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Abstract
Background: In biometric practice, researchers often apply a large number of different methods
in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication
pressure or pressure from the consulting customer, present only the most favorable results. This
strategy may induce a substantial optimistic bias in prediction error estimation, which is
quantitatively assessed in the present manuscript. The focus of our work is on class prediction
based on high-dimensional data (e.g. microarray data), since such analyses are particularly exposed
to this kind of bias.

Methods: In our study we consider a total of 124 variants of classifiers (possibly including variable
selection or tuning steps) within a cross-validation evaluation scheme. The classifiers are applied to
original and modified real microarray data sets, some of which are obtained by randomly permuting
the class labels to mimic non-informative predictors while preserving their correlation structure.

Results: We assess the minimal misclassification rate over the different variants of classifiers in
order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven
manner. The bias resulting from the parameter tuning (including gene selection parameters as a
special case) and the bias resulting from the choice of the classification method are examined both
separately and jointly.

Conclusions: The median minimal error rate over the investigated classifiers was as low as 31%
and 41% based on permuted uninformative predictors from studies on colon cancer and prostate
cancer, respectively. We conclude that the strategy to present only the optimal result is not
acceptable because it yields a substantial bias in error rate estimation, and suggest alternative
approaches for properly reporting classification accuracy.

Background
It is well-known that almost all published studies present
positive research results, as outlined by Kyzas et al [1] for
the special case of prostate cancer. In the case of microar-
ray studies, that often focus on the identification of differ-

entially expressed genes or the construction of outcome
prediction rules, this means that almost all studies report
at least a few significant differentially expressed genes or a
small prediction error, respectively.
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According to Ioannidis [2], " [...] most published research
findings are wrong". This may be partly due to the edito-
rial policy of many journals which accept almost only
papers presenting positive research results (except perhaps
recent initiatives like the Journal of Negative Research
Results in Medicine). Authors are thus virtually urged to
"find something significant" in their data, which encour-
ages the publication of wrong research findings due to a
variety of technical and statistical pitfalls. Microarray stud-
ies are especially subject to such mechanisms and known
to yield "noise discovery" [3].

Technical challenges that particularly affect microarray
studies include, e.g. technical errors in the lab, problems
with image analysis and normalization. Statistical pitfalls
and biases of studies on microarray-based prediction are
equally diverse. A problem well covered in the literature is
the "small n large p" dimensionality problem (also
referred to as "n << p", i.e. less observations than varia-
bles). In univariate analyses for identifying differentially
expressed genes, the multiple testing problem resulting
from high dimensionality can be addressed, e.g. by means
of approaches based on the false discovery rate [4,5]. In
the context of microarray-based prediction, another
important statistical pitfall is incomplete cross-validation
(CV), as pointed out by numerous authors [6-10]: if the
selection of relevant variables is performed before cross-
validation using all available observations, the cross-vali-
dated error rate is quite naturally optimistically biased.
Most recent studies take this important point into
account, either by performing variable selection for each
CV iteration successively or by using class prediction
methods involving an intrinsic variable selection step, like
the Lasso [11]. Hence, we do not address again the prob-
lem of incomplete CV in the present article.

The reported classification error rate can also be lowered
artificially by selecting the values of tuning parameters a
posteriori, i.e. on the basis of the computed CV error rates.
Doing this, one selects the "best" version of a classifier
and evaluates it using the same data, which of course leads
to an underestimation of the error rate (named "bias
source I" in our present paper). A quantitative study on
this topic can be found in [12]. Note that the problem of
optimal parameter selection affects not only microarray
research but also classical medical studies based on con-
ventional low-dimensional predictors, although probably
not as dramatically. A particular parameter that is espe-
cially crucial in the analysis of high-dimensional data is
the number of selected variables (if variable selection is
performed). In many studies, it is chosen a posteriori
based on the CV results, thus inducing biases in the
reported error rate. Another source of bias (named "bias
source II" in our paper) that is related to, but more global
than optimal parameter selection, is the optimal selection

of the classification method itself from the wide range of
classifiers that are available for the analysis of microarray
data today (e.g. support vector machines, random forest
or L2 penalized logistic regression). This again is an issue
that, in principle, can be encountered in all types of med-
ical studies, but affects microarray studies more drasti-
cally. Whereas standard statistical approaches - for
instance logistic regression for class prediction problems -
have become the methodological "gold standard" in con-
ventional medical statistics and allow a comparatively fair
evaluation of research results, the field of microarray data
analysis is characterized by the lack of benchmark stand-
ard procedures and a huge and heterogeneous amount of
methods - ranging from adaptations of standard statistical
procedures to computer intensive approaches adopted
from machine learning - whose respective merits and pit-
falls remain partly unexplored. This is particularly true for
studies involving class prediction problems, i.e. when the
goal is to derive a classification rule for predicting the class
membership (typically the disease outcome) of patients
based on their microarray transcriptome data.

In this context, if the sample is not large enough to put
aside a validation data set, it is common practice to evalu-
ate the performance of classifiers based on techniques like
cross-validation (CV) including leave-one-out (LOO) CV
as a special case, repeated splitting into learning and test
data sets, or bootstrap sampling. See the methods section
for more details on the cross-validation technique used
here and [13] for an extensive review on cross-validation
and resampling techniques in general. However, it is not
sufficient to use correct methods together with a correct
internal CV scheme. Evaluating several classification
methods in cross-validation and then reporting only the
CV results obtained with the classifier yielding the small-
est error rate is an incorrect approach [14], because it
induces an optimistic bias. In their dos and donts list,
Dupuy and Simon [14] recommend to "report the esti-
mates for all the classification algorithms if several have
been tested, not just the most accurate." They discourage
from optimizing the choice of the classification algorithm
based on the obtained results.

