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Abstract

Background: Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by
burn surgeons to predict the healing time of burn wounds; predicted healing time is used to
determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis
of the performance of the technique.

Methods: We used data from a study carried out by five burn centers: LDI was done once
between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn.
Random-effects ordinal logistic regression and other models such as the continuation ratio model
were used to model healing-time as a function of the LDI data, and of demographic and wound
history variables. Statistical methods were also used to study the false-color palette, which enables
the laser-Doppler imager to be used by clinicians as a decision-support tool.

Results: Overall performance is that diagnoses are over 90% correct. Related questions
addressed were what was the best blood flow summary statistic and whether, given the blood flow
measurements, demographic and observational variables had any additional predictive power (age,
sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn
center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and
that, given the same mean flux, women recover slightly more slowly than men. Further, the likely
degradation in predictive performance on moving to a patient group with larger %TBSA than those
in the data sample was studied, and shown to be small.

Conclusion: Modeling healing time is a complex statistical problem, with random effects due to
multiple burn areas per individual, and censoring caused by patients missing hospital visits and
undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap
and permutation tests to a medical problem of topical interest. New medical findings are that age
and %TBSA are not important predictors of healing time when the LDI results are known, whereas
gender does influence recovery time, even when blood flow is controlled for.
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The conclusion regarding the palette is that an optimum three-color palette can be chosen
'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing
the percentage of correct diagnoses.

Background
The use of laser-Doppler imaging (LDI) for predicting
burn healing time is increasing, and there are several
recent reviews that compare it favorably with other
techniques ([1-4]). The basis of the methodology is that
the proximate cause of healing is skin blood flow, which
is measured by the laser-Doppler imager in perfusion
units (PU).

The medical decision to be made is whether to allow
healing to occur naturally, or, if that would be too slow,
to operate to excise the burn and apply a skin graft. As a
decision aid, clinicians consider it desirable to predict
healing time as being either less than 14 days, 14–21
days, or over 21 days. Hence model predictions are
ordinal. There are many papers describing the benefits of
LDI as a decision aid for clinicians, e.g. [5-8]. In essence,
LDI can enable predictions of healing time that are
correct over 90% of the time, whereas unaided clinician
judgement is correct only about 70% of the time [5].

This paper uses data collected by five burn centers, two
in the UK, one in Belgium and two in the USA, to
develop and validate a probabilistic model of burn
healing time, as a function of the laser-Doppler flux
measurements, and of demographic and observational
variables. Besides confirming the performance of laser-
Doppler methodology, such modeling can address the
question of its statistical sufficiency. This is, whether,
given laser-Doppler blood flow measurements, demo-
graphic and observational variables have any further
predictive ability, or whether the blood flow measure-
ment recorded as mean flux in PU is a sufficient statistic
(see [9] for a definition of this term). The model also
allows 'what if' questions to be asked, such as how far
predictive ability might degrade on moving to a different
patient mix than that seen in the data, for example for
patients with a much higher percentage of total burned
surface area (%TBSA). Current practice is for the clinician
to view a false-color image of the region of interest, in
which high blood flow areas are colored red and low
blood flow regions blue. Figures 1 and 2 give an
example. A suitable color palette must be chosen for
this purpose, and this problem is also discussed here.

We may expect laser-Doppler devices in the future to do
more than display blood flow pictorially to aid
decisions. In this paper, a probabilistic model is
developed that would enable the predicted probabilities

Figure 1
Picture of a laser-Doppler burn image.

Figure 2
Color photograph of the same burn area.
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of time to heal within 14 days, 14–21 days or over 21
days to be displayed. The clinician would then have a
prediction of healing time together with an indication of
its probability of being correct. Eng-Kean Yeong et al.
(2005) [10] have predicted burn healing times using
artificial neural networks and a reflectance spectrometer.
The work here is in that spirit, but using a 'traditional'
probabilistic model, the proportional odds (PO) model.

To enter a caveat: it is not yet practicable to use a mean
flux-based methodology for clinical wound class predic-
tion. This is because real burns have a distribution of flux
values and the spatial distribution of these is also
important. For these reasons two extra, overlap colors are
used for the LDI image color-coding, instead of discrete
class boundaries, to aid clinical interpretation with
flexibility. At present, it is necessary to eyeball the flux
levels and their spatial distributions, in conjunction with
recognising confounding factors such as undebrided
dead tissue (the dead epidermis not removed), to make
an accurate assessment of wound healing potential.

The next section briefly describes the medical methodol-
ogy, then the dataset used is described, then the
statistical methodology is described and the results of
fitting models to the data are given. Next, a statistical
study of the 5-color palette currently in use is given,
followed by conclusions.

Methods
Medical Methodology
The full methodology will be described in a separate
clinical publication; briefly, the laser-Doppler imager
records flux measurements of skin blood flow, measured
in PU, for each of typically thousands of pixels
corresponding to a wound area. The mean flux measure-
ment with which we shall be largely concerned is the
average flux across these pixels.

Burn wounds were assessed only once by laser-Doppler
imager (moorLDI, Moor Instruments, UK) between 2
and 5 days post burn, and the burns were photographed
at this time and also at 14 and 21 days post burn to
record the burn at time of LDI and its subsequent
healing.

Assessments were made at 14 and 21 days post burn
because these times are important for clinical decisions
on the burn treatment that is likely to result in least
scarring: surgical (skin graft) or conservative (dressings
only). A burn wound to most adults that heals within 21
days will do so with minimal scarring: 'Second degree
burns that heal within 3 weeks are unlikely to leave scars'
[11] ch5, p 70. Exceptions to this include infants, where

the risk of infection is higher, and patients of ethnic
origins predisposed to hypertrophic scarring. For these
groups, surgical management is frequently performed on
wounds that are expected to take longer than 14 days to
heal [8].

