0 6.7 0

Cambridge Uni 1766 457.0 206.7 208.4 73.6 18.7 9.6 21.5 4.5

Clifton College 451 232.8 153.0 84.3 188.5 20.0 157.4 135.3 28.8

Haileybury 515 302.9 227.2 93.2 205.8 60.2 42.7 48.5 19.4

Finchley School 1224 550.7 90.7 312.9 23.7 14.7 4.1 3.3 0

ALL 24706 703.1 96.5 105.0 67.5 8.1 9.3 8.9 1.6

N = total number of persons surveyed in each population. - - -: proportion of persons (per 1000) not reporting symptoms in any wave; S - -: proportion reporting
symptoms in summer wave only; SA-: proportion of persons reporting symptoms in the summer and autumn waves, but not in the winter wave. SAW:
proportion reporting symptoms in all three waves, etc.
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suburban school in London). Older persons (adults) pre-
dominated in the complementary subset of 8 urban
populations. Because of these age and social differences,
our model (below) compared parameter estimates for
“school” and “urban” populations.

Evidence of protection from wave to wave
From the data of Table 1, we re-constituted each 2 × 2
contingency table to see whether people reporting
symptoms of influenza in an earlier wave were less
likely, as judged by an odds ratio of less than one, to
report symptoms in a later wave. The results in Table 2
show that in only 6 of 12 populations was an attack in
the first (summer) wave associated with a significantly
reduced risk of a repeat attack in the second (autumn)
wave. There was even less evidence of protection from
summer to winter and autumn to winter waves.

Comprehensive model-fitting to 12 populations
To exploit the valuable information on repeat attacks of
influenza from wave to wave, to explore the possible
effects of asymptomatic infection and immunity, and to
better understand the biology and transmission of influ-
enza, we have fitted a comprehensive model to the data
of Table 1.
The model allowed for the possibility of immunity

before the summer wave [3,5,17,24], as well as for
immune protection from one wave to the next [3,13,32].
(see Figure 1). We assumed that susceptible (ie not pre-
viously immune) persons who were exposed in a parti-
cular wave could develop symptomatic or asymptomatic
infections and become immune, and we allowed for the
possibility that protection could be lost because immu-
nity waned in individuals between waves, or because of
antigenic drift of the virus. Our basic model assumed
homogeneous mixing within each sub-population, and
we used our extension of the final size equation, an
ancillary result that follows directly from the SIR model
of transmission [33], to link the reported incidence of
symptoms in each subgroup of the population to their
susceptibility status before each wave.

Parameter definitions
E = proportion of each population reporting symptoms
in a particular wave.
Z = proportion of persons susceptible before the first

wave;
F1 = proportion of non-susceptible persons (not yet

infected by the pandemic virus) who become susceptible
by the start of the next wave;
F2 = proportion of persons immunised by exposure to

the pandemic virus who become susceptible again by
the next wave;
a1, a2, a3 = proportions of immunising exposures that

lead to reported symptoms in each of the three waves;
R0 = the basic reproduction number - ie the notional

average number of secondary cases of symptomatic
influenza from each primary case if the entire popula-
tion were susceptible.
R = the effective reproduction number - ie the

notional average number of secondary cases of sympto-
matic influenza from each primary case when the entire
population is not susceptible. (At any time t during an
outbreak, R is approximated by R = Z(t).R0 where Z(t) is
the proportion still susceptible. Thus R declines progres-
sively with time and R~1 when the epidemic peaks.)

Estimation procedures
To measure the magnitude of each of the (unobserved)
processes thought to be generating the observations, we
estimated parameter values to best fit the observations
using a Markov Chain Monte Carlo (MCMC) algorithm

Table 2 Observed odds ratios (OR) and 95% confidence
intervals to test for evidence of immune protection from
wave to wave.