In this article, we empirically investigate the consequences
of such an optimization. We report the results of an exper-
iment that allows us to quantify the optimistic bias
induced by optimal tuning parameter selection (bias
source I) and optimal selection of the classification
method (bias source II) in a realistic setting based on orig-
inal microarray data. After we have illustrated the drastic
effect of optimal classifier selection, we discuss alternative
ways to report results of class prediction studies when no
validation set is available, and give suggestions for good
scientific practice in this context.
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In our experiment we compute the misclassification rate
of a total of 10 usual classification methods (k-nearest-
neighbors, linear discriminant analysis, Fisher's discrimi-
nant analysis, diagonal linear discriminant analysis, par-
tial least squares followed by linear discriminant analysis,
neural networks, random forests, support vector
machines, shrunken centroid discriminant analysis and
L2-penalized regression) based on cross-validation. Some
of these 10 classification algorithms are combined with
preliminary variable selection or/and used with different
plausible tuning parameter values successively. The aim is
to investigate the different sources of biases resulting from
optimal selection (optimal choice of tuning parameters
including gene selection and optimal choice of the classi-
fication method) and their relative importance. All the
considered procedures are classical approaches, most of
which have already been used in published medical stud-
ies. For the sake of reproducibility, all our analyses are
based on the freely available Bioconductor package CMA
version 0.8.5 [15] which is described extensively in [16].

The classifiers are applied to original and modified data
sets, some of which are obtained by permuting the class
labels of real microarray data sets. We then assess the min-
imal misclassification rate over the results of the different
variants of classifiers in order to quantify the bias arising
when the optimal classification method and/or its tuning
parameters are selected a posteriori in a data-driven man-
ner. The permutation of the class labels is used to mimic
data sets under the global null hypothesis that none of the
genes are differentially expressed with respect to the
response class. This approach thus provides non-informa-
tive microarray data that, however, preserve their realistic
correlation structure, and can serve as a "baseline" to
quantify the bias induced by optimal classifier selection.

Methods
Generating the data
Three types of data sets are used in the present study: i)
non-modified real data sets, ii) data sets with permuted
class labels, to mimic non-informative microarray data
with a realistic correlation structure, and iii) subsamples
of non-modified real data sets including 60, 65, 70, 75,
80, 85, 90 or 95% of the original sample, to be able to
evaluate potential effects of the sample size. To average
out the random fluctuations due to the permutation proc-
ess, we consider niter = 20 balanced permutations succes-
sively. The term "balanced" permutation here means that
within each true class, a fraction of about N1/N of the
observations are randomly assigned to class 1, and a frac-
tion of N0/N of the observations to class 0, where N0 and
N1 denote the numbers of observations from classes 0 and
1 respectively in the entire sample. By doing so, we make
sure that none of the permuted class label vectors is simi-
lar to the true class label vector by chance.

Two real-life data sets are considered successively: the
well-known benchmark colon data set [17], and the pros-
tate cancer data set [18].

Included classifiers
This study includes only well-known classifiers that are
widely used in the context of class prediction in medical
studies and yield acceptable accuracies in "neutral com-
parison studies" (see [13] for criteria defining such stud-
ies). For instance, methods like quadratic discriminant
analysis are excluded because they seem to perform
poorly [19] and are not often used in practice.

We consider a total of 124 classifiers. By classifier, we
mean the combination of the variable selection procedure
(if any) and the method used to construct the prediction
rule, potentially including different tuning parameter set-
tings. More specifically, we use the ten classification meth-
ods outlined below:

• KNN (k-nearest-neighbors): the standard nearest-
neighbor approach [20]. We consider successively k =
1, 3, 5, which are all usual choices when the method is
used on small sample data.

• LDA (Linear Discriminant Analysis): standard linear
discriminant analysis with normality assumption and
common within-group covariance matrix, as summa-
rized in [19,20].

• FDA (Fisher's Discriminant Analysis): standard
Fisher's discriminant analysis [19].

• DLDA (Diagonal Linear Discriminant Analysis): the
same as LDA, except that the common within-group
covariance matrix is assumed to be diagonal. The fea-
ture makes it applicable to data with n << p.

• PLSLDA: Partial Least Squares (PLS) dimension
reduction (see [21] for an overview) followed by linear
discriminant analysis using the PLS components as
predictors [22]. We set the number of PLS components
to ncomp = 2 and ncomp = 3 successively.

• NNET: neural networks with one hidden layer.

• RF (Random Forests): the random forest method
[23] aggregating a large number of classification trees
obtained from different subsamples and with random
selection of candidate predictors at each split. The
number of trees is set to ntree = 1000, whereas the
number mtry of candidate predictors considered at

each split is set either to mtry =  (default setting forp
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classification), ,  or , which are all sen-

sible values [24].

• SVM (Support Vector Machines): the well-known
kernel method by Vapnik [25]. Tuning parameters
include the kernel function (for instance linear and
radial), the cost (for both linear and radial kernels)
and the parameter controlling the width of the radial
kernel. In this paper, we consider linear kernels only
(the default in the R function svm from the e1071
package), which are known to perform well. The cost
is considered as a tuning parameter and optimized via
internal 3-fold-cross-validation.