Healing was assessed by clinicians and was defined as a
wound with a continuous covering of epithelial cells.
The boundary of healed wound at 14 days and 21 days
post burn was assessed from the photographs taken at
these times. Areas healed and not healed at 14 and 21
days were mapped back on to the original laser Doppler
images for later analysis. This was necessary because a
wound is usually heterogeneous, with parts healing at
different times. These areas were then redrawn on a grey-
scale photo image that was pixel-position identical with
the flux image (obtained simultaneously with the flux
image); flux values within the corresponding regions of
interest were then exported for analysis.

Exclusions were made where burn wound boundary
selections would have had a significant effect on the
result, for example a boundary at a steep flux gradient.
Prior to analysis, the data used here were screened for
clinical factors such as wound infection, tattoos, drugs
and concomitant patient sickness; and technical factors
such as patient movement, edge effects and reflections.

The day of the LDI scan was determined by clinical
factors, staff availability and the study protocol: the
protocol restricted the day of scan to within 2 to 5 days
post burn based on previous observations by others on
the reliability of the LD technique.

Besides time to healing, the usual demographic vari-
ables, age and gender, were recorded, also skin pigmen-
tation, which could affect recovery time. The medical
history variables relevant to burns studies were total
burned surface area, burn site on the body, and burn
cause. Treatment and procedural variables were burn
center and day of LDI scan.

The clinical decision to perform surgery inevitably
censored the healing time in some cases. Some patients
went to surgery for some of their burns before day 14 or
between days 14 and 21. If the surgery was before day
14, the wound was excluded; if after day 14 we have
recorded healing time > 14 days (similar to a patient
who did not attend at day 21) unless there was further
biopsy evidence. Where possible, biopsies were taken
from wounds at surgery and some of these results for
healing time have been included in the current analysis.
Where the histological analysis found a full thickness
wound, these are known to take longer than 21 days to
heal; where histology found the wound to be superficial

BMC Medical Research Methodology 2009, 9:11 http://www.biomedcentral.com/1471-2288/9/11

Page 3 of 14
(page number not for citation purposes)



dermal (at the wound edge), these were classified as
healing time < 14. Wounds found to be deep dermal
were not included because these could heal before or
after 21 days and even before 14 days if adjacent tissue
had very high flux.

Exploratory Data Analysis
In total, data on 768 burn areas were available, but of
these only 310 had mean flux measured, of which 299
were complete, the other 11 having a missing outcome
assessment because the patient did not attend one
follow-up visit or because of surgery. The analysis here
is focused on the 310 burn areas for which flux
measurements were available. These areas came from
100 patients.

Table 1 summarises the univariate statistics, for the 310
cases for which flux data were available. Note that
for one of the five burn centers, there were no cases with
flux measured. Median age was 32 years, minimum
1 and maximum 88 years, and the %TBSA (total
burned surface area) had median 6%, minimum
1% and maximum 68%. A larger sample of 581 burn
areas, where flux measurements were not always avail-
able, was used to boost the statistics for an exploratory
analysis of the relationships among the observational
variables.

There are naturally many correlations among these
variables. Demographic mix and %TBSA varied across
the burn centers. Similarly, mean age varies with burn site.

There are some interesting gender differences. The type
of burn site varies a little by gender, and this is
statistically significant as shown by chi-squared test
(c2[3] = 11.7, p = 0.008), with men relatively more likely
to be burnt on the face, and women on the torso. Burn
cause varies considerably between the genders (table 2).
It is mainly men who experience flash, chemical,
electrical and contact burns, presumably because of
gendered employment. This difference is very significant
(c2[5] = 75.6, p < 0.001.)

The age and %TBSA distributions are similar. It is also
clear that healing time is longer for females than for
males. There is however the problem of confounding, for
example the slower female healing time could be at least
partly the result of gender-specific burn sites and burn
causes. This issue will be addressed in the survival-time
modeling.

The slower female healing time is an important fact, and
we briefly summarise previous findings in this area.
There are a few studies on gender and morbidity, with
mortality being the more frequent focus. The effect of
gender, in these studies, is considered with other patient
and wound variables: e.g. age, race, %TBSA and wound
type, inhalation injuries and biochemical markers. Large
%TBSA burns are included in the patient groups and
these studies indicate that gender does influence out-
come. Length of hospital stay and duration in intensive
care have been used to assess morbidity. For adults,
length of stay was greater for women [12] but in
children, duration in the intensive care unit was found

Table 1: Data summary, showing breakdowns of burn areas from
100 patients

Variable Category Count

Healing < 14 days 190
14–21 days 47
> 21 days 62
censored 11

Burn center 1 4
2 218
3 37
4 51

Scan day 2 60
3 206
4 37
5 7

Burn site limb 127
extremity 88
torso 72
face 23

Gender male 182
female 128

Race white 294
black 16

Burn cause scald 167
flame 108
chemical 10
flash 12
electrical 2
contact 11

Table 2: Gender differences in burn statistics

Male Female

Mean Age 33.4 32.0
Mean %TBSA 9.2 8.5
Burn cause
Scald 49.7% 50.3%
Flame 61.1% 38.9 %
Chemical 100.0% 0.0%
Flash 100.0% 0.0%
Electrical 100.0% 0.0%
Contact 81.8% 18.2%

Healing time
< 14 days healing 69% 31%
14–21 days healing 47% 53%
> 21 days healing 39% 61%

The unit of observation is individuals for age and %TBSA, otherwise it is
burn area. 36% of the burn patients were female.
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to be greater for boys [13]. The child gender difference
was also found for mortality, higher for boys than for
girls [14]. Adult mortality has been found to be greater in
women by two-fold [15, 16], and there is debate over the
age group at highest risk [17, 18].