POPULATION OR for SA OR for SW OR for AW

South Shields 1.199
(0.045 - 11.364)

0.937
(0.036 - 8.735)

1.508
(0.292 - 6.549)

Leicester 0.292
(0.158 - 0.533)

0.871
(0.521 - 1.446)

0.655
(0.437 - 0.979)

Wigan 0.266
(0.011 - 2.186)

0.174
(0.007 - 1.419)

0.284
(0.061 - 1.090)

Newcastle 0.258
(0.071 - 0.816)

1.945
(1.284 - 2.936)

0.959
(0.536 - 1.692)

Manchester 0.972
(0.709 - 1.329)

1.976
(1.182 - 3.286)

1.267
(0.635 - 2.481)

Blackburn 1.033
(0.406 - 2.522)

0.782
(0.290 - 1.996)

1.729
(0.763 - 3.821)

Widnes 0.340
(0.175 - 0.648)

0.397
(0.230 - 0.677)

0.219
(0.091 - 0.505)

London police 0.449
(0.117 - 1.515)

0.000
(0.029 - 2.933)

1.125
(0.324 - 3.610)

Cambridge Uni 0.248
(0.165 - 0.371)

0.439
(0.261 - 0.734)

0.915
(0.604 - 1.380)

Clifton College 0.302
(0.164 - 0.551)

1.055
(0.657 - 1.687)

1.756
(1.044 - 2.946)

Haileybury 1.059
(0.634 - 1.766)

0.337
(0.199 - 0.567)

0.945
(0.550 - 1.620)

Finchley School 0.282
(0.152 - 0.518)

1.241
(0.368 - 3.841)

0.230
(0.060 - 0.774)

ALL 0.621
(0.529-0.729)

1.105
(0.946-1.291)

0.972
(0.831-1.138)

Odds ratios (OR) and confidence intervals [33] were calculated from the data
of Table 1. The numbers affected in the summer (S) wave, for example, are
obtained by summing totals for S- -, SA -, S-W and SAW. An odds-ratio for SA
of less than 1 (eg 0.292 for Leicester) shows a tendency for those affected in
the summer wave to be less affected in the autumn wave, relative to those
not affected in the summer wave. For six populations over the SA comparison,
the OR (in bold type), are reduced significantly below 1, providing ostensible
evidence of immune memory and protection following the summer wave. In
contrast, the results of model fitting (Table 4) are consistent with effects of
wave to wave immunity in all populations.
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with Metropolis Hastings acceptance criterion; we intro-
duced hyper-parameters to allow for parameter variation
between populations. Full details are provided in the
supplementary material in Additional File 1.

Calculating attack rates
For each wave in each population, the predicted attack
rate was calculated by iteratively solving the final size
equation for E,

E Z e R E= −( )− 1 0 / ,

given the current values of Z at the start of the wave,
and the other parameters. Z estimates were recalculated
after each wave and before the next wave, in accordance
with estimates for F1 & F2.
Likelihoods for each sub-population were calculated

from the likelihood of the parameters (given the current
values of hyperparameters) and the seven conditionally
independent probabilities (each determined by current
parameter values), governing the sequential and parallel
processes giving rise to the 2 × 2 × 2 matrix of out-
comes (Figure 2). Full methods and associated refer-
ences are available in Additional file 1.

Results
Model Results
Our biological model explained the attack-rates within
each wave, as well as patterns of repeat attacks reported
over the three waves of the pandemic; there was good
agreement between the observed numbers and those
predicted by the model (see Table 3). The parameter
estimates (Table 4) were informative. Over all popula-
tions the median estimate of the proportion susceptible
(Z) before the first (summer) wave was 52%, with a 95%
credibility interval of 41-66%; this allowed us to reject
the possibility that all persons were initially susceptible
to the 1918 virus. Secondly, of those exposures that
resulted in immunising infections, only a median pro-
portion a = 39% led to reported symptoms in wave 1;
the proportions in later waves were 43% and 48%. There
was also a tendency for protection that antedated the
first wave to lapse in a greater proportion of persons
(F1 = 57%) than the protection that followed exposure
to the pandemic virus (F2 = 35%), presumably because
the latter protection was more specific for the new virus.
The 95% credibility intervals for R0 were estimated as