• PAM (Shrunken Centroid Discriminant Analysis,
also called "Prediction Analysis with Microarrays"):
the nearest shrunken centroids method [26]. The
shrinkage parameter is optimized via internal 3-fold-
cross-validation.

• L2: the L2-penalized logistic regression approach
(also called ridge regression). In contrast to Lasso, this
approach does not yield sparse models. The penalty
parameter is optimized via internal 3-fold-cross-vali-
dation.

The methods used to construct prediction rules are sum-
marized in Table 1 together with the different numbers of
genes and parameter values considered in this study. All
the methods are well-known and reported to perform rea-
sonably well in the literature. Note that we could also
have included methods like the Lasso [11] and elastic net
[27]. However, we do not consider them in the present
study because they show convergence problems in some

cases or/and are computationally intensive. Other meth-
ods which could have been included are tree-based and
componentwise boosting [28], or alternative dimension
reduction techniques (see [29] for a synthetic overview).
We only include a limited number of methods to keep the
scope of the study manageable, but also to mimic the
scope of methods that an average biostatistician/bioinfor-
matician would realistically be able to apply to his/her
data in a limited time-frame. Some arbitrariness in the
choice of the methods is unavoidable, but we feel that the
current selection covers the spectrum of methods cur-
rently available and attractive for microarray studies rea-
sonably well. In particular, it includes both purely
statistical approaches and machine learning algorithms.

Tuning parameters
One of the two sources of bias investigated in this paper is
the optimal selection of tuning parameters including as a
special case the number of selected genes and the gene
selection method - if preliminary variable selection is per-
formed.

Preliminary variable selection
Regarding variable selection, classification methods can
be divided into several categories:

1. Methods that do not take each variable's prediction
strength into account, such as k-nearest-neighbors.
Such methods almost always yield poor prediction
accuracies when applied to noisy data. For instance, in
the nearest neighbors approach, array-to-array dis-
tances on which prediction is based are computed
using all genes irrespectively of their discrimination
power. Such methods should be combined with varia-
ble selection.

2 p 3 p 4 p

Table 1: Summary of the considered candidate classifiers

Method Type Number of genes p* Function Fixed parameters Parameters tuned via CV

KNN 1 20, 50, 100, 200, 500 knnCMA k = 1, 3, 5

LDA 2 10, 20 ldaCMA
FDA 2 10, 20 fdaCMA

DLDA 3 20, 50, 100, 200, 500 dldaCMA
PLSLDA 3 20, 50, 100, 200, 500 plsldaCMA ncomp = 2, 3
NNET 3 20, 50, 100, 200, 500 nnetCMA

RF 4 rfCMA
mtry = , , , 

linear SVM 4 svmCMA cost
PAM 4 pamCMA shrinkage parameter
L2 4 plrCMA penalty

Column 1: Acronym of the method. Column 2: Type of the method regarding preliminary variable selection. Column 3: Number of selected genes 
p* (if preliminary variable selection is performed). Column 4: Name of the function in the CMA package. Column 5: Name and values of the fixed 
parameters. Column 6: Name of the parameters tuned using internal 3-fold-cross-validation.

p 2 p 3 p 4 p
Page 4 of 14
(page number not for citation purposes)



BMC Medical Research Methodology 2009, 9:85 http://www.biomedcentral.com/1471-2288/9/85
2. Methods that take the variables' prediction strength
into account, but can technically not be applied to
data with n << p, like linear discriminant analysis. For
such methods to be applicable, previous variable
selection is necessary and the number of selected vari-
ables should be smaller than the number of observa-
tions.

3. Methods that take the variables' prediction strength
into account and can technically be applied to data
with n << p, but usually perform better on a reduced
subset of relevant genes, like diagonal linear discrimi-
nant analysis (DLDA). By definition, DLDA gives
more weight to genes with a high signal-to-noise ratio.
However, genes with poor or no discriminating power
behave as noise and usually decrease classification
accuracy substantially.

4. Methods that take the variables' prediction strength
into account, can technically be applied to data with n
<< p and whose prediction accuracy is usually not
improved by preliminary variable selection. Such
methods include, e.g. nearest shrunken centroids or
the Lasso, that perform variable selection intrinsically.
Note, however, that preliminary variable selection
may be necessary in some cases in practice for compu-
tational reasons, especially when the number of genes
reaches several tens of thousands as common in mod-
ern data sets.

In the present study, we consider only smaller data sets
with p < 10, 000 genes, which makes preliminary variable
selection for the retained methods of type 4 unnecessary
from a computational point of view. For methods of types
1 to 3, previous variable selection is applied with different
(round) numbers of genes p*: 10 and 20 genes when the
method requires n > p* and 20, 50, 100, 200, or 500 genes
when the method can cope with n <p*, see Table 1 for an
overview. In our study, three very common selection crite-
ria are used successively: the absolute value of the two-
sample t-statistic, the absolute value of the limma statistic
[30] and the absolute value of the normalized two-sample
Wilcoxon statistic. Note that further methods could have
been considered, such as the "traditional" Golub criterion
or more sophisticated multivariate approaches, e.g. based
on random forests [24]. In our experiment, however, we
focus on the most standard approaches, because we con-
sider it realistic that a statistician, who wants to try a large
number of procedures, would prefer those that are freely
available or easy to implement, computationally efficient
and conceptually simple.