The findings of the current investigation of the effect of
gender on healing time are therefore consistent with
previous work. However, it must be stressed that there
are no studies looking at the residual effect of gender
once the laser-Doppler measurement is known, which is
the main focus of this study

Statistical Methodology
There were 433 burn areas for which clinician's predic-
tions of healing time using the LDI were available. Of
these a subset of 310 wounds was appropriate for
computing average laser-Doppler flux. The analysis here
focuses on the use of flux as a predictor rather than using
the clinician predictions, mainly because this shows the
performance of the technology when quite divorced
from clinical judgement. Also, the mean flux measure-
ment data are probably better suited to answering
questions about the role of covariates. Proportional-
odds (PO) ordinal logistic regression is the most popular
method of analyzing data such as these, where a
dependent variable Y that takes ordered integer values
is modeled as a function of a vector x of covariates. An
introductory account is given in [19] and general
descriptions in [20-22]. We seek to predict a dependent
variable (healing time) that is ordered, and model the
logits of the cumulative probabilities of healing in under
14 days or in 14–21 days as a linear function of the
covariates. In the 'parallel lines' model usually fitted to
the kth (of 2) cumulative probabilities P1 and P2, the
logit is a function

logit(Pk) = log(Pk/(1 - Pk)) = ak + bT x, (1)

where only the intercept a is a function of k, and the
vector of coefficients b of the covariates x is not. The
probabilities of the three healing times, p1, p2 and p3 are
given by p1 = P1, p2 = P2 - P1 and p3 = 1 - p1 - p2 = 1 - P2.

Surgeons occasionally desire to predict probabilities of
healing over different time intervals than the ones used
here. We suggest that this could be attempted by
regarding a as a function of time t, for example a = g
log(t/t0). Then we can determine g and t0 from a1 = g log
(14/t0), a2 = g log(21/t0). With this parameterization,
probabilities of healing over two or three different
intervals could be found. This model corresponds to a
log-logistic distribution of healing time for fixed
covariates.

In a later section of this paper, on palette derivation (a
discriminant problem) we follow the methodology of
[23, 24], which dispenses entirely with the need to
choose an ordinal model. However, for assessing the
significance of covariates using likelihood-based infer-
ence, a model is required. Other models besides PO are
also available ([25-27]), and there is no overriding
reason to choose the PO model. Hence two other models
were also fitted, to see whether the PO model could be
improved on, the probit and continuation ratio (CR)
models [26, 28]. The latter model is applicable where, as
here, the three data groups are periods. As will be seen,
neither of these models fitted better than the PO model.
Other models, such as the multinomial model, are useful
only when the categories are unordered, and are less
efficient than ordinal models when used with ordinal
data [29].

The covariates used in this study, besides the LD flux
measurement, are those demographic variables that are
usually important in medicine, age and gender, plus
those known to be important in predicting healing time,
such as %TBSA and burn site, and some that might
possibly be thought to be relevant, such as skin
pigmentation and burn cause. It is thought that these
last two are probably not important. For example,
natural skin pigmentation does not affect LDI flux
from debrided wounds because the pigment is removed
with the epidermis.

The proper selection of predictor variables for use in a
model raises some statistical problems (e.g., [28], ch. 4.
In particular, modeling choices made by the statistician
after viewing the data are often not reflected in the final
p-values and confidence intervals produced. Results then
appear unduly significant or accurate, and traditional
approaches, such as stepwise regression, can give
misleading results. This problem looms large when
sample sizes are small and there are many variables.
Here, fortunately, we have the opposite situation.

The data posed some problems that necessitated a
purpose-written computer program. An example is the
existence of a few censored cases, where patients did not
attend a hospital visit. In these cases, it was known only
that healing took place in under 21 days or after more
than 14 days. Where surgery was performed, burn
severity information was obtained from biopsy results:
less than 14 days was assumed for superficial dermal
wounds; more than 21 days was assumed for full
thickness wounds. Fitting the model by maximum-
likelihood estimation meant that these cases could be
included. A more serious problem was the existence of
multiple burn areas on the same individual. The 310
burn areas occurred on only 100 patients. Although
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demographic variables that could influence healing time
such as age and gender were known, there might be a
further 'frailty' that varied between individuals, so that
healing times would not even be conditionally indepen-
dent [30]. Obesity and smoking, for example, affect
health, but were not tested here. To model frailty, we add
a hypothetical frailty variable, and each individual has a
random value of it. A normal distribution for the
variable is the simplest choice, and as frailty turned out
to be a small effect, no more elaborate modeling was
done.

Taking the mean contribution from this variable as zero
and the variance as s2 gave a likelihood function
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where the jth burn area on the ith of N individuals has
healing time Yj and covariate vector xj. The assumption
of a zero mean is nugatory, as a nonzero mean would be
absorbed into the constants a1 and a2. For censored
data, where for example, healing is only known to occur
in under 21 days, the probability in (2) is the probability
of this observed event, p1 + p2 or P2.

The integration could be done by the Gauss-Hermite
method as recommended by [31]; in fact adaptive
integration using the Numerical Algorithms Group
(NAG) integration subroutine D01AMF was used here.
The website [32] gives full details of the NAG routines
mentioned here.

The log-likelihood function ℓ = ln  was maximised
using the NAG function minimisers E04UCF and
E04CCF [32]. The former uses a sequential quadratic
programming method and is relatively fast, and the latter
uses the Nelder-Meade method and is slow but robust.
The best of a large number of random restarts (20) from
the current function maximum was used, to ensure that
the global maximum of the log-likelihood function had
been found.