2.53-5.92 for the eight urban populations and 2.43-8.42
for the four “school” populations; the median estimates
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Figure 1 Model for unobserved processes. Before wave 1, people are either susceptible (S1) or resistant (R1) because of prior immunity.
Persons exposed to the virus either express symptoms (E1), or have an asymptomatic infection (A1). Others are unexposed (U1). After exposure,
persons become immune (E1R or A1R), and a proportion become susceptible again prior to wave 2 (E1S2, A1S2 and R1S2, plus the susceptible
persons who escaped exposure in wave 1 (U1S2). All susceptible persons are at risk of exposure in wave 2 (see figure), and either express
symptoms, have an asymptomatic infection, or remain unexposed. The extension to wave 3 adds an additional layer of complexity, but there are
no new principles invoked.
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(Table 4) were similar to our earlier findings [3]. Such
high values for R0 imply that if a population has negligi-
ble prior immunity, as in Alaska in 1918-19 [1,2,17], or
Tristan da Cunha in 1971 [3,31], there would be a very
high attack-rate. However, English populations in 1918
(Table 1) apparently had considerable prior immunity,
so that the effective R at the start of the first wave, cal-
culated as Z.R0, was much less (credibility interval 1.16-
2.94 for urban populations & 1.43-5.36 for the “school”
populations). The lower effective R, together with values
for a that are considerably less than one (see Table 4),
together explain why the attack rates were as low as
reported (Table 1).
Comparisons of different populations provide addi-

tional insights. Attack rates were higher in partially
sequestered populations in Cambridge University and
private boarding schools (Clifton College and Hailey-
bury) than in the suburban school at Finchley in Lon-
don (Table 1). Parameter estimates for individual
populations (see Additional File 1 Tables S3 & S4) show
that higher attack rates were associated with greater sus-
ceptibility, arguably because of lesser past exposure to
seasonal influenza. Furthermore, protection that ante-
dated the first wave tended to lapse more in “schools’
(F1 = 74%) than in urban populations (F1 = 50%). This
is what would be expected if influenza immunity
induced by past exposures increased incrementally with
age, and if the rate of loss were greater when there were
fewer past exposures. Further, loss of protection induced

by the pandemic virus was similar for “school” (F2 =
38%) and urban populations (F2 = 38%), which would
be expected following exposure to a virus that was new.

Discussion
Our modelling results using 1918-9 data support ear-
lier suggestions [3,17] that the spread of pandemic
influenza can be limited by pre-existing immunity,
probably resulting from prior exposure to seasonal
influenza [34]. Furthermore, the waning of prior
immunity likely contributed to the recurrent waves of
influenza that characterised the 1918-9 pandemic in
urban populations. These modelling inferences are
necessarily tentative, as they cannot be supported by
studies of immune mechanisms in those historical
populations. Nevertheless, our modelling approach is
innovative, biologically plausible and uses modern esti-
mation procedures. (Additional file 1 provides further
details of the methods and potential limitations of our
approach.)
Our paper is able to make strong inferences about

asymptomatic infections, immunity, R and R0 without
having to estimate or guess, as is usually the case, the
serial interval of influenza infection [3]. This was possi-
ble because we had data on the final size of each of the
three waves in 12 sub-populations, and because we
assumed homogeneous mixing within each sub-popula-
tion, to underpin the (deterministic) “final-size” equation
used to link the attack rate to the parameters (see
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Figure 2 Observations over three waves. For each population there was information on N individuals, of whom N1 reported symptoms in
wave 1 and N0 did not; in wave 2, N12 had a repeat attack, while N10 of those affected in wave one did not have a repeat attack; N123

individuals reported symptoms in all three waves...;;etc. The total number reporting symptoms in wave 2 was N12 + N02, while the total number
for wave three was N123 + N103 + N023 + N003. The observed numbers N123, N120, N103, N100, N023, N020, N003, N000 for each population can be
recovered from the proportions SAW, SA-, S-W, S- -, -AW, -A-, - -W, - - - shown in Table 1 by multiplication by the corresponding N.
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methods and Additional file 1). Although the assump-
tion of homogeneous mixing can only be an approxima-
tion, it seems reasonable, and is frequently made.
Furthermore, in the supplementary information (Addi-
tional file 1) we show that our model conclusions are
robust to effects arising from the simplest form of social
distancing, although we cannot exclude more complex
forms of social distancing as an ancillary explanation for
the wave-like behaviour of influenza [22]. However,

social distancing alone cannot explain why some per-
sons had repeat attacks from wave to wave. In ongoing
work, we are relaxing the assumption of homogeneous
mixing, and testing the robustness of our conclusions
against more complex models of social distancing.
Our results show that R0 estimates varied somewhat

between populations, and tended to be greater in
schools, as would be expected with higher mixing rates.
In the results presented, we did not allow for systematic

Table 3 Expected numbers (from model with maximum likelihood parameter estimates) and observed numbers of
persons reporting symptoms in each of the three waves