Other tuning parameters
Apart from preliminary variable selection, some of the
considered classification methods involve tuning parame-

ters, for instance the shrinkage parameter of the PAM
method, the penalty in L2 penalized regression, and the
cost parameter in linear SVM. In our study, these method
parameters are tuned by performing an internal 3-fold-
cross-validation using the learning set only, because i) it is
a commonly recommended strategy [31], and ii) there is
no reliable "gold standard" for these parameters.

We also consider classification methods involving tuning
parameters for which default values are expected to work
reasonably well with most data sets. In this case, parame-
ter tuning through inner cross-validation is not as essen-
tial and well-established as for methods like penalized
regression. In our study, these methods include KNN
(with the number k of neighbors as parameter), random
forests (with the number mtry of candidate splitting varia-
bles considered at each split as parameter), and PLSLDA
(with the number ncomp of PLS components as parame-
ter). For these three methods, we consider a few standard
values of the tuning parameter successively and investi-
gate the bias resulting from optimal selection, see Table 1
for an overview. Some subjectivity and arbitrariness in the
study design is unavoidable, but this setup can give a real-
istic example of the bias that is induced when certain
choices in model selection are based on optimizing per-
formance on the learning data.

The 124 variants of classifiers
On the whole, we obtain 124 variants of classifiers from
the combination of 10 classification methods, some in
combination with different numbers p* of preselected
genes, each selected with one of three selection criteria (t,
limma or Wilcoxon statistic), and different tuning param-
eter settings. The number 124 is obtained as the sum for
the 10 considered methods of

where G is the number of values of p* (i.e. the number of
values in the third column of Table 1 with the convention
G = 0 when no gene selection is performed), three is the
number of considered gene selection methods (t-statistic,
Wilcoxon, limma), and T is the number of considered val-
ues for the fixed tuning parameters (i.e. the number of val-
ues in the fifth column of Table 1 with the convention T =
0 if there are no such fixed parameters). This formula,
yielding a total of 124, is given explicitly in Table 2.

Cross-validation (CV)
It is well-known that the prediction accuracy of a classifier
should not be evaluated based on the data that were used
for its construction. Instead, if no independent validation
set is available, the classifier should be evaluated through
a CV-like technique considering several pairs of learning
and test sets successively. In the present experiment, we

max( , ) max( , ),G T× ×3 1 1
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use one of the most widely used evaluation schemes: k-
fold cross-validation. In k-fold cross-validation (for
instance k = 5), the available data set is split in k approxi-
mately equally sized subsets. At each of the k iterations,
one of these subsets is considered as a test data set, while
the union of the k - 1 other subsets forms the learning set.
The cross-validated error rate is then computed by averag-
ing the error rates obtained in all k iterations. The reader
is referred to [13,32] for more technical details and critical
discussions of cross-validation or related evaluation pro-
cedures. In the present study, the number k of iterations is
set to the standard value k = 5.

Implementation
In this study, we use the Bioconductor package 'CMA' [15]
described in [16]. Our R codes are publicly available at
http://www.ibe.med.uni-muenchen.de/organisation/
mitarbeiter/020_professuren/boulesteix/errorratebias.

Results and Discussion
Data sets and real data analysis results
We first analyze the well-known colon cancer microarray
data set [17] including p = 2000 genes for 22 normal and
40 tumor tissues (n = 62) that is available from the Bio-
conductor package 'colonCA'. This data set was analyzed
in numerous classification-based articles including com-
parison studies [33]. The obtained error rates usually
range between 10% and 20%. Note that the results from
different studies are difficult to compare, since they are all
based on different evaluation designs (for instance CV,
LOOCV, bootstrap, etc.) and different variable selection
approaches.

We apply the 124 classifiers to this data set and obtain
error rates ranging from 11% to > 35%, see Table 3 (top)
for the results obtained without preliminary variable
selection (for RF, SVM, PAM, L2) or with variable selection
based on the t-statistic (for KNN, LDA, FDA, DLDA,
PLSLDA, NNET). The results with the Wilcoxon statistic
and the limma statistic are similar. As can be seen from

Table 3, the different methods yield noticeably different
results.

The second data set investigated in the present study is
introduced by Singh et al [18] and includes 5908 genes for
50 normal and 52 prostate cancer tissues. We use the data
preparation procedure described in [22]. This data set usu-
ally yields better accuracy than the colon data set, which
may be partly due to the larger sample size, see for
instance [22]. In the present study, the estimated error
rates strongly vary across the classifiers. Whereas some
well-known classifiers such as PAM yield poor accuracy
(error rates of approximately 20%), others, such as partial
least squares, yield error rates of approximately 6%, see
Table 3 (bottom) for a summary.

Note that the relative performance of the different meth-
ods is substantially different in the two data sets. This is
consistent with the widely acknowledged fact that there is
no unique "best" classification method yielding top-per-
formance for all data sets. Hence, it would be unwise to try
only one classification method: the multiplicity issue
investigated in this study is relevant.

Permutation-based analysis
In this part of the analysis, we simulate non-informative
gene expression data sets by permuting the class labels of
the two data sets described above, thus mimicking non-
informative microarray data with a realistic correlation
structure. To average out variations due to the random
permutation, 20 balanced permutations are considered
successively. The two sources of bias (optimal selection of
the tuning parameters and optimal selection of the classi-
fication method) are assessed separately in the two next
subsections.