The asymptotic covariance matrix for fitted model
parameters is taken as the inverse of the Hessian matrix
−∂ ∂ ∂ =

2l / |b b b bi j where the bi are model parameters,
and b̂ are the maximum-likelihood estimates. To obtain
a more accurate estimate of parameter errors for small
samples, the likelihood was maximised for 1000 boot-
strapped samples, in which individuals were sampled
from the dataset with replacement; see e.g. [33]. Boot-
strap resamples that did not allow all parameters to be
estimated were rejected. This can happen, if for example,

the resample does not contain any examples of a
particular burn cause.

Estimates of the model's predictive ability were found by
taking the predicted healing time as that with the highest
probability. The resulting percentage of correct assign-
ments is however liable to be over-optimistic, because
the model is evaluated in-sample. A recommended
method of correcting for this is to calculate the
'optimism' of an in-sample estimate as the mean of a
large number of differences Di between estimates from a
bootstrapped dataset evaluated on the bootstrapped
dataset and on the original dataset. Finally, the mean
optimism D is subtracted from the sample estimate
(e.g. [28], section 5.2.5, [33]). This procedure is better
than simply splitting the sample into two, one for model
fitting and one for validation [34]. The predictive ability
of a linear model may be measured by the coefficient of
determination, R2. For instance, [35] and others pro-
posed a pseudo R2 for general models given by

− − = −log( ) { ( ) ( )},1
22R
n

l lbb 0

where b = 0 denotes the 'null' model. Nagelkerke (1991)
[36] proposed a correction, since the maximum value of
R2 attainable is less than 1. The correction required
normalising R2 to its maximum value of 1 - exp{2n-
1
ℓ(0)}, and we use this corrected value of R2.

Significance tests that a parameter bi is zero would
classically be done using the Wald statistic, i.e. using the
estimated standard errorof theparameter estimate (see e.g.
[28], section 9.2.2). Alternatively, the increase in log-
likelihood Δℓ on 'floating' the parameter can be used as a
test statistic, when under H0 we have that 2Δℓ ~ c2[1]. An
alternative is to carry out a Wald test using the boot-
strapped error estimate. However, an exact test can be
obtained by retainingΔℓ as a test statistic, but obtaining its
reference distribution underH0 by permuting the relevant
variable xi among the cases. The p-value of the test is the
proportion of permutations for which the computed Δℓ
exceeds the value for the original sample (see e.g. [37] and
[33], chapter 15.). Variables such as gender must of course
be permuted among individuals rather than among burn
areas. The logic is that underH0 gender is irrelevant, and so
the permuted datasets generate the reference distribution
for the test statistic. Note that this is not themore elaborate
procedure used by [38].

Since the number of distinguishable permutations (combi-
nations) is very large, a random sample of 1000 was
generated to compute the p-value. A random permutation
of n labels held in an array was achieved by swapping each
array element in turn with a random array element.
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The main advantage of a permutation test over a
bootstrap hypothesis test is that the permutation test
correctly generates the reference distribution of the test
statistic under H0, whereas the bootstrap hypothesis test
can only generate the distribution of the test statistic
under H1. Also, the p-value obtained is exact, and not an
asymptotic approximation. Permutation tests have a
simple rationale; under H0, gender labels are irrelevant
to healing, and so we can obtain an equivalent dataset by
shuffling them. The only drawback here is the extra
computing time needed; a separate set of permutations
must be carried out for each variable or related set of
variables in turn.

In the analyses done here, variable selection was not a
problem: given the laser-Doppler flux, only gender was
significant. This contrasts with many clinical studies,
where many covariates are significant, and the choice of
best model is not easy.

Results
Data Analysis: LDI performance
Predictors of healing time without LDI measurements
Before considering the laser-Doppler measurements as
predictors of healing time, it is worthwhile modeling
healing time purely as a function of demographic and
observational variables. This allows the partial con-
founding caused by correlation between covariates to be
resolved, and in particular answers the question of
whether the slower female healing time is solely due to
gendered burn site type. Table 3 shows the results of a
proportional odds model analysis, using the model from
(1) based on 581 regions of interest from 130
individuals. The variables x were dummy variables
corresponding to 3 of the 4 burn sites, gender, race,

burn cause, and two variables for age effect. The
reference categories were burn site 1 (limbs) and scald
for burn cause. Analyses were also done including factors
such as burn center and day of scan, but any effects due
to these were not significant, and table 3 shows an
analysis including only the more interesting variables.
Note that the joint significance of related variables such
as linear and quadratic age terms was also evaluated by
likelihood ratio tests (not shown).

It can be seen that the bootstrapped standard errors of
parameter estimates are always larger than the asymp-
totic theory values that are commonly used. This is
particularly marked for variables such as race and
some burn causes, where very few individuals may
have a particular burn cause. This shows the wisdom
of using bootstrapped estimates rather than relying on
asymptotic theory. The p-values in the tables are those
of two simple bootstrap hypothesis tests. The first is
the bootstrap percentile test, where the resampled
distribution of fitted parameters is shifted left by b̂ so
that it approximates to the distribution of the fitted
parameter values under H0. This gives a simple
(nonparametric) two-sided bootstrap hypothesis test.
The second p-value is derived using the normal
approximation and the bootstrapped standard error
se*. The analytic approximation sometimes gave much
lower p-values than either of these tests; for example,
for gender, the analytic p-value was 0.0004, as
compared to the last two columns of table 3 (p-values
of 0.084 and 0.073).