POPULATION N SAW SA - S -W S - - -AW - A - - - W - - -

South Shields 462 0.08
0.00

0.90
1.00

1.73
1.00

12.73
12.00

2.26
3.00

24.30
24.00

33.25
31.00

386.74
390.00

Leicester 4619 1.02
2.00

16.75
14.00

27.80
22.00

271.80
287.00

37.40
37.00

613.20
609.00

314.53
323.00

3336.50
3325.00

Wigan 1075 0.02
1.00

0.69
0.00

1.99
0.00

46.64
44.00

1.74
2.00

73.84
79.00

99.85
117.00

850.23
832.00

Newcastle 4461 0.41
2.00

5.26
2.00

33.22
39.00

237.09
234.00

16.55
17.00

211.94
208.00

322.86
326.00

3633.67
3633.00

Manchester 4686 1.84
3.00

66.94
67.00

23.49
26.00

619.65
613.00

10.49
11.00

381.88
392.00

80.22
73.00

3501.50
3501.00

Blackburn 1284 0.37
1.00

5.34
7.00

11.64
6.00

104.12
97.00

5.63
10.00

81.97
72.00

84.54
83.00

990.39
1008.00

Widnes 3417 0.40
0.00

10.66
14.00

25.40
21.00

382.55
388.00

9.84
8.00

261.65
266.00

346.08
340.00

2380.43
2380.00

London police 746 0.18
0.00

5.81
4.00

1.82
0.00

41.69
46.00

3.49
5.00

115.47
108.00

16.96
24.00

560.58
559.00

Cambridge Uni 1766 3.00
8.00

44.08
33.00

33.42
17.00

341.88
365.00

25.59
38.00

375.38
368.00

135.31
130.00

807.33
807.00

Clifton College 451 14.43
13.00

19.26
9.00

73.26
71.00

51.85
69.00

38.87
61.00

51.88
38.00

86.61
85.00

114.84
105.00

Haileybury 515 8.98
10.00

27.38
31.00

45.68
22.00

96.60
117.00

19.19
25.00

58.47
48.00

87.76
106.00

170.94
156.00

Finchley School 1224 0.28
0.00

18.05
18.00

2.41
5.00

111.70
111.00

5.68
4.00

372.76
383.00

26.62
29.00

686.50
674.00

TOTAL 24706 31.01
40.00

221.12
200.00

281.88
230.00

2318.31
2383.00

176.70
221.00

2622.77
2595.00

1634.57
1667.00

17419.64
17370.00

As before, SAW denotes the number of persons reporting symptoms in each of the summer, autumn and winter waves. S - - denotes the number with
symptoms only in the summer wave ....etc. The expected numbers are based on the maximum likelihood parameter estimates for the 12 population model
(simulation 1; results from simulation 2 are almost identical). The deviance corresponding to the MLE fit was 47182. It can be seen that the fit between observed
and expected is less good for three of the “school” populations, reflecting their somewhat different behaviour (see also Table S2 in Additional File 1).

Table 4 Median parameter estimates (2.5-97.5% credibility intervals) in model to explain the observations in Table 1.

Contrast R R0 Z F1 F2 a1 a2 a3

All 12
populations

2.33
(1.57-3.96)

4.59
(3.10 - 6.74)

0.52
(0.41 - 0.66)

0.57
(0.42 - 0.71)

0.35
(0.23-0.46)

0.39
(0.25 - 0.52)

0.43
(0.30 - 0.59)

0.48
(0.31-0.65)

8 urban
populations

1.81
(1.16 - 2.94)

3.80
(2.53 - 5.92)

0.49
(0.34-0.62)

0.50
(0.34 - 0.76)

0.38
(0.24-0.57)

0.38
(0.20 - 0.58)

0.34
(0.21 - 0.49)

0.38
(0.22-0.59)

4 “school”
populations

2.84
(1.43-5.36)

4.73
(2.43-8.42)

0.61
(0.41-0.81)

0.74
(0.49 - 0.92)

0.38
(0.20-0.57)

0.49
(0.30-0.68)

0.64
(0.43-0.86)

0.71
(0.41-0.91)