Bias source I: tuning parameters and gene selection
The aim of this part of the analysis is to assess the bias
induced by optimally selecting the number of genes p*,
the gene selection procedure and/or the tuning parame-

Table 2: Formula yielding a total of 124 classifiers

KNN: 5 values of p* × 3 gene selection criteria × 3 values of k +
LDA: 2 values of p* × 3 gene selection criteria +
FDA: 2 values of p* × 3 gene selection criteria +
DLDA 5 values of p* × 3 gene selection criteria +
PLSLDA: 5 values of p* × 3 gene selection criteria × 2 values of ncomp +
NNET: 5 values of p* × 3 gene selection criteria +
RF × 4 values of mtry +
SVM +
PAM +
L2 =

124 classifiers

This table explains how we obtain a total of 124 classifiers.
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Table 3: Results of the real data study, colon data

Colon p* 10 20 50 100 200 500 2000
Method Parameter

KNN k = 1 - 0.19 0.21 0.24 0.18 0.23 -
KNN k = 3 - 0.18 0.15 0.16 0.16 0.16 -
KNN k = 5 - 0.18 0.16 0.19 0.15 0.13 -

LDA 0.19 0.21 - - - - -

FDA 0.18 0.21 - - - - -

DLDA - 0.15 0.16 0.13 0.18 0.24 -

PLSLDA ncomp = 2 - 0.16 0.16 0.16 0.18 0.16 -
ncomp = 3 - 0.18 0.16 0.13 0.16 0.18 -

NNET - 0.35 0.35 0.34 0.37 0.34 -

RF
mtry = 

- - - - - - 0.18

mtry = 
- - - - - - 0.18

mtry = 
- - - - - - 0.18

mtry = 
- - - - - - 0.18

SVM - - - - - - 0.13

PAM - - - - - - 0.11

L2 - - - - - - 0.18

Prostate p* 10 20 50 100 200 500 5908
Method Parameter

KNN k = 1 - 0.12 0.15 0.14 0.10 0.12 -
KNN k = 3 - 0.08 0.08 0.07 0.07 0.09 -
KNN k = 5 - 0.07 0.09 0.08 0.09 0.10 -

LDA 0.08 0.08 - - - - -

FDA 0.08 0.08 - - - - -

DLDA - 0.10 0.13 0.13 0.19 0.24 -

PLSLDA ncomp = 2 - 0.06 0.08 0.06 0.08 0.08 -
ncomp = 3 - 0.08 0.06 0.06 0.08 0.07 -

NNET - 0.10 0.12 0.10 0.15 0.20 -
RF

mtry = 
- - - - - - 0.08

mtry = 
- - - - - - 0.08

mtry = 
- - - - - - 0.08

mtry = 
- - - - - - 0.08

p

2 p

3 p

4 p

p

2 p

3 p

4 p
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ters based on the CV-results. For each of the 10 classifica-
tion methods and each of the 20 permuted data sets, we
consider the six following error rates:

Approach A: Minimal error rate over the different tun-
ing parameter values (k = 1, 3, 5 for KNN, ncomp = 2,

3 for PLSLDA, mtry = , , ,  for RF),

different numbers of genes and different gene selec-
tion methods.

Approach B: Minimal error rate over the different
numbers of genes and different gene selection meth-
ods. In contrast to A, the tuning parameter is fixed for
all methods involving a tuning parameter other than

the number of genes (mtry = , , , 

for RF, ncomp = 2 for PLSLDA, and k = 5 for KNN).

Approach C: Minimal error rate over the different tun-
ing parameter values (k = 1, 3, 5 for KNN, ncomp = 2,

3 for PLSLDA, mtry = , , ,  for RF)

and different gene selection methods. In contrast to A,
the number of genes is fixed (p* = 20 for the methods
requiring n > p, p* = 100 for the other).

Approach D: Minimal error rate over the different tun-
ing parameter values (k = 1, 3, 5 for KNN, ncomp = 2,

3 for PLSLDA, mtry = , , ,  for RF)

and different numbers of genes. In contrast to A, the
gene selection method is fixed (gene selection based
on the t-statistic for all methods involving gene selec-
tion).

Approach E: Minimal error rate over the different tun-
ing parameter values (k = 1, 3, 5 for KNN, ncomp = 2,

3 for PLSLDA, mtry = , , ,  for RF).

In contrast to A, the number of genes and the gene
selection method are fixed (gene selection based on
the t-statistic, p* = 20 for the methods requiring n > p,
p* = 100 for the other).

These minimal error rates are computed for all 20 permu-
tation runs and for each of the 10 classification methods.
For each classification method and each approach, the
median over the 20 runs is given in Table 4. For compari-
son, Table 4 also gives the median error rate calculated
from all 124 × 20 error rates obtained with the 124 classi-
fiers for the 20 permutation runs (last column: F). The dif-
ference between this baseline and the minimal error rates
A, B, C, D, and E can be interpreted as the bias induced by
optimal selection. It can be seen from Table 4 that, for a
given classification method, the optimization of the gene
selection method, of the number of genes and of the tun-
ing parameters contribute approximately equally to the
bias: there is no unique source of bias. Let us consider the
KNN method applied on the prostate data for illustration.
The median minimal error rate over all parameter values
(k = 1, 3, 5), all numbers of genes (p* = 20, 50, 100, 200,
500) and the three gene selection methods (t-statistic,
Wilcoxon, limma) is 0.43. It equals 0.45 if one optimizes
over the results obtained with k = 5 only (Approach B)
and if one optimizes over the results obtained with p* =
100 only (Approach C). Optimization over the results
obtained with the t-statistic as fixed gene selection
method (Approach D) yields a median error rate of 0.47,
while the optimization over the three tuning parameter
values yields the higher value 0.50. Most importantly, if
all 10 classification methods are considered simultane-
ously, the bias due to the optimization of the classifica-
tion method dominates all the other sources of bias, as
investigated in more details in the next section.