The Cox and Snell R2 = 0.138, the Nagelkerke R2 = 0.158,
and the proportion of correct assignments is only 61%,
showing the poor predictive ability of this model.

Table 3: Demographic and observational predictors of healing based on 581 burn areas, where se* is the bootstrapped standard error of
the estimated parameter

Parameter b̂ se se* p-value 1 p-value 2

a1 1.209 0.267 0.532 .041 0.023
a2 - a1 1.008 0.095 0.122 < .001 < .001
Burn site 2 (extremity) 0.912 0.225 0.361 .018 0.012
Burn site 3 (torso) 0.370 0.250 0.300 .21 0.217
Burn site 4 (face) 1.732 0.469 1.18 .023 0.141
Gender (female) -0.696 0.197 0.389 .084 0.073
Race (black) 0.168 0.587 2.34 .888 0.943
Age (yrs) -0.0084 0.0041 0.0072 .236 0.239
(Age - 35)2 -0.0006 0.0002 0.00034 .106 0.103
%TBSA -0.0104 0.0088 0.043 .736 0.762
Burn cause: flame -0.589 0.219 0.370 .098 0.111
Burn cause: chemical -0.847 0.503 1.97 .351 0.668
Burn cause: flash -0.385 0.436 0.772 .617 0.618
Burn cause: electrical -2.175 0.964 8.49 .687 0.798
Burn cause: contact -1.507 0.511 1.36 .143 0.266

The two bootstrap p-values from the two-sided bootstrap hypothesis test are from the bootstrap percentile and bootstrap parametric tests
described in the text. The more reliable p-values derived from permutation tests are given in the text.
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Healing appears much faster at some burn sites such as
extremities and face, and permutation tests showed that
the variation in healing time between burn site types is
very significant (p < 0.001). Gender was also significant
(p = .026). Figure 3 shows the coefficient b̂ for gender
and its reference distribution derived by permutation of
gender labels, together with a fitted normal curve. Age
was also significant (p = .024). The effect of age is in the
table modeled using a linear and quadratic term, the
quadratic term being (age - 35)2 rather than age2 for
numerical stability. These two terms give a healing time
that improves slightly with age up to about age 30, and
subsequently decreases. Modeling the effect of age using
dummy variables corresponding to age ranges gave
similar results. Burn cause was not significant (p =
0.194). Burn center and day of scan were also not
significant factors.

Predictions of healing time with LDI measurements
Table 4 presents the results when the laser-Doppler flux
measurement is included. Permutation tests show that
burn site is now not significant (p = 0.78), and neither is
age (p = .24). However, gender is still a significant
predictor (p = 0.002), and its statistical significance has
increased. Aside from gender, the laser-Doppler mea-
surement is a sufficient statistic. The Cox and Snell R2 =
0.931 and the Nagelkerke R2 = 0.976, confirming the
excellent predictive ability of this model.

Including a random effect as in (2), when gender is
omitted and only mean flux is used as a predictor, a drop
in minus log-likelihood from 73.56 to 69.21 is obtained
on including the random effect, which is thus clearly
significant (p-value of significance test is 0.0016). The
standard error of the random effect was estimated as
1.91. However, on including gender as a covariate,
minus the log-likelihood then fell from 63.44 to 62.10,
giving a non-significant random effect (p-value of
0.052). The standard error was 1.38, a little lower. It
seems that once gender is included as a covariate, the
random effect is no longer needed. This suggests that
covariates that retard healing and were not available in
the dataset, such as smoking and obesity, might also be
irrelevant once blood flow measured as mean flux is
known.

To test whether the gender effect varied with age, further
terms were added to the model, such as an age by gender
interaction term (equal to age for females, zero for
males). A permutation test was carried out, by permuting
this interaction variable among individuals and finding
the proportion of such random permutations for which
the log-likelihood was at least as large as the observed
value, when this variable was included in the model. The
p-value was 0.105, showing that there is no evidence that
the gender difference in healing times varies with age.
Finally, we considered use of maximum and minimum
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Figure 3
The coefficient b̂ (vertical dotted line) and its
permutation distribution under H0 for gender, in the
absence of a laser-Doppler measurement, with fitted
normal distribution.

Table 4: Predictors of healing, when LDI mean flux measurement is included, based on 310 burn areas for which flux measurements
were available

Parameter b̂ se se* p-value 1 p-value 2

a1 -0.292 0.764 1.115 0.77 0.79
a2 - a1 5.826 0.912 1.515 0.008 0.00012
Burn site 2 (extremity) 0.635 0.626 0.685 0.34 0.35
Burn site 3 (torso) 0.192 0.705 0.956 0.79 0.84
Burn site 4 (face) 0.580 1.384 8.19 0.78 0.94
Gender (female) -1.979 0.597 0.793 0.023 0.012
Race (black) -1.579 1.373 5.99 0.376 0.792
Age (yrs) -0.0002 0.012 0.014 0.993 0.990
(Age - 35)2 -0.0008 0.0004 0.00094 0.191 0.280
%TBSA 0.048 0.039 0.048 0.272 0.3248
Log of mean flux 9.367 1.190 2.35 .012 0.00007

Meaning of headings as for table 3.
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logged flux, standard deviation of flux (coefficient of
variation), and higher powers of the logged flux. None of
these variables were statistically significant.

The model finally arrived at is very simple. Including
gender besides mean flux as a predictor, table 5 shows
the crosstabulation of predicted and observed healing
times. As can be seen, the bootstrap-corrected percentage
of correct classifications is 92%. This compares to the
situation where gender is omitted from the model, when
the correct classification rate is 91.3%, reducing to 90.9%
when the bootstrap 'optimism' correction is applied.
Figure 4 shows the predicted probabilities of the three
healing periods as a function of mean flux.