For parameter definitions, see methods text. Estimates for R0, Z, F1, F2, a1, a2, a3 were derived from the joint distributions of the relevant hyperparameters;
these parameters can be regarded as the typical values for populations such as those studied. By combining information from the joint distributions of R0 and Z,
it was also possible to derive the medians and credibility intervals for the effective reproduction number R = R0.Z, at the start of the first wave. Population-
specific estimates are given in Tables S.3 & S.4. For detailed methods see the supplementary information in Additional file 1. Results to support the validity of
estimation procedures are given in Additional File 1 - see Tables S1 & S2. and Figure S1.
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variation of R0 from wave to wave, as in other analyses
(not shown) we found that this did not lead to a signifi-
cant improvement in model fit. Our assumption of an
R0 that did not vary between waves also means that we
have disregarded the potential effects of seasonality on
R0 and transmission [29]. However, our work suggests
that the attack-rate is related more directly to the pro-
portion susceptible (Z), and to population-specific mix-
ing as measured by R0, and that seasonal effects may be
of lesser importance. Indeed, we believe that the sum-
mer onset of the first wave in England in 1918 was
because the antigenic novelty of the new virus, by
increasing Z, had over-ridden the seasonal effect.
There is precedent for our view that cross-reactive

immunity induced by prior exposure to a different sub-
type of influenza can provide partial protection against a
new pandemic strain [3,5,18,19]. Such heterosubtypic
immunity is well documented in mouse models [35,36],
while the evidence from human studies, although infer-
ential, is supportive. Indeed, the very replacement of
H1N1 by H2N2 in 1957, and of the latter by H3N2 in
1968 [19] provide strong circumstantial evidence for the
importance of heterosubtypic immunity at the popula-
tion level. Cross-immunity of short duration between
different influenza strains has also been invoked to help
explain the apparent constraints on the evolutionary
diversification of influenza A [21]. More directly, Sle-
pushkin reported in 1959 [37] that persons with symp-
toms during the H1N1 influenza in the spring of 1957
were less likely to be symptomatic in the summer when
the new H2N2 influenza appeared (odds ratio = 0.418,
95% confidence interval 0.304-0.575); in the later
autumn wave of H2N2, the level of protection had
declined (OR = 0.625, CI = 0.530-0.737). Epstein [34]
re-analysed viral isolation data from the Cleveland
family study before and after the arrival of H2N2 in
1957, and found that adults known to be infected by
H1N1 over the period 1950-57 were less likely to be
infected with H2N2 in 1957 (OR = 0.294, CI 0.01-3.07),
although the difference was not significant because of
the small numbers. In the Seattle family study over the
period 1975-79, coinciding with the return of H1N1
[38], the age-related decline in attack-rate was only
partly explained by hemagglutination inhibition (HI)
antibodies. Adults were rarely infected with H1N1
regardless of HI antibody titre, possibly because of
cumulated heterosubtypic immunity from recent expo-
sures to H3N2, although older adults in the study could
have been protected by H1N1 memory from exposures
prior to 1957, before H1N1 was replaced by H2N2. In
1985, Sokoguchi et al [39] reported strong cross-protec-
tion between H3N2 and H1N1 in almost contempora-
neous outbreaks in Japanese schools in 1978 (OR =
0.059, CI = 0.019-0.131 for high school students, and

OR = 0.154, CI = 0.076-0.309 for younger students).
Such strong cross-protection when exposures to differ-
ent subtypes were separated by only a few days or
weeks [39] is to be contrasted with the weaker protec-
tion reported when sequential exposures were more
widely separated in time [37], suggesting that at least
some components of cross-protection can fade rapidly,
consistent with our interpretation of the 1918-19 data.
What are the mechanisms of heterosubtypic immu-

nity? Studies in mice and other experimental animals
have implicated mucosal antibodies, CD4 and CD8 T-
cells, and B cells [35,36]. Cytotoxic (CD8) T-cells react-
ing with conserved epitopes on internal viral proteins
are of particular importance in eliminating virus-infected
cells, thereby reducing the severity and duration of
infection [19,34-36,40-44]. HLA-restricted CD8-
mediated cytotoxic activity is also widespread in humans
[36,43-45]. For example, cytotoxic cells from most
healthy subjects in UK and Vietnam recognise epitopes
of seasonal influenza, as well as similar epitopes of
H5N1 avian influenza [45]. McMichael and others have
shown that specific CD8 cells reduce viral shedding and
duration of infection in people, and that cytotoxic activ-
ity fades over several years without re-exposure [43,44].
In young children, cellular immune responses induced
by live-attenuated influenza vaccine appear to protect
against laboratory-confirmed influenza [40].
Such collateral evidence supports our view [3,5] that