Bias source II: choice of the classification method

In this subsection, we consider the second source of bias,
namely the optimal choice of the classification method.
Here the tuning parameters are either optimized through
a correct inner cross-validation procedure or fixed to a sin-
gle plausible value in order to handle all 10 classifiers
equally. The minimal error rate is derived over the result-
ing 10 error rates. The 10 considered combinations are as
follows: KNN with k = 5 and p* = 100 genes selected based
on the t-statistic, LDA with p* = 20 genes selected based
on the t-statistic, FDA with p* = 20 genes selected based
on the t-statistic, DLDA with p* = 100 genes selected based
on the t-statistic, PLSLDA with ncomp = 2 and p* = 100

p 2 p 3 p 4 p

p 2 p 3 p 4 p

p 2 p 3 p 4 p

p 2 p 3 p 4 p

p 2 p 3 p 4 p

SVM - - - - - - 0.10

PAM - - - - - - 0.21

L2 - - - - - - 0.09

CV error rates obtained with different methods for the colon data set (top) [17] and the prostate data (bottom) [18], with variable selection (if any) 
based on the t-statistic.

Table 3: Results of the real data study, colon data (Continued)
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genes selected based on the t-statistic, NNET with p* = 100

genes selected based on the t-statistic, RF with mtry = ,

SVM with cross-validated cost, PAM with cross-validated
shrinkage parameter, L2 with cross-validated penalty.

Note that p* = 20 genes were used for the methods of type
2 that require n > p.

For each of the 20 permutation runs, the minimal error

rate  over these 10 classifiers is derived, where the

exponent (H0) in  indicates that this error rate was

computed based on permuted data, i.e. under the null-
hypothesis of no association between the response class
and the predictors.

Moreover, we also derive the minimal error rate over the
6 × 3 + 4 = 22 classifiers yielded as combinations of a clas-
sification method and a gene selection method (for the six
classification methods KNN, LDA, FDA, DLDA, NNET,
with fixed p* = 100). The rationale behind this is that it
makes sense to consider the gene selection procedure as a
component of the classification method rather than as a
tuning parameter. This minimal error rate is denoted as

.

The distribution of  and  over the 20 per-

mutation runs is displayed in form of boxplots in Figure 1
for the colon data set (left panel) and the prostate data set
(right panel). For comparison, Figure 1 also shows the

boxplot of the minimal error rate  obtained by

minimizing over all 124 classifiers (left box) and the dis-
tribution of all 124 × 20 = 2480 error rates obtained by
running the 124 classifiers on the 20 permuted data sets
(right box).

p
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Table 4: Results of the permutation study

Colon A B C D E F

KNN 0.33 0.36 0.37 0.38 0.41 0.45

LDA 0.40 - 0.43 0.43 - 0.46

FDA 0.42 - 0.44 0.47 - 0.48

DLDA 0.36 - 0.41 0.42 - 0.44

PLSLDA 0.34 0.35 0.37 0.37 0.42 0.43

NNET 0.34 - 0.35 0.35 - 0.36

RF 0.40 0.40 - - - 0.42

SVM 0.37 - - - - 0.37

PAM 0.36 - - - - 0.36

L2 0.44 - - - - 0.44

All 0.31 0.32 0.33 0.33 0.34 0.43

Prostate A B C D E Baseline

KNN 0.43 0.45 0.45 0.47 0.50 0.52

LDA 0.46 - 0.47 0.50 - 0.51

FDA 0.45 - 0.47 0.49 - 0.49

DLDA 0.46 - 0.49 0.49 - 0.51

PLSLDA 0.44 0.46 0.47 0.49 0.51 0.52

NNET 0.46 - 0.49 0.47 - 0.52

RF 0.52 0.54 - - - 0.54

SVM 0.57 - - - - 0.57

PAM 0.54 - - - - 0.54

L2 0.52 - - - - 0.52

All 0.41 0.42 0.43 0.44 0.46 0.52

Colon data set [17] and prostate data set [18], with variable selection 
(if any) based on the t-statistic. Approach A: Minimal error rate 
over the different tuning parameter values (k = 1, 3, 5 for KNN, 

ncomp = 2, 3 for PLSLDA, mtry = , , ,  for RF), 

different numbers of genes and different gene selection methods 
(median over the 20 runs). Approach B: Minimal error rate over the 
different numbers of genes and different gene selection methods 
(median over the 20 runs). Approach C: Minimal error rate over 
the different tuning parameter values (k = 1, 3, 5 for KNN, ncomp = 2, 

3 for PLSLDA, mtry = , , ,  for RF) and 

different gene selection methods (median over the 20 runs). 
Approach D: Minimal error rate over the different tuning parameter 

values (k = 1, 3, 5 for KNN, ncomp = 2, 3 for PLSLDA, mtry = , 

, ,  for RF) and different numbers of genes (median 

over the 20 runs). Approach E: Minimal error rate over the 
different tuning parameter values (k = 1, 3, 5 for KNN, ncomp = 2, 3 

for PLSLDA, mtry = , , ,  for RF) (median over 

the 20 runs). Approach F: Median of all 124 × 20 calculated error 
rates.