Varying the model used from the proportional-odds
model had very little effect. Using the probit link function
instead of the logit decreased the log-likelihood function
by 1.16, a slightly worse fit, and changing to the
continuation ratio model decreased the log-likelihood
by 0.207. The justification for taking the PO model with
gender andmean flux as covariates as the definitivemodel
was that it was theminimum-AICmodel (MAICEmodel).

The effect of total burned surface area (%TBSA)
Since the effects of total burned body area and skin
pigmentation are likely to be important issues in the use
of LDI, the statistical conclusions here will be spelt out.
In the case of skin pigmentation, there are only 15 burn
areas from black-skinned patients. It is not surprising
that the coefficient for this factor is not statistically
significant, and we really cannot draw any conclusion
here from the data. There is however no reason to think
that skin pigmentation would have an effect on healing
for a given observed flux once skin is debrided.

The case of percentage total body surface area burned is
slightly different. Here, apart from a few cases, the data
do not extend much beyond 30% TBSA. In fact, the
distribution of %TBSA fits well to a lognormal distribu-
tion, so that the natural logarithm of %TBSA has mean
1.956 and standard error 0.883.

However, this is a wide variation, and it allows the %
TBSA coefficient in equation 1 to be determined with
some accuracy; from table 4, the estimated coefficient is
0.0481, with a standard error of 0.051. Note that the sign
of the effect is such that survival would improve with %
TBSA, which would seem unlikely, so there is not a shred
of evidence for any %TBSA effect.

A statistical task remains however, because the relevant
question is slightly different. Given the possible (poster-
ior) distribution of the %TBSA effect as determined from
the data, would any clinically significant degradation in
predictive performance result at high %TBSA from
assuming a model with zero %TBSA effect?

To give some answer to this, a fortran95 simulation
program was written. Fluxes were simulated by 'boot-
strapping' the flux measurements (sampling with repla-
cement), and a sample of 'patients' were generated with
PU (perfusion unit) measurements from this distribu-
tion, and random %TBSA from the lognormal distribu-
tion of %TBSA. Healing times were simulated from the
average flux model prediction for healing time, using
flux and %TBSA as predictors. The 'data' healing times
were generated randomly from the model with the
coefficient of the %TBSA effect randomly chosen from its
normal distribution. This can be done, as we know the
estimated coefficient and its standard error. We thus
imagine that the data will obey an unknown model that
has a %TBSA coefficient consistent with our findings.
The model used for prediction however has the %TBSA
coefficient set to zero.

The misclassification rate obtained when the maximum
likelihood estimate of healing time was used (i.e. we took
the largest of the 3 probabilities) was 10.2% in this

Table 5: Classification performance of the POmodel with gender
and mean flux

Pred. < 14 days Pred. 14–21 days Pred. > 21 days

Obs. < 14 days 182 8 0
Obs. 14–21
days

9 36 2

Obs > 21 days 0 3 59

The % correctly classified is 92.6, the bootstrap 'optimism' is 0.6% and
the corrected % correctly classified 92.0%.
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and fast healing for males and females under the PO
model, as a function of mean laser-Doppler flux.
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simulation. This agrees well with the 9% misclassification
rate seen in the simple fit of the model to data. On moving
to a scenario where the lognormal distribution of %TBSA is
scaled up so that the mean %TBSA is 40% the misclassifica-
tion rate increased to 13.6% and with 75% mean %TBSA,
the misclassification rate increased to 17.7%.

This shows that, as expected, uncertainty in the amount
of dependence of healing time (given a flux measure-
ment) on %TBSA, does introduce extra error into healing
time predictions as we extrapolate to high average %
TBSA. Although we cannot reject the hypothesis that %
TBSA has no effect on healing time once given a flux
measurement, there could still be an effect large enough
to degrade prediction ability when predictions are made
ignoring this covariate. The misclassification rate could
increase by a factor of 1.7. However, for healing time,
this would only give a drop to maybe 85% accuracy. The
conclusion is that, unless qualitatively different phe-
nomena occur for patients with high %TBSA, the degree
of accuracy of the model parameter estimates rules out
any large increase in the rate of misclassification.

Goodness of Fit
This was explored in two ways: by fitting various models
in the attempt to improve fit, and by diagnostic plots.
The first approach led to the use of the logged mean flux
as the best predictor in proportional-odds models.

Figures 5 and 6 show observed mean values for predictor
variables for the three healing classes, and the predicted
mean values from the PO model. Predicted mean values
for a variable are calculated by including all cases,
weighted by the predicted probability of group

membership (e.g. [28], section 13.3.5). This relies on
the use of Bayes' theorem, to turn the model into a
predictive model for the covariates, given the healing
time group. A bad fit is indicated by a strong divergence
between the observed and predicted values, or an
observed value that does not change monotonically
with healing time. In figures 5 and 6, the agreement
looks very good. The high value of R2 and the high
predictive ability confirm that the model fits the data
well.

Palette Construction
Recall that a false color image of the burn area is used by
clinicians, as shown in figure 1. The 'palette' is the choice
of PU-cutpoints that defines whether the pixels of a burn
region should be colored with color 1, 2, 3, 4 or 5, and
does not specify which shades are actually used.

The 5-color palette currently in use has PU-cutpoints at
200, 260, 440 and 600 PU. The colors 1 to 5 are blue,
green, yellow, pink and red, and in fact the blue region is
divided into dark and light blue at 140 PU. The decision
rule for healing-time prediction recommended to clin-
icians is that the 'buffer colors' green and pink should be
lumped in with whichever of their neighbors has the
larger area (rule 1).