in 1918-19 many people in cities were at least tempora-
rily protected from pandemic influenza by pre-existing
heterosubtypic immunity, presumably induced by recent
exposure to seasonal influenza. We propose that pre-
existing heterosubtypic immunity was often short-lived,
and that immunity to a new strain or subtype also
required several exposures before becoming more per-
manent. For example, it is possible that heterosubtypic
protection antedating wave 1 was mediated by CD8 T-
cells, which could fade over time in persons not
exposed, or when exposure did not result in a significant
viral load. The primary antibody response in persons
exposed to larger viral loads in wave 1 could have faded
in some persons before wave 2. By wave 3, immunity
could have been consolidated in those with several
exposures through the production of longer-lived anti-
body of IgG class. This more permanent protection
would have helped to defer the next outbreak to the
influenza season of 1920, and started the transition from
pandemic to seasonal behaviour [19,46].
How do our findings relate to the 2009-10 pandemic

caused by the H1N1 2009 virus of swine origin? Despite
changes in social conditions since 1918, published esti-
mates of the effective reproduction number (R) for the
new swine flu are in the range 1.2-3.1 [47-49], with the
larger estimate relating to transmission between minors

Mathews et al. BMC Infectious Diseases 2010, 10:128
http://www.biomedcentral.com/1471-2334/10/128

Page 7 of 9



in Japan [48]; these results are consistent with our find-
ings from 1918-19, including higher rates of transmis-
sion for “schools” (Table 4). In our results we draw an
important distinction between the higher estimates for
R0 and the lower estimates for R at the start of the out-
break. This difference reflects the effect of prior immu-
nity in moderating the spread of pandemic influenza in
1918-19 [2,3,5,24]. Unfortunately, although most influ-
enza modellers have estimated R, some have reported it
or used it as R0; we suggest [11] that this could systema-
tically under-estimate [25-27] what the rate of spread of
influenza would be in more fully susceptible popula-
tions, as in isolated locations such as Tristan da Cunha
in 1971 [3,31] or in sequestered schools such as Saffron
Walden in 1918-9 [2,3].
Although H1N1 2009 swine flu shows the pandemic sig-

nature of a relatively greater mortality in young adults
[6,50], aggregate influenza mortality in 2009 [6,10] seems
lower than that from seasonal influenza, which typically
affects the elderly[19]. Such observations support the grow-
ing consensus that the H1N1 2009 virus has also been
spreading in partially immune populations [10,11,47,51-53].
However, pre-existing cross-reactive antibodies to H1N1
2009 seem confined to older persons, presumably directed
against epitopes not present in the recent H1N1 seasonal
virus [8,51]. CD8+ T-cells directed against conserved influ-
enza epitopes, which would resolve infections early, could
help to explain the constrained spread of H1N1 2009 even
in persons without neutralising antibody [54]. If cross-
immunity is limiting the rate of spread of the H1N1 2009
virus in the same way as for the 1918-19 virus [3,5,11], and
if that cross-protective immunity is also short-lived, there is
a risk of repeat pandemic waves in 2010. Furthermore, it is
possible that without vaccination, populations escaping
early infection with the pandemic virus will experience
more rapid spread or greater disease severity when even-
tually infected. Fortunately, trial results suggest that a single
dose of pandemic vaccine can induce ostensibly protective
levels of antibody, possibly by building on cross-reactive
immune memory from prior exposures to seasonal H1N1
virus or vaccine [52,53].

Conclusions
Our findings suggest that in urban populations, the
spread of pandemic influenza in 1918-9 was limited by
prior immunity rather than by low values of R0. Higher
attack rates for pandemic influenza in isolated popula-
tions also reflect high values of R0, but with lesser levels
of prior immunity, presumably because of less recent
exposure to seasonal influenza. We suggest that the
spread of the 2009 H1N1v pandemic may also be lim-
ited by immunity from prior exposure to seasonal influ-
enza. Such immunity may be short-lived, and not well
correlated with levels of HI antibody. It is unclear

whether any recurrent pandemic waves in 2010 will
have higher mortality rates, as seen in the second and
third waves in 1918-19.

Additional file 1: Figures S1.1 and S1.2. Tables S1, S2, S3, S4.
Materials and methods. Supporting text. Social distancing. Demarcation
of waves and waning of resistance. Incremental nature of acquired
immunity. Possibility of virus variation between waves. Possibility of
seasonal changes in bacterial infection. Comments on mortality.
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