Table 4: Results of the permutation study (Continued)

p 2 p 3 p 4 p

p 2 p 3 p 4 p

p

2 p 3 p 4 p

p 2 p 3 p 4 p
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Additionally, Figure 1 includes three theoretical baseline
values corresponding to i) an error rate of 50%, ii) the
mean error rate 2N0N1/N2 which would be obtained by
randomly assigning N0 observations to class Y = 0 and N1
observations to class Y = 1 (dotted line), and iii) the error
rate min(N0, N1)/N which would be obtained by assign-
ing all the observations to the majoritary class (dashed
line).

As expected, Figure 1 shows that the global minimal error

rate  over the 124 classifiers is affected by a

strong bias compared to the three baselines. A perhaps

more striking result is that  (obtained by mini-

mizing over the 10 classification methods) and 

(obtained by minimizing over the 22 combinations of
classification methods and gene selection methods) also
carry a substantial bias, especially in the colon data set.

Unsurprisingly,  and  are greater than

, because optimization is performed over 10 and

22 error rates, respectively, instead of 124. However, it is
clear from Figure 1 that a large part of the total bias is due
to the optimization of the classification method. If one
additionally optimizes the tuning parameters (including
the number of genes as a special case), the bias only
increases moderately.

Note that the bias compared to the baseline 50% is higher
for the colon data set than for the prostate data set, which
can be at least partly explained by the difference of the
sample sizes and the ratio of class frequencies (almost 1:1
in the prostate data set, but ≈2:1 for the colon data set).
More precisely, under the null-hypothesis of non-inform-
ative gene expression data, the median minimal error rate
is 31% for the colon data set, and 41% for the prostate
data set.

Outlook: subsample analysis
As an outlook, the bias over the 124 classifiers is also
assessed based on subsamples drawn randomly from the
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Permutation-based analysesFigure 1
Permutation-based analyses. Alon's colon cancer data (left) and Singh's prostate cancer data (right). Boxplots of the mini-

mal error rates ,  and  for the 20 permutations, and of all the error rates obtained with the 124 

classifiers for the 20 permutations = 124 × 20 points (right). The three horizontal lines represent the three baseline error rates 
defined as follows: the error rate obtained by assigning all observations to the majoritary class (plain), the error rate obtained 
by randomly assigning N0 observations to class 0 and N1 observations to class 1 (dotted), and 50% (dashed). Main conclusion: 
The minimal error rate is much lower than all three baseline error rates, and a large part of this bias is due to the optimal 
selection of the classification method.
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original data set. We successively consider subsamples
corresponding to 60, 65, 70, 75, 80, 85, 90 or 95% of the
sample size n. For each proportion of the original sample
size, the procedure is repeated 20 times to average out var-
iability due to random subsampling. The minimal error
rate over the 124 classifiers is derived for each subsample.

Figure 2 represents the boxplots of the minimal error rate

 over the 124 classifiers for each subsample size

(each boxplot corresponds to 20 error rate estimates) for
the colon cancer data [17] and the prostate cancer data
[18]. It can be seen that the median minimal error rate is
approximately 12-13% and 5-6% for all subsample sizes
for the colon and the prostate data, respectively, i.e. does
not increase with decreasing sample size as usually
expected in prediction. This observation is the result of
two competing effects. On the one hand, the error rate of
each single classifier is inversely related to the sample size.
On the other hand, when the sample size decreases, the
variance of the 124 estimated error rates increases, thus
decreasing the minimum over the 124 classifiers. On the
whole, these two competing effects seem to approxi-
mately compensate, yielding a constant median minimal
error rate for both data sets, as can be observed from Fig-
ure 2.

Some solutions
From the results presented in the previous section, it is
clear that one should definitely not report only the best
result Errmin124, because this strategy generates a consider-
able optimistic bias. In practice, the bias due to the opti-
mal selection of the tuning parameters ("bias source I") is
often addressed by nested cross-validation [12]. Within
each cross-validation iteration, the best parameter value is
determined based on an inner cross-validation procedure
and the error rate is then computed for this parameter
value. The final error rate estimate is obtained by averag-
ing over the cross-validation iterations. Note that, doing
that, one averages error rates obtained with different
parameter values. As demonstrated by Varma and Simon
[12], this approach correctly addresses "bias source I".
Going one step further, one could theoretically consider
the classification method as a (nominally scaled) tuning
parameter and also address "bias source II" using nested
cross-validation. However, besides substantial interpreta-
tion problems, this approach would be extremely compu-
tationally expensive and difficult to apply in practice for
methods involving a tuning parameter that also has to be
tuned via inner cross-validation. More research is needed
before nested cross-validation can be recommended as a
standard solution to bias source II. In order to avoid such
biases in practical studies, we give the following recom-

Errmin
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0( )

Subsample analysesFigure 2
Subsample analyses. Alon's colon cancer data (left) and Singh's prostate cancer data (right). Boxplots of the minimal error 
rate over the 124 classifiers for each subsample size (each boxplot corresponds to 20 error rate estimates). Main conclu-
sion: The median minimal error rate does not seem to increase with decreasing sample size.
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mendations, which partly overlap with those given in
[14].