Pixel data were available for two datasets, one used in
palette construction, the other for palette validation.
These were combined for the analysis here. The statistical
analysis aimed to appraise the palette in current use, and
to discover whether it could be optimised. Also, with an
eye to the future, with individual pixel data available, we
ask what is the best decision rule that can be constructed
for 'automatic' use. Here, the device envisaged would
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show the probabilities of the three healing times for a
region of interest. It is interesting to ask whether the
mean flux that was used earlier as a healing-time
predictor is a sufficient statistic, or whether, given the
full distribution of flux density, a better predictive rule
could be found. Using two flux cutpoints, the optimum
was found by minimizing the mean percentage of wrong
healing-time class assignments per healing-time group.
The NAG function Nelder-Meade function minimizer
E04CCF was used [32], with 50 sets of random starting
values. It is also possible to convert this to a discrete
optimization problem, by varying the two cutpoints in
units of 1 PU. This gave the same results.

Appraising the palette
Table 6 shows how the current palette would perform, if
the cutpoints were chosen in the center of each of the
two 'buffer' colors. The decision rule based on the
proportions of pixels below cut 1 (q1), between the cuts
(q2) and above cut 2 (q3) is

if(q1 ≥ q2 &q1 ≥ q3)group = 3

if(q2 ≥ q1 &q2 ≥ q3)group = 2

if(q3 ≥ q1 &q3 ≥ q2)group = 1.

When the five colors are used as designed, the classifica-
tion of a case depends on the rule used for interpreting
buffer colors. We can formulate at least four possible
decision rules. Rule 1, 'lump buffer colors in with their
neighboring color of larger area' is what is recommended
to clinicians. Rule 2 is to ignore the buffer colors, and to
predict healing-time from the largest area of the three
colors blue, yellow and red. Rule 3 is to use the buffer
colors to make the best case for each healing time. The
visual decision made by a clinician would then be for
example 'is the total area of color consistent with slow
healing (colors 1 and 2) greater than the total area
consistent with medium-time healing (colors 2, 3 and
4)?'. This is illustrated in the pseudocode:

if(q1 ≥ q3 + q4 &q1 + q2 ≥ q4 + q5)group = 3

if(q2 + q3 ≥ q5 &q3 + q4 ≥ q1)group = 2

if(q5 ≥ q2 + q3 &q4 + q5 ≥ q1 + q2)group = 1.

Rule 4 is 'regard the buffer colors as identical to the
neighboring color corresponding to faster healing time'.
Dark and light blue then mean slow healing, green or
yellow mean medium healing time, and pink or red
mean fast healing. This means that the 6-color palette is
effiectively used as a 3-color palette.

Table 7 shows the performance of the palette under these
four rules. It is interesting to see that the accuracy of
diagnosis is very similar under rules 1, 2, and 3. This is
reassuring, as no doubt, regardless of advice, different
clinicians will interpret the false-color image in their
individual ways. However, adoption of rule 4 would give
worse results. From table 6 the optimized palette with 3
colors gives only a tiny improvement in the average
percentage of wrongly-categorized cases. The cutoff
between fast (< 14 days) healing and medium (14–21
days) healing has moved down slightly, so that fewer
fast-healing cases are misdiagnosed as medium-healing
time cases, but on the other hand, more medium
healing-time cases are misdiagnosed as fast healing. In
general, it was found by varying the cutoffs that many 5-
color palettes could be devised with similar perfor-
mance. The buffer zones can be wider or narrower. The
optimized palette in table 7 performs only slightly better
than the palette in current use, and some of this
improvement may be due to the double use of the
data for fitting and validation. In fact, using the leave-
one-out method of crossvalidation, the 11.6% misclas-
sification rate increased to 13.7%, eroding the improve-
ment completely.

Table 6: Classification performance of: (A), the current palette,
taking color boundaries in the center of 'buffer' colors at 230 and
520 PU

A) Current Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 160 26 0
Obs. 14–21 days 5 39 3
Obs > 21 days 0 3 25

% wrong % av. wrong per
class

14.2 13.9

B) Optimized Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 175 11 0
Obs. 14–21 days 8 36 3
Obs > 21 days 0 3 25

% wrong % av. wrong per
class

9.6 13.3

C) Mean flux Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 176 10 0
Obs. 14–21 days 7 38 2
Obs > 21 days 0 3 25

% wrong % av. wrong per
class

8.4 11.8

Note that the current palette was not designed to be used in this way!
For (B), the optimized palette, the flux boundaries are 241 and 452 PU.
Lastly, (C), using mean flux as a classifier, flux boundaries are 250 and
465 PU.
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Clearly, other criteria than the percentage of wrong
diagnoses would be needed to optimize the 5-color
palette. A possible approach would be to penalize
certainty in wrong diagnosis, and uncertainty in right
diagnosis. It is arguably best to be right, and to be sure
that you are right, less good to be right but unsure, worse
to be wrong and unsure, and worst of all to be wrong
and sure that you are right. The probability q1 + q3 + q5 is
a measure of certainty, and q2 + q4 a measure of
uncertainty. A loss function such as

( ) ( / ) ( )
.

1 1 101 3 5 2 4+ + + + +∑∑ q q q q q
right classwrong class.

penalizes complete certainty in wrong diagnosis as twice
as bad as a wrong diagnosis with complete uncertainty,
and a right diagnosis with complete uncertainty is 1/10
as a bad as the best wrong diagnosis. Minimizing this
loss function, the PU cutoffs were 191, 243, 326 and 699

PU. The penalizing of uncertainty in diagnosis would
allow an 'automatic' method of palette construction.
Unfortunately, this resembles the problem of utility
maximisation in healthcare and elsewhere; we could
devise optimum policies if we could specify our utility
function. Here, one could perhaps survey burns surgeons
to elicit their preferred loss function, and only then
could a palette be computer-generated. The value of the
work here is that it has demonstrated that a 5 or 6-color
palette cannot simply be derived automatically, in the
same way as can a 3-color palette, but that further
judgements are required.