One should test the derived classifier on untouched vali-
dation data whenever possible. This approach consists of
splitting the available data into i) a training set which is
used to construct classifiers and select the "best" one and
ii) a validation data, which is not opened until a final clas-
sifier has been selected based on the training data, in the
vein of the validation strategy described by Daumer et al
[34]. In practice, this is possible only when the sample is
large enough, say, n ≥ 150, a condition which is not ful-
filled by all microarray studies. When a validation data set
is available, the error rate estimates of the cross-validation
procedure on the training set are of secondary impor-
tance. Cross-validation is only used for selecting the best
classifier, i.e. for comparison purposes but not for estimat-
ing the error rate. The estimate of the error rate obtained
from the validation data set is then unbiased, since this
data set was not opened during the training phase. Note
that the more classifiers are tried during the training
phase, the more the validation accuracy will decrease
compared to the best training accuracy, due to multiple
comparisons effects.

If the study does not include any validation step with
untouched data, one should not only report the results
obtained with the best performing method/parameter
combination/number of genes, as demonstrated in our
study on original and modified real microarray data. In
this situation, handling and reporting the results in a fair
way is a complex task. Ideally, the considered classifica-
tion methods should be documented in form of an anal-
ysis plan (in the vein of those written by pharmaceutical
laboratories for their (pre-)clinical studies) before starting
the data analysis. In this context, the publication of anal-
ysis plans on open access platform like Nature Precedings
is to be encouraged [35]. However, analysis plans do not
directly answer the question of how to report results from
different classifiers. Reporting the results of all tried classi-
fiers would be confusing, need too much space, and una-
voidably raise the question of which estimate is the "right
one". Reporting an average error rate would be a solution
to these problems, but some arbitrariness remains in the
choice of classifiers: by including variants of good or bad
classifiers, one could almost arbitrarily decrease or
increase the average error rate. Therefore the intuitive
interpretability of an average error rate would require that
the set of candidate classifiers is the same in all studies.
Although some efforts have been made in the last few
years to define a set of standard classifiers (see for instance
the R packages 'MCRestimate' [36] and 'CMA' [15]), the
standardization of candidate classifiers in medical
research is still in its infancy.

Alternatively, we suggest an approach inspired from our
permutation-based simulation design. Since it does not
make much sense to focus on bad performing classifiers,
we suggest to consider the minimal error rate over all tried
classifiers as the main outcome of the study. However, to
avoid hasty optimistic conclusions, we propose to com-
pare this minimal error rate from the original data Errmin

with the median minimal error rate obtained from data

sets with permuted class labels , as considered as a

baseline in our simulation study. More precisely, we sug-
gest to report the results of microarray studies in the fol-
lowing form: "By using microarray predictors, the
minimum achievable prediction error for the colon data
set could be reduced from 31% (baseline under H0) to

11%." This reporting scheme has two strong advantages:
i) it automatically adjusts for the number of candidate
classifiers and ii) it accounts for the fact that the error rate
also depends on the class proportions.

Conclusions
In this article, we have quantitatively assessed the bias
induced by reporting only the error estimate of an opti-
mally selected classifier. The focus here was on the classi-
fier construction step, which is one of the most complex
from a statistical point of view. However, the optimal
choice of a method might take place at other levels of
microarray preprocessing and analysis, too. Firstly, the
normalization technique (e.g. MAS, RMA, etc for Affyme-
trix) can also be optimized, since there exist a number of
normalization approaches which can be tested easily, for
instance using standardized R packages from the Biocon-
ductor platform. The choice of the normalization proce-
dure may greatly affect the classification accuracy of
prediction rules, perhaps even more than the choice of the
classifier. However, each team probably has its preferred
procedure and applies it systematically without switching
to another one, even if the results are disappointing.
Hence, the choice of the normalization technique is prob-
ably not an important source of optimal selection bias in
the sense considered here.

Secondly, one could optimize the criterion used to filter
out genes that are, e.g. not enough regulated. Several vari-
ants of selection criteria can be used, such as the fold
change or p-value criteria with various thresholds. For
instance, if the results are disappointing using the genes
with fold change > 2 in at least five arrays, the statistician
might decide to be more stringent and select only genes
with fold change > 3. This problem may yield an addi-
tional bias. On the whole, the bias observed in this study
can on one hand be considered as overestimated (because
few statisticians will try all 124 classifiers), but on the

Errmin
H( )0
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other hand as underestimated (because other potential
sources of bias have not been considered).

Note that an unbiased error estimate for the optimal clas-
sifier can be obtained based on validation data, if such a
data set is available. Prediction tools should always be
thoroughly evaluated based on fresh external validation
data before their application in clinical settings [37,38].
Validation on independent data goes beyond the scope of
this paper, which focuses on the developmental phase
involving a CV-like procedure. However, both issues are
tightly connected, since it would be a waste of time and
money to start the validation phase if the results of the
developmental phase are over-optimistic due to an incor-
rect analysis. 

As a conclusion, let us mention that the bias outlined in
the present article does not only affect biomedical articles,
but also potentially methodological articles, where tuning
parameters or method features are often optimized based
on the data sets that are subsequently used for evaluation
and comparison [39].

Developing a new prediction method and evaluating it by
means of comparing its performance to that of competing
methods using the same data set can lead to over-optimis-
tic conclusions in the sense that the new method's charac-
teristics overfit the considered example data sets [39],
following the mechanism illustrated in the present paper.
The biased result is then the superiority of the new
method rather than the prediction error itself. More
research is needed to develop adequate workflows for cor-
rectly addressing this problem in biometric and bioinfor-
matics research.
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