Automatic decisions
Disregarding the clinical complications, for example
ensuring that a region of interest is sufficiently homo-
geneous in blood flow for the entire region to heal at the
same rate, we seek the best automatic decision rule.
Table 6 shows that a rule based on the mean flux slightly
outperforms rule 1. This is an example of the ODAO
(Optimal Discrimant Analysis for Ordinal responses)
method described by [23] and [24]. They found that this
method outperforms other discriminant methods,
because there is no need to model the functional form
of the relation between (here) mean flux and healing
time; one simply chops the mean into three ranges.
Using the median flux or the mean logged flux gave
slightly worse performance, and several other methods
that were tried did not perform as well. It does indeed
seem that the mean flux in a homogeneous burn region
is the best predictor of healing time, and that the shape
of the flux distribution is irrelevant. Clinically, this can
make sense because mean blood flow in an area is
proportional to total blood flow.

Discussion
The high accuracy of LDI, over 90%, relative to the 70%
accuracy achievable by unaided clinical judgement, and
the fact that the only demographic variable influencing
healing time once the laser-Doppler measurement is
known is gender, are the main results of the analysis; it is
significant that age and %TBSA did not aid prediction of
healing time. Also, it has been established that the mean
flux over an area is a 'sufficient' flux statistic; it is
impossible to obtain better predictive power by sub-
stituting the median flux, by adding standard deviation,
or by using quantiles of the flux distribution.

The accuracy of LDI seen in this study is lower than the
levels reported by clinicians ([5, 6, 8] etc) and could be
because the current assessment is based on only LDI
whereas the other studies would have included clinical
judgement. Also, instead of the 3-way classification of
healing time used here, frequently only a 2-part

Table 7: Classification performance of the current palette (A)
under allocation rules 1–2, (B), under rule 3, and (C) under rule 4,
and (D) of the optimized palette under rule 1

A) Rules 1 and 2 Pred.
< 14 days

Pred.
14–21 days

Pred.
> 21 days

Obs. < 14 days 162 24 0
Obs. 14–21 days 5 39 3
Obs > 21 days 0 3 25

% wrong % av. wrong per
class

13.4 13.6

B) Rule 3 Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 161 25 0
Obs. 14–21 days 5 39 3
Obs > 21 days 0 3 25

% wrong % av. wrong per
class

13.8 13.7

C) Rule 4 Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 177 9 0
Obs. 14–21 days 11 35 1
Obs > 21 days 0 7 21

% wrong % av. wrong per
class

10.7 18.5

D) Optimized Pred. < 14 days Pred. 14–21
days

Pred. > 21 days

Obs. < 14 days 178 8 0
Obs. 14–21 days 7 36 4
Obs > 21 days 0 2 26

% wrong % av. wrong per
class

8.1 11.6

This has flux boundaries 188,311, 353 and 601 PU.
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classification is use: treat surgically or not. Only 6.5% of
cases are misclassified by the methodology used here
under that scheme.

Women tend to heal more slowly than men even when
the blood flow as measured by laser-Doppler flux is
corrected for. It would therefore be possible to obtain a
slight improvement (1.1%) in classification accuracy by
using knowledge of gender in addition to the laser-
Doppler measurements.

Turning to the %TBSA results, this is an unusual statistical
situation, where despite a non-significant result, we seek to
explore the possible degradation of predictive ability at high
%TBSA resulting from our uncertainty over the effect of %
TBSA.Clearly, we have been able to transforma statement of
'no evidence for an effect' into a statement about the
possible degradation of performance arising from the
uncertainty over the size of the effect. However, any really
believable evidence that LDI can be used up to high values
of %TBSA must come from further clinical trials.

With an eye to the future, use of a probabilistic model
and its incorporation into the laser-Doppler imaging
software would enable clinicians to see when the healing
time prediction was very reliable and likely to be correct,
and when the diagnosis was less certain. The best model
obtained of the probabilities p1, p2, p3 of fast, medium,
and slow healing times is, for completeness:

p
gG y f

p
gG y f

p

p p p

1

2 1

3 1

1

1 1

1

1 2

1

=
+ − −

=
+ − −

−

= − −

exp( ) /
,

exp( ) /
,

a b b

a b b

22,

where y = exp(-6) x , x is mean flux in PU, G is gender
(0 for male, 1 for female), a1 = .0222, a2 = 5.563, bf =
9.185, bg = -2.164. The factor of exp(-6) was added for
numerical reasons.

Uncertainty over healing times is conveyed visually by
using a 5-color palette instead of the three colors needed
for decision making. The statistical investigation into the
derivation of an optimum palette has shown that the
widths of the two 'buffer color zones' are not fixed by
the requirement that the percentage of wrong healing-
time diagnoses be minimized. They could be fixed by
penalizing 'certain' wrong diagnoses more than uncer-
tain ones. To construct an 'optimum' palette, it would be
necessary to survey burn surgeons to elicit the best form
of loss function to be used. Further work may be carried
out along these lines.

Conclusion
This study has shown how contemporary statistical
techniques can be used to assess performance of a
medical imager and to reveal which clinical factors are
important with and without use of the device. Ease of
image interpretation is essential for such devices. In this
respect, it has been shown that statistical techniques
alone are incapable of providing a solution and that
clinician's input is required.